孫祥耀 海涌
?
脊髓損傷非手術(shù)治療的研究進(jìn)展
孫祥耀 海涌
【關(guān)鍵詞】脊髓損傷;創(chuàng)傷和損傷;治療;藥物療法;組織療法
脊柱脊髓損傷(spinal cord injury,SCI)具有較高的發(fā)病率及死亡率,據(jù)報道全世界范圍內(nèi)每百萬人會有 15~40 人出現(xiàn)急性脊髓損傷[1]。引起脊髓損傷的原因通常為車禍、運動損傷、工作意外、打架斗毆以及高處墜落[2]。其中男女比例約為 2.5∶1[3]。非創(chuàng)傷性脊髓損傷的原因為脊髓血管病變(25%)、腫瘤(25%)、感染性疾病(20%)以及椎管狹窄(19%)[4]。最初的脊髓損傷常出現(xiàn)在損傷產(chǎn)生時,此種損傷預(yù)后較差,功能恢復(fù)不佳;在最初的損傷之后,繼發(fā)性損傷主要是由神經(jīng)細(xì)胞死亡引起[5]。繼發(fā)性損傷最早的表現(xiàn)為由缺血引起灌注不足,從而引起能量供應(yīng)不足[6]。脊髓損傷沒有自愈能力,因此,由最初的機械性損傷因素引起的脊髓損傷往往無法恢復(fù)[7]。
目前,急性脊柱脊髓損傷的治療主要包括藥物治療,手術(shù)治療以及細(xì)胞治療。在藥物治療方面除了部分臨床研究之外,尚未形成共識。細(xì)胞治療研究的進(jìn)展給神經(jīng)功能康復(fù)帶來了希望。現(xiàn)就脊髓損傷的非手術(shù)治療的研究進(jìn)展綜述如下。
1. 類固醇激素:皮質(zhì)類固醇因其抗炎特性用于減輕急性脊髓損傷后脊髓水腫已有 30 年的歷史[8-9]。盡管皮質(zhì)類固醇激素的神經(jīng)保護(hù)作用的確切機制尚不明確,但是有學(xué)者提出其機制為抑制脂質(zhì)過氧化,調(diào)節(jié)炎性細(xì)胞因子引起的炎癥反應(yīng)和免疫反應(yīng),治療血管再灌注以及防止鈣離子進(jìn)入細(xì)胞[10]。
2. 甲潑尼龍:甲潑尼龍是一種合成的糖皮質(zhì)激素并且已經(jīng)長期應(yīng)用于治療脊髓損傷和腦水腫;目前對甲潑尼龍的大規(guī)模應(yīng)用來源于有三項分別被稱為 NASCIS(national acute spinal cord injury studies)I、II、III 的大規(guī)模、回顧性、隨機、雙盲、多中心臨床研究;其中 MASCIS I 的研究中,對脊髓損傷后 48 h 內(nèi)的患者,應(yīng)用 10 天 100 mg 或1000 mg 甲潑尼龍的治療效果進(jìn)行評估;兩組治療效果之間沒有明顯的差別[11]。實驗表明 1000 mg 的劑量遠(yuǎn)遠(yuǎn)小于有效進(jìn)行神經(jīng)保護(hù)所需要的劑量,并且在 30~40 mg/kg的最初劑量之后,建議給予患者靜脈維持劑量[12-13]。
因此在后來的 NASCI II 的研究中,在 30 mg/kg 的甲潑尼龍最大初始劑量之后,給予患者每小時 5.4 mg/kg 靜脈滴注,維持 23 h;研究中所包含的 487 例患者在脊髓損傷后 12 h 之內(nèi),被隨機分配到了甲潑尼龍組、納洛酮組以及安慰劑組;據(jù)統(tǒng)計,在損傷后 8 h 內(nèi)給予甲潑尼龍的完全和部分脊髓損傷的患者能夠明顯提高運動和感覺功能;通過此研究證實了甲潑尼龍對于脊髓損傷的治療是有效的,并表明了其有效預(yù)防繼發(fā)損傷[14]。