熊琪 李曉鋒 索效軍 張年 陶虎 劉洋 陳明新
摘要:5′肌醇磷酸酶(Skeletal muscle and kidney enriched inositol polyphosphate phosphatase,SKIP)基因多物種的QTL定位表明,SKIP是影響骨骼肌發(fā)育的候選基因,其在骨骼肌里面的表達(dá)由成肌轉(zhuǎn)錄因子MyoD所調(diào)控。SKIP在成肌分化過程中發(fā)揮著重要的負(fù)調(diào)控作用,其作用機(jī)制主要依賴于水解磷脂酰肌醇三磷酸PI(3,4,5)P3的酶活性及對PI3K-AKT信號通路的負(fù)調(diào)控。因此,對SKIP影響骨髓肌纖維發(fā)育進(jìn)行了簡要綜述。
關(guān)鍵詞:SKIP;QTL;PI3K-AKT;肌纖維發(fā)育
中圖分類號:Q445 文獻(xiàn)標(biāo)識碼:A 文章編號:0439-8114(2015)24-6127-03
DOI:10.14088/j.cnki.issn0439-8114.2015.24.005
Abstract: The QTL locations of SKIP gene in many species indicated that SKIP is a candidate gene of skeletal muscle development. The expression of SKIP in skeletal muscle is controlled by the transcription factor MyoD. SKIP plays a negative role in myoblast differentiating. The mechanism mainly dependents on its activity to hydrolyze PI(3,4,5)P3 and its negative role in the PI3K-Akt pathway.Therefore,SKIP on skeletal muscle development is reviewed.
Key words: SKIP;QTL;PI3K-AKT;muscle fiber development
1 SKIP的發(fā)現(xiàn)
2000年,Ijuin等[1]首先發(fā)現(xiàn)并分離了人的一個新肌醇磷酸酶(Skeletal muscle and kidney enriched inositol polyphosphate phosphatase,SKIP),存在3個可變性剪接體,剪接體2相比剪接體1多出230 bp的外顯子序列,剪接體3的C端非編碼區(qū)有937 bp序列缺失(圖1A),因而SKIP的分子質(zhì)量有51 ku和43 ku兩種大?。▓D1B)。SKIP具有肌醇多磷酸5-磷酸酶典型的2個保守結(jié)構(gòu)域,C端SKICH結(jié)構(gòu)域介導(dǎo)SKIP的轉(zhuǎn)移[2]。該肌醇磷酸酶在各組織中廣泛表達(dá),在心臟、骨骼肌和腎臟中高表達(dá),故SKIP也稱骨骼肌和腎臟高表達(dá)的肌醇磷酸酶。
2 SKIP的5′肌醇磷酸酶活性
Schmid等[3]發(fā)現(xiàn)SKIP能水解磷脂酰肌醇磷酸PI(3,4,5)P3、PI(4,5)P2以及肌醇磷酸I(1,4,5)P3、I(1,3,4,5)P4第5位的磷酸。PI(3,4,5)P3作為細(xì)胞內(nèi)一種重要的第二信使,在PI3K-AKT信號通路中的作用十分關(guān)鍵。在多種類型的細(xì)胞中,SKIP通過水解PI3K的下游信號分子PI(3,4,5)P3的5位磷酸,負(fù)調(diào)控PI3K-Akt信號,如在CHO、L6、C2C12等胰島素敏感細(xì)胞內(nèi),細(xì)胞內(nèi)源SKIP表達(dá)的抑制可顯著提高胰島素介導(dǎo)的PI3K-Akt活性,促進(jìn)葡萄糖載體GLUT4的轉(zhuǎn)移和葡萄糖的吸收效率[4]。在靜息細(xì)胞中,SKIP分布于核周內(nèi)質(zhì)網(wǎng);在胰島素、IGFs等細(xì)胞因子作用轉(zhuǎn)移至細(xì)胞膜外;在腳手架蛋白Pak1支撐下,與磷脂酰肌醇PI(3,4,5)P3的效應(yīng)物(Akt2、PDK1及Rac1)結(jié)合形成蛋白復(fù)合物,水解PI(3,4,5)P3并使效應(yīng)物失活[2,5]。