隨后 NASCIS III 對不同治療窗之下 Tirilazad Mesylate 與甲潑尼龍治療效果進(jìn)行比較[15];因為抗氧化特性,一些類固醇激素使用引起的并發(fā)癥應(yīng)當(dāng)避免;30 mg/kg 劑量甲潑尼龍以藥丸的形式在損傷 8 h 后給予全部的 499 例患者,隨后隨機給予患者24 h 或 48 h 靜脈滴注甲潑尼龍或 48 h Tirilazad Mesylate 靜脈滴注;對于所有的治療措施中,損傷后前 3 h 患者的運動及感覺恢復(fù)相似;在這些患者中 24 h 持續(xù)滴注甲潑尼龍是有必要的;在脊髓損傷后 3~8 h 內(nèi)使用甲潑尼龍后,建議將靜脈滴注時間延長到 48 h 會更加有利;甲潑尼龍組與對照組相比,6 個月甚至 1 年以后患者運動功能的情況有明顯的改善[14]。
盡管 NASCIS II 和 III 引導(dǎo)了甲潑尼龍在治療急性脊髓損傷方面臨床應(yīng)用標(biāo)準(zhǔn)的制定,對這些方面的研究結(jié)果以及相關(guān)評論目前尚有爭議;這些情況使很多醫(yī)療機構(gòu)放棄了對甲潑尼龍的使用;有學(xué)者對 NASCIS I 以及 NASCIS II進(jìn)行了深入研究,結(jié)果顯示在 48 h 內(nèi)使用 NASCS III 對神經(jīng)功能的康復(fù)療效甚微,并且增加了傷口感染、肺栓塞、重癥肺炎、敗血癥的風(fēng)險,并且會增加呼吸系統(tǒng)并發(fā)癥所導(dǎo)致的繼發(fā)死亡風(fēng)險[16]。對于在治療脊髓損傷時是否應(yīng)當(dāng)使用這種治療方法的爭論仍在繼續(xù)[17]。
3. 神經(jīng)節(jié)苷酯 GM1:神經(jīng)節(jié)苷酯存在于細(xì)胞膜外層的鞘磷脂,并且富含唾液酸的成分;在實驗研究中發(fā)現(xiàn)了它在神經(jīng)保護(hù)和神經(jīng)功能恢復(fù)方面有潛在的作用,通過增加組織內(nèi)細(xì)胞再生降低興奮性氨基酸的毒性[18]。一項包含 37 例脊髓損傷患者的 GM1 療效單中心回顧性隨機臨床研究取得了意義重大的臨床效果[19]。在隨后的全身應(yīng)用GM1 的實驗研究中,發(fā)現(xiàn)此種方法能夠產(chǎn)生神經(jīng)保護(hù)作用,如突起生長,適應(yīng)性增強,預(yù)防細(xì)胞凋亡和抑制興奮毒性[20]。這些陽性結(jié)果促成了多中心隨機臨床研究實施,并在 2001 年發(fā)表這項研究將 750 例隨機分組,分別采用安慰劑、低劑量與高劑量 GM1 神經(jīng)節(jié)苷酯進(jìn)行治療;在第 26 周,使用 GM1 神經(jīng)節(jié)苷酯治療的不全癱瘓患者,其感覺及運動功能評分以及腸道功能及膀胱功能等其它參考指標(biāo)方面比安慰劑組有明顯提高;但是這種治療方法對完全癱瘓的患者無效[21]。
4. 阿片樣受體拮抗劑:在神經(jīng)損傷之后,強啡肽 A(一種內(nèi)源性的阿片樣物質(zhì))會大量溢出,從而產(chǎn)生神經(jīng)毒性作用;并且它可以通過非阿片樣機制降低脊髓的血流供應(yīng)[22]。納洛酮是一種非選擇性阿片樣受體拮抗劑;在神經(jīng)損傷的動物實驗?zāi)P椭?,納洛酮的應(yīng)用可以使功能及神經(jīng)電生理方面均有提升;并且納洛酮可以逆轉(zhuǎn)脊髓震蕩,提高脊髓血流量[23-24]。納洛酮在 21 世紀(jì) 80 年代早期被廣泛研究,并且在此期間有人類脊髓損傷 I 階段研究對其進(jìn)行評估;但是,納洛酮的有利作用曾被認(rèn)為是通過抑制脊髓損傷后內(nèi)源性的阿片類物質(zhì)的產(chǎn)生而實現(xiàn)的,但是這種觀點未被證實[25-27]。納洛酮的療效首先在 NASCIS II 中進(jìn)行研究,其三種治療方法表明納洛酮組與安慰劑組相比沒有產(chǎn)生明顯的神經(jīng)保護(hù)作用[28]。
5. 促甲狀腺激素釋放激素以及其類似物:內(nèi)源性阿片類物質(zhì)、興奮性氨基酸、白細(xì)胞三烯、血小板激活因子等繼發(fā)性損傷介質(zhì)可以被促甲狀腺激素釋放激素拮抗;脊髓損傷小鼠實驗表明促甲狀腺激素釋放激素能促進(jìn)功能的提升[29]。Pitts 等[30]在其研究中指出促甲狀腺激素釋放激素在增加血流方面有效,減少了脂質(zhì)降解,能夠有效止血并且提高神經(jīng)功能。
6. 尼莫地平:據(jù)報道鈣通道阻滯劑通過改善微循環(huán)提升了創(chuàng)傷后脊髓血流量;并且在脊髓損傷實驗研究中,尼莫地平能夠增加脊髓的血流量[31]。然而在其它的動物實驗中,在脊髓損傷或脊髓缺血后使用尼莫地平不會引起神經(jīng)系統(tǒng)的明顯改善[32]。1996 年在法國進(jìn)行的人類脊髓損傷研究中,對 100 例隨機分為了尼莫地平組、MPSS(NASCIS II 方案)組、尼莫地平和 MPSS(NASCIS II 方案)同時采用組和安慰劑組;盡管此項實驗可能在治療效果的體現(xiàn)方面尚有薄弱環(huán)節(jié),但是任何實驗組都沒有表現(xiàn)出安慰劑效應(yīng);受損脊髓的血流調(diào)節(jié)會產(chǎn)生全身性低血壓的潛在風(fēng)險,使用尼莫地平可能會增加這種風(fēng)險,因此這種情況已經(jīng)引起重視[33]。
7. 加環(huán)利定(GK11):谷氨酸鹽是中樞神經(jīng)系統(tǒng)中主要的興奮性氨基酸,并且在繼發(fā)性神經(jīng)損傷中起到重要的作用。如同加環(huán)利定(GK11),在脊髓損傷動物實驗中也表明其 NMDA 受體拮抗劑能夠產(chǎn)生重要的神經(jīng)保護(hù)作用[34]。隨著谷氨酸鹽分布到全身的各個部位,全身治療的不良反應(yīng)也凸顯出來。在之前的研究之中發(fā)現(xiàn),即使是賽福泰這種競爭性谷氨酸受體拮抗劑,也會對認(rèn)知方面有明顯的副作用,包括躁動、鎮(zhèn)靜、幻覺以及記憶力減退等[35]。因此,與 NMDA 拮抗劑相關(guān)的臨床治療的發(fā)展變得十分困難。除了比其它的 NMDA 受體拮抗劑有更好的耐受性以外,加環(huán)利定能夠提高脊髓損傷小鼠模型中的功能、組織學(xué)和電生理狀態(tài)[36]。
8. 鎂療法:鎂是一種眾所周知的神經(jīng)保護(hù)藥物,并在神經(jīng)損傷后自由基和谷氨酸對血管結(jié)構(gòu)的損傷中起到了重要作用。鎂是通過降低神經(jīng)結(jié)構(gòu)中的自由基的產(chǎn)生而起作用;其可以刺激內(nèi)皮細(xì)胞分泌前列環(huán)素,使供應(yīng)脊髓的血管進(jìn)行擴張;其可通過對谷氨酸的拮抗作用間接降低脂質(zhì)的過氧化作用[37]。Kaptanoglu 等[38]在一項意在證明鎂在脊髓損傷后的血管保護(hù)作用的實驗中表明,鎂能夠在脊髓損傷中降低水腫及血管的通透性。