PI(4,5)P2是調(diào)節(jié)肌動蛋白聚合的信號分子[6]。研究表明,SKIP水解細(xì)胞中PI(4,5)P2的能力與水解胰島素介導(dǎo)的PI(3,4,5)P3的能力相同[4],相比水解PI(1,4,5)P3的能力提高6倍。肌動蛋白應(yīng)力纖維在SKIP聚集處消失的研究證實SKIP通過水解PI(4,5)P2參與細(xì)胞骨架的重排[1]。
3 SKIP基因的QTL定位
人類SKIP基因定位于17號染色體短臂p13.3上。SKIP與相鄰基因綜合癥有關(guān),如米-迪綜合征(無腦回畸形)是由17p13.3上400 kb區(qū)域內(nèi)8個基因(PRP8,RILP, SREC, PITPNa, SKIP, MYO1C, CRK,and 14-3-3ζ)的雜合缺失引起[7];17p13.3區(qū)域等位基因的丟失會導(dǎo)致乳房、卵巢和神經(jīng)的惡性腫瘤[8-10]。豬、牛、羊等經(jīng)濟(jì)動物基因組內(nèi)SKIP基因則多影響生產(chǎn)性狀的QTL,如豬SKIP基因定位在12號染色體長臂q1.3上,其所在位置存在影響第10肋骨背膘厚、胴體長[11]。肌纖維數(shù)目[12]和大腿重[13]的QTL區(qū)域。相關(guān)研究也表明SKIP基因的多態(tài)位點可顯著影響大白豬×梅山豬F2代群體的背最長肌高度、皮率、骨率、至第一頸椎胴體長、至第一肋胸胴體長、內(nèi)脂率等多項胴體性狀[14]。牛的SKIP同源基因定位于19號染色體長臂q1.3上,其所在位置存在影響犢牛出生重[15]的QTL區(qū)域。綿羊SKIP基因定位于11號染色體長臂q1.5-1.6,這段區(qū)域存在影響體重、胴體重以及體內(nèi)脂肪量[16]的QTL區(qū)域。
4 SKIP在骨骼肌細(xì)胞中的表達(dá)調(diào)控
Xiong等[17]研究發(fā)現(xiàn)SKIP啟動子區(qū)域存在多物種保守的MyoD結(jié)合位點。該位點的缺失或定點突變都導(dǎo)致肌源細(xì)胞中SKIP轉(zhuǎn)錄水平下降,MyoD干擾試驗也證明SKIP在肌源細(xì)胞中的表達(dá)活性依賴于MyoD的轉(zhuǎn)錄調(diào)控。該結(jié)果得到了日本神戶醫(yī)學(xué)研究所Tadaomi Takenawa團(tuán)隊的證實,研究還發(fā)現(xiàn)SKIP從24 h開始表達(dá)上調(diào),48 h達(dá)到峰值,且SKIP以MyoD依賴的方式表達(dá)上調(diào)[5]。這也解釋了SKIP在骨骼肌中高表達(dá)的原因,即肌肉組織中高表達(dá)的轉(zhuǎn)錄因子MyoD可能通過結(jié)合在SKIP 5′調(diào)控區(qū)的MyoD結(jié)合元件上增強(qiáng)其在骨骼肌中的轉(zhuǎn)錄。endprint
5 SKIP影響肌纖維發(fā)育的可能機(jī)制
研究表明肌肉特異性基因SKIP與肌纖維發(fā)育密切相關(guān)。SKIP基因雜合突變小鼠的比目魚肌和股四頭肌的重量顯著提高[18]。豬、牛、羊等經(jīng)濟(jì)動物基因組內(nèi)該基因的分布影響肌纖維發(fā)育的QTL,如豬肌纖維數(shù)目和大腿重、背最長肌高度以及犢牛出生重、綿羊胴體重等。盡管SKIP作為影響肌纖維發(fā)育的候選基因其作用機(jī)制仍有待闡明,SKIP可能通過以下機(jī)制調(diào)控肌纖維發(fā)育。
1)SKIP通過介導(dǎo)肌管中PI3K-Akt-mTOR的蛋白質(zhì)合成信號,參與調(diào)控肌纖維的肥大過程。PI3K-Akt-mTOR信號可以通過增加特異性mRNA的翻譯控制蛋白質(zhì)合成,是調(diào)控骨骼肌纖維肥大的重要信號通路。研究發(fā)現(xiàn)SKIP可抑制CHO細(xì)胞中的PI3K-Akt信號以及蛋白合成信號關(guān)鍵蛋白mTOR的下游靶蛋白p70S6活性[4]。在肌管細(xì)胞中,SKIP同樣也表現(xiàn)出了對PI3K-Akt信號的負(fù)調(diào)節(jié)作用[19],需要進(jìn)一步證實的是在肌纖維形成過程中SKIP對mTOR及下游靶蛋白p70S6活性的影響。