9. 低溫療法:低溫療法通過降低腦水腫和細(xì)胞內(nèi)鈣離子濃度,增加 γ-GABA 的釋放,阻止谷氨酸的釋放從而發(fā)揮神經(jīng)保護(hù)作用[39]。除此之外,據(jù)報道適當(dāng)降低體溫能夠降低細(xì)胞凋亡的發(fā)生率[40]。利用全身降溫使脊髓降溫是通過靜脈輸液實現(xiàn)的,局部降溫是通過硬膜外或鞘內(nèi)導(dǎo)管輸入冷鹽水進(jìn)行降溫;但是對長節(jié)段的脊髓進(jìn)行降溫在技術(shù)上十分困難[41]。因為低溫療法在臨床應(yīng)用中會產(chǎn)生低血壓、心動過緩以及感染等并發(fā)癥,除非處于安全、適用的情況,低溫療法不建議用來對脊髓損傷患者進(jìn)行神經(jīng)保護(hù)[42]。
10. 米諾環(huán)素:米諾環(huán)素能夠降低興奮毒性作用,減少因 caspase-1 引起的細(xì)胞凋亡,并且通過降低小膠質(zhì)細(xì)胞活動以及自身免疫性腦脊髓炎從而對帕金森病患者產(chǎn)生神經(jīng)保護(hù)作用,并且對肌萎縮側(cè)索硬化癥以及成人及新生兒缺血性腦損傷模型同樣具有明顯的神經(jīng)保護(hù)作用[43]。據(jù)報道米諾環(huán)素還具有降低脊髓損傷后病灶大小的作用;并且在脊髓損傷的實驗研究中,米諾環(huán)素還能夠輕易通過血腦屏障,有效減低功能障礙的程度以及脊髓組織繼發(fā)性線粒體細(xì)胞色素 C 的丟失[44]。
11. 賽生靈:賽生靈在小鼠模型中有促進(jìn)軸突生長以及促進(jìn)功能恢復(fù)的作用;研究者發(fā)現(xiàn)其有在早期提升神經(jīng)功能并降低細(xì)胞凋亡發(fā)生率的作用[45]。
12. 促紅細(xì)胞生成素:Kapatanoglu 等[46]指出促紅細(xì)胞生成素抑制了脊髓損傷后脂質(zhì)過氧化,并且產(chǎn)生了超微神經(jīng)結(jié)構(gòu)保護(hù)作用;中樞神經(jīng)系統(tǒng)中的促紅細(xì)胞生成素以及其衍生物是有組織保護(hù)作用的內(nèi)源性細(xì)胞因子[47]。脊髓挫傷后 7 天進(jìn)行組織學(xué)檢查發(fā)現(xiàn),使用重組人促紅細(xì)胞生成素可以使脊髓空洞明顯縮小;其能抑制細(xì)胞凋亡,降低炎癥反應(yīng),興奮性調(diào)節(jié)促進(jìn)神經(jīng)干細(xì)胞的增值與分化[48]。促紅細(xì)胞生成素能夠提升脊髓白質(zhì)與灰質(zhì)的營養(yǎng)供應(yīng),減少細(xì)胞凋亡以及脂質(zhì)過氧化的發(fā)生,降低炎性細(xì)胞因子的釋放以及中性粒細(xì)胞的入侵,降低蛋白激酶磷酸化作用,但是對急性脊髓損傷的功能恢復(fù)的作用尚不明確[49]。
13. 雌激素:實驗證據(jù)表明雌激素在激素依賴性神經(jīng)保護(hù)中可能有重要作用;雌激素依賴性神經(jīng)保護(hù)作用是通過抗凋亡因子 Bcl-2 和激活蛋白激酶通路實現(xiàn)的[50]。非實驗研究結(jié)果表明,雌激素可以減輕繼發(fā)性組織損傷的發(fā)生,降低髓過氧化物酶的活性,減少小膠質(zhì)細(xì)胞以及巨噬細(xì)胞的堆積,減輕細(xì)胞凋亡的發(fā)生[51]。
14. 黃體酮:黃體酮在神經(jīng)系統(tǒng)中廣泛存在,其主要作用為降低炎性細(xì)胞因子產(chǎn)生,降低繼發(fā)性神經(jīng)損傷的興奮性毒性作用;在脊髓損傷模型的研究中,黃體酮能夠降低氧化劑的產(chǎn)生以及自由基的產(chǎn)生,并且為脊髓提供穩(wěn)定的神經(jīng)營養(yǎng)因子[52]。近期的研究表明,在損傷的脊髓中,黃體酮能夠調(diào)節(jié)傳統(tǒng)的神經(jīng)遞質(zhì)系統(tǒng),調(diào)節(jié)基因和蛋白質(zhì)的表達(dá),調(diào)節(jié)細(xì)胞形態(tài)改變,調(diào)節(jié)受體及神經(jīng)遞質(zhì)的表達(dá)[53]。
15. 環(huán)氧和酶抑制劑:感染性前列腺素在繼發(fā)損傷中有重要作用。據(jù)研究吲哚美辛減低了脊髓損傷患者的組織損傷與水腫;甲氯芬那酸與布洛芬是兩種非甾體類抗炎藥,在脊髓損傷后改善脊髓血流的動物實驗中被廣泛應(yīng)用;在此研究之中,血栓素抑制劑與前列環(huán)素類似物合用也能產(chǎn)生同樣的效果[54]。動物實驗研究發(fā)現(xiàn)脊髓損傷后Cox-2 的產(chǎn)生增加;并且 Cox-2 抑制劑 SC-236 的使用,帶來了良好的神經(jīng)保護(hù)作用,脊髓損傷后功能障礙明顯改善[56]。盡管 Cox-1 與 Cox-2 抑制劑在治療人類脊髓損傷方面尚未報道,這些藥物的廣泛應(yīng)用因為很多與安全和藥代動力學(xué)相關(guān)的問題而未被實施[55]。
16. 利魯唑:利魯唑是一種鈉通道阻滯劑,被用于肌萎縮側(cè)索硬化癥的治療;有實驗研究表明利魯唑能夠?qū)顾钃p傷者產(chǎn)生神經(jīng)保護(hù)作用,并且能夠降低脊髓灰質(zhì)與白質(zhì)的損害,提高運動動能[56]。對于利魯唑應(yīng)用于治療脊柱脊髓損傷動物的劑量效應(yīng)尚無明確報道,Kitzman 等[57]發(fā)現(xiàn)使用 8 mg/kg 和 10 mg/kg 時,脊髓損傷小鼠的尾部僵直均減輕,但是高劑量時昏睡和運動性共濟失調(diào)等全身性不良反應(yīng)更易發(fā)生。相關(guān)研究表明在使用利魯唑以后15 min[58]和 30 min[59]間隔期后,才會出現(xiàn)神經(jīng)保護(hù)作用。
17. 阿托伐他?。喊⑼蟹ニ≈委熌軌蛱峁┓乐鼓z質(zhì)細(xì)胞增生,減輕創(chuàng)傷引起的組織壞死,減輕髓鞘缺失從而產(chǎn)生保護(hù)性作用;它也可通過降低誘生型一氧化氮合酶活性,減少腫瘤壞死因子 α 和白細(xì)胞介素-1β 的釋放從而防止神經(jīng)元細(xì)胞和少突膠質(zhì)細(xì)胞的壞死[60]。
18. 抗氧化劑:動物實驗研究表明脊髓損傷后自由基增加;盡管抗壞血酸和低溫療法的作用機制不同,其產(chǎn)生的協(xié)同效應(yīng)降低了自由基的產(chǎn)生,減輕了相關(guān)損傷[61]。褪黑素[62],EPC-K1[63],維生素 E 和硒[64]等均為自由基清除藥物,并且在脊髓損傷患者的治療方面有效。關(guān)于一氧化氮合成酶抑制劑[65]、聚乙二醇[66]、脂多糖[67]、抗CD11d 抗體[68]、肌苷[69]和吡格列酮[70]等在脊髓損傷治療中的研究已經(jīng)被實施。
在過去的幾十年來,學(xué)界對細(xì)胞移植進(jìn)行了大量的動物實驗研究。細(xì)胞移植療法的基本原理是為受損組織提供促細(xì)胞生長素、細(xì)胞移植、結(jié)構(gòu)原件和髓鞘單元[71]。細(xì)胞移植療法的目的是通過軸突的再生和重建恢復(fù)功能;重建和再生的細(xì)胞實驗方法包括胚胎或成人干細(xì)胞或組織研究[72],成纖維細(xì)胞的基因調(diào)控[73],施萬細(xì)胞(schwann cells,SCs)[74],嗅鞘細(xì)胞移植[75-76],骨髓基質(zhì)干細(xì)胞[77],神經(jīng)干細(xì)胞[78]以及激活巨噬細(xì)胞相關(guān)研究[79],并且其相關(guān)報道在不同的脊髓損傷模型中取得了不同程度的功能恢復(fù)。