2)SKIP通過介導(dǎo)成肌細(xì)胞的骨架重排,參與肌纖維的形成。當(dāng)肌細(xì)胞開始分化,經(jīng)歷細(xì)胞遷移、細(xì)胞融合和肌動蛋白細(xì)胞骨架重排等細(xì)胞形態(tài)學(xué)和動力學(xué)上的改變。作為PI3激酶的下游信號分子,PI(3,4,5)P3能促進(jìn)肌動蛋白絲的結(jié)構(gòu)組裝[20]。借助分子伴侶SODD[21],SKIP水解底物PI(3,4,5)P3來調(diào)控肌動蛋白絲結(jié)構(gòu)組裝,調(diào)節(jié)細(xì)胞骨架的重排[20];或SKIP通過PI(4,5)P2影響肌動蛋白應(yīng)力纖維的聚集[1],調(diào)控成肌細(xì)胞的融合。
3)SKIP通過抑制IGF2的表達(dá)負(fù)調(diào)控成肌分化,影響肌纖維數(shù)目,由骨骼肌源細(xì)胞的成肌分化所控制[22]。饑餓時,小鼠成肌細(xì)胞內(nèi)的SKIP通過抑制自分泌促分化因子IGF2的表達(dá)負(fù)調(diào)控PI3K-AKT信號介導(dǎo)的成肌分化[5]。IGF2的下游信號Akt在促進(jìn)成肌分化的許多環(huán)節(jié)中起作用,可調(diào)節(jié)細(xì)胞周期中G1→S期的進(jìn)展[23],控制著分化早期myogenin的表達(dá),肌管的成熟[24]等。有研究表明抑制SKIP基因的表達(dá)使融入肌管的細(xì)胞核增多,肌管形成加速[5]。因此SKIP控制著成肌分化的進(jìn)度,是影響肌纖維數(shù)目的關(guān)鍵基因。
6 展望
在成肌細(xì)胞分化過程中,SKIP從24 h開始才表達(dá)上調(diào)。相對于分化12 h內(nèi)表達(dá)上調(diào)的肌肉特異性基因,SKIP屬于晚期上調(diào)基因。某些磷酸酶的晚期表達(dá)能重塑細(xì)胞信號網(wǎng)絡(luò)[25]。因此,SKIP基因上調(diào)表達(dá)很可能是MyoD對成肌分化進(jìn)行自我控制的方式。而像這類成肌分化晚期表達(dá)基因的轉(zhuǎn)錄調(diào)控模式也需要進(jìn)一步探究,這是控制骨骼肌細(xì)胞成肌分化的關(guān)鍵機(jī)制。
參考文獻(xiàn):
[1] IJUIN T, MOCHIZUKI Y, FUKAMI K, et al. Identification and characterization of a novel inositol polyphosphate 5-phosphatase[J]. J Biol Chem,2000,275(15):10870-10875.
[2] GURUNG R, TAN A, OOMS L M, et al. Identification of a novel domain in two mammalian inositol-polyphosphate 5-phosphatases that mediates membrane ruffle localization. The inositol 5-phosphatase skip localizes to the endoplasmic reticulum and translocates to membrane ruffles following epidermal growth factor stimulation[J]. J Biol Chem,2003,278(13):11376-11385.
[3] SCHMID A C,WISE H M,MITCHELL C A,et al. Type II phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation[J]. FEBS Lett,2004,576(1-2):9-13.
[4] IJUIN T, TAKENAWA T. SKIP negatively regulates insulin-induced GLUT4 translocation and membrane ruffle formation[J]. Mol Cell Biol,2003,23(4):1209-1220.
[5] IJUIN T, TAKENAWA T. Role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) 5-phosphatase skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) in myoblast differentiation[J]. J Biol Chem,2012,287(37):31330-31341.