1. 施萬細(xì)胞:施萬細(xì)胞是脊髓損傷修復(fù)中最常用的細(xì)胞種類之一;很多研究已經(jīng)報道,施萬細(xì)胞是周圍神經(jīng)系統(tǒng)中的髓鞘形成細(xì)胞,其移植入損傷的脊髓后不僅形成軸突的髓鞘,并且能夠為軸突的再生形成寬松的底物[80-81]。施萬細(xì)胞移植在由光化學(xué)[82]、橫斷損傷[83]和亞急性挫傷[84]導(dǎo)致的脊髓損傷模型中,能改善運動情況,提高神經(jīng)生物學(xué)指標(biāo)的恢復(fù)。Oudega 等[85]發(fā)現(xiàn)施萬細(xì)胞移植在周圍神經(jīng)系統(tǒng)重建,多種生長因子釋放以及軸突重建中起到重要作用。除此之外,施萬細(xì)胞移植能夠產(chǎn)生許多促進(jìn)軸突生長的基質(zhì),如纖維連接蛋白和層粘連蛋白等[85]。另一方面,施萬細(xì)胞移植能夠?qū)ν暾驮偕闹袠猩窠?jīng)系統(tǒng)軸突進(jìn)行包鞘[86]。因此施萬細(xì)胞移植可以稱為治療脊髓損傷最有效的細(xì)胞移植治療方法之一。但是目前仍然需要人類施萬細(xì)胞在治療脊髓損傷模型的存活率以及療效相關(guān)的臨床前研究。
2. 嗅神經(jīng)鞘細(xì)胞(olfactory ensheathing cells,OECs):嗅覺黏膜包含能夠分化成神經(jīng)細(xì)胞及非神經(jīng)細(xì)胞的多能干細(xì)胞[87]。OECs 能夠促進(jìn)損傷后軸突和髓鞘再生;作為一種自體細(xì)胞的可靠來源,嗅黏膜具有持久的再生能力,并且能夠通過微創(chuàng)方法取得;將 OECs 移植入損傷的脊髓能夠促進(jìn)軸突髓鞘的再生,促進(jìn)脊髓損傷的恢復(fù)[88]。另一方面,臨床研究表明 OECs 移植是一種安全的方法[89],能夠提高脊髓損傷后感覺運動功能[90]。
3. 骨髓細(xì)胞(bone marrow cells,BMCs)移植:在近幾年中,一些研究表明骨髓細(xì)胞能夠分化為膠質(zhì)細(xì)胞,并且可以經(jīng)過特殊的實驗步驟分化為成熟神經(jīng)細(xì)胞[91]。骨髓細(xì)胞移植在脊髓損傷模型上的應(yīng)用研究表明,其能夠通過促進(jìn)髓鞘生成細(xì)胞的以及神經(jīng)細(xì)胞的產(chǎn)生而改善神經(jīng)功能障礙[92]。并且骨髓細(xì)胞能夠產(chǎn)生神經(jīng)保護(hù)因子,能夠拯救損傷后瀕臨死亡的細(xì)胞[93]。
4. 活化巨噬細(xì)胞:損傷后,巨噬細(xì)胞及其相關(guān)細(xì)胞因子侵入受損組織[94]。在神經(jīng)系統(tǒng)中巨噬細(xì)胞趨化因子能夠誘導(dǎo)產(chǎn)生相關(guān)組件,例如神經(jīng)生長因子及細(xì)胞黏附分子[95]。動物實驗發(fā)現(xiàn),活化巨噬細(xì)胞植入橫斷的脊髓中可以促進(jìn)組織修復(fù)以及運動功能修復(fù)[96]。除此之外,在坐骨神經(jīng)損傷的研究中發(fā)現(xiàn),阻止巨噬細(xì)胞的侵入會妨礙受損組織的再生[97]。