[6] PARKER M H, PERRY R L, FAUTEUX M C, et al. MyoD synergizes with the E-protein HEB beta to induce myogenic differentiation[J]. Mol Cell Biol,2006,26(15):5771-5783.endprint
[7] CARDOSO C, LEVENTER R J, WARD H L, et al. Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3[J]. Am J Hum Genet,2003,72(4):918-930.
[8] SCHULTZ D C, VANDERVEER L, BERMAN D B, et al. Identification of two candidate tumor suppressor genes on chromosome 17p13.3[J]. Cancer Res,1996,56(9):1997-2002.
[9] CVEKL A J R, ZAVADIL J, BIRSHTEIN B K, et al. Analysis of transcripts from 17p13.3 in medulloblastoma suggests ROX/MNT as a potential tumour suppressor gene[J]. Eur J Cancer,2004,40(16):2525-2532.
[10] RONCUZZI L, BROGNARA I, BAIOCCHI D, et al. Loss of heterozygosity at 17p13.3-ter, distal to TP53, correlates with negative hormonal phenotype in sporadic breast cancer[J]. Oncol Rep,2005,14(2):471-474.
[11] THOMSEN H, LEE H K, ROTHSCHILD M F, et al. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine[J]. Journal of Animal Science,2004,82(8):2213-2228.
[12] WIMMERS K, FIEDLER I, HARDGE T, et al. QTL for microstructural and biophysical muscle properties and body composition in pigs[J]. Bmc Genetics,2006,7:1-15.
[13] MILAN D, BIDANEL J P, IANNUCCELLI N, et al. Detection of quantitative trait loci for carcass composition traits in pigs[J]. Genetics Selection Evolution,2002,34(6):705-728.
[14] XIONG Q, CHAI J, DENG C, et al. Characterization of porcine SKIP gene in skeletal muscle development: Polymorphisms, association analysis, expression and regulation of cell growth in C2C12 cells[J]. Meat Sci,2012,92(4):490-497.
[15] THOMASEN J R, GULDBRANDTSEN B, SORENSEN P, et al. Quantitative trait loci affecting calving traits in Danish Holstein cattle[J]. J Dairy Sci,2008,91(5):2098-2105.
[16] CAVANAGH C R, JONAS E, HOBBS M, et al. Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL[J]. Genet Sel Evol,2010,42:36-50.
[17] XIONG Q, CHAI J, ZHANG P P, et al. MyoD control of SKIP expression during pig skeletal muscle development[J]. Mol Biol Rep,2011,38(1):267-274.
[18] IJUIN T, YU Y E, MIZUTANI K, et al. Increased insulin action in SKIP heterozygous knockout mice[J]. Mol Cell Biol,2008,28(17):5184-5195.
[19] XIONG Q, DENG C Y, CHAI J, et al. Knockdown of endogenous SKIP gene enhanced insulin-induced glycogen synthesis signaling in differentiating C2C12 myoblasts[J]. Bmb Reports,2009,42(2):119-124.endprint
[20] HILPELA P, VARTIAINEN M K, LAPPALAINEN P. Regulation of the actin cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3[J]. Curr Top Microbiol Immunol,2004,282:117-163.
[21] RAHMAN P, HUYSMANS R D, WIRADJAJA F, et al. Silencer of death domains (SODD) inhibits skeletal muscle and kidney enriched inositol 5-phosphatase (SKIP) and regulates phosphoinositide 3-kinase(PI3K)/Akt signaling to the actin cytoskeleton[J]. J Biol Chem,2011,286(34):29758-29770.
[22] DAVOLI R, BRAGLIA S, RUSSO V, et al. Expression profiling of functional genes in prenatal skeletal muscle tissue in Duroc and Pietrain pigs[J]. J Anim Breed Genet,2011,128(1): 15-27.
[23] BOONSTRA J. Identification of a restriction point at the M/G1 transition during the ongoing cell cycle[J]. Adv Enzyme Regul,2007,47:208-221.
[24] ROTWEIN P, WILSON E M. Distinct actions of Akt1 and Akt2 in skeletal muscle differentiation[J]. J Cell Physiol, 2009,219(2):503-511.
[25] GUASCONI V, PURI P L. Chromatin: The interface between extrinsic cues and the epigenetic regulation of muscle regeneration[J]. Trends Cell Biol,2009,19(6):286-294.endprint