5. 少突膠質(zhì)前體細(xì)胞(oligodend-rocyte progenitor cells,OPCs):OPCs 和來源于 OPCs 為中樞神經(jīng)修復(fù)帶來了希望。它們起源于神經(jīng)上皮細(xì)胞,并且在中樞神經(jīng)系統(tǒng)中產(chǎn)生髓鞘[98]。是否 OPCs 能夠支持損傷軸突的修復(fù)尚不明確,但是對于少突膠質(zhì)細(xì)胞在治療神經(jīng)損傷方面的應(yīng)用,是基于其能在脫髓鞘的軸突上產(chǎn)生髓鞘;少突膠質(zhì)細(xì)胞的死亡會引起髓鞘脫失[99]。中樞神經(jīng)系統(tǒng)功能障礙和創(chuàng)傷后,軸突脫髓鞘會引起生理功能異常;除此之外,細(xì)胞凋亡在少突膠質(zhì)細(xì)胞死亡中起主要作用[100]。再生軸突以及脫髓鞘完整軸突的髓鞘再生,是促進(jìn)功能恢復(fù)的重要方法。
許多學(xué)者建議對脊髓損傷進(jìn)行早期干預(yù)[1-7]。目前最主要的問題是在手術(shù)治療過程中采用藥物,如神經(jīng)營養(yǎng)藥物等,以及促進(jìn)細(xì)胞再生的方法進(jìn)行輔助治療,對患者的預(yù)后也同樣有重要意義。急性脊髓損傷后神經(jīng)功能障礙的恢復(fù)是神經(jīng)科學(xué)中一個重要的話題。很多在動物實驗中證明有效的非手術(shù)治療方法,在臨床應(yīng)用中療效不佳。多年以來,有學(xué)者試圖尋找一種能夠在急性神經(jīng)損傷后提高神經(jīng)功能的方法,但是脊髓再生在人體尚未成功。盡管脊髓損傷的藥物治療與手術(shù)治療研究取得了重大進(jìn)步,但是脊髓損傷仍然是一個復(fù)雜的醫(yī)學(xué)問題,還有許多問題尚未取得突破性進(jìn)展。
參 考 文 獻(xiàn)
[1]Aki T, Toya S. Experimental study on changes of the spinalevoked potential and circulatory dynamics following spinal cord compression and decompression. Spine, 1984, 9(8):800-809.
[2]Tator CH, Edmonds VE. Acute spinal cord injury: analysis of epidemiologic factors. Can J Surg, 1979, 22(6):575-578.
[3]Karacan I, Koyuncu H, Pekel O, et al. Traumatic spinal cord injuries in Turkey: a nation-wide epidemiological study. SpinalCord, 2000, 38(11):697-701.
[4]Citterio A, Franceschini M, Spizzichino L, et al. Nontraumatic spinal cord injury: an Italian survey. Arch Phys Med Rehabil,2004, 85(9):1483-1487.
[5]Hui SP, Dutta A, Ghosh S. Cellular response after crush injury in adult zebrafsh spinal cord. Dev Dyn, 2010, 239(11):2962-2979.
[6]Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery, 1999, 44(5):1027-1039,1039-1040.
[7]Li M, Ona VO, Chen M, et al. Functional role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury. Neuroscience, 2000, 99(2):333-342.
[8]Lee RS, Noonan VK, Batke J, et al. Feasibility of patient recruitment into clinical trials of experimental treatments for acute spinal cord injury. J Clin Neurosci, 2012, 19(10):1338-1343.
[9]Ducker TB, Hamit HF. Experimental treatments of acute spinal cord injury. J Neurosurg, 1969, 30(6):693-697.
[10]Zhuang Y, Liu P, Wang L, et al. Mitochondrial oxidative stressinduced hepatocyte apoptosis reflects increased molybdenum intake in caprine. Biol Trace Elem Res, 2015.
[11]Bracken MB, Collins WF, Freeman DF, et al. Efficacy of methylprednisolone in acute spinal cord injury. JAMA, 1984,251(1):45-52.
[12]Hurlbert RJ, Hadley MN, Walters BC, et al. Pharmacological therapy for acute spinal cord injury. Neurosurgery, 2015,76(Suppl 1):S71-83.
[13]Young W, Decrescito V, Flamm ES, et al. Pharmacological therapy of acute spinal cord injury: studies of high dose methylprednisolone and naloxone. Clin Neurosurg, 1988, 34:675-697.
[14]Bracken MB, Shepard MJ, Collins WF, et al. A randomized,controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the second national acute spinal cord injury study. N Engl J Med, 1990,322(20):1405-1411.
[15]Bracken MB, Shepard MJ, Holford TR, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the third national acute spinal cord injury randomized controlled trial. national acute spinal cord injury study. JAMA,1997, 277(20):1597-1604.
[16]Coleman WP, Benzel D, Cahill DW, et al. A critical appraisal of the reporting of the national acute spinal cord injury studies(II and III)of methylprednisolone in acute spinal cord injury. J Spinal Disord, 2000, 13(3):185-199.
[17]Tator CH. Strategies for recovery and regeneration after brain and spinal cord injury. Inj Prev, 2002, 8(Suppl 4):V33-36.
[18]Bose B, Osterholm JL, Kalia M. Ganglioside-induced regeneration and reestablishment of axonal continuity in spinal cordtransected rats. Neurosci Lett, 1986, 63(2):165-169.
[19]Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal-cord injury--a randomized, placebocontrolled trial with GM-1 ganglioside. N Engl J Med, 1991,324(26):1829-1838.
[20]Imanaka T, Hukuda S, Maeda T. The role of GM1-ganglioside in the injured spinal cord of rats: an immunohistochemical study using GM1-antisera. J Neurotrauma, 1996, 13(3):163-170.
[21]Geisler FH, Coleman WP, Grieco G, et al. The sygen multicenter acute spinal cord injury study. Spine, 2001, 26(24 Suppl):S87-98.
[22]Long JB, Kinney RC, Malcolm DS, et al. Intrathecal dynorphin A1-13 and dynorphin A3-13 reduce rat spinal cord blood fow by non-opioid mechanisms. Brain Res, 1987, 436(2):374-379.
[23]Baskin DS, Simpson RJ, Browning JL, et al. The effect of longterm high-dose naloxone infusion in experimental blunt spinal cord injury. J Spinal Disord, 1993, 6(1):38-43.
[24]Winkler T, Sharma HS, Stalberg E, et al. Naloxone reduces alterations in evoked potentials and edema in trauma to the rat spinal cord. Acta Neurochir Suppl(Wien), 1994, 60:511-515.
[25]Flamm ES, Young W, Collins WF, et al. A phase I trial of naloxone treatment in acute spinal cord injury. J Neurosurg,1985, 63(3):390-397.
[26]Faden AI, Jacobs TP, Mougey E, et al. Endorphins in experimental spinal injury: therapeutic effect of naloxone. Ann Neurol, 1981, 10(4):326-332.
[27]Holaday JW, Faden AI. Naloxone acts at central opiate receptors to reverse hypotension, hypothermia and hypoventilation in spinal shock. Brain Res, 1980, 189(1):295-300.
[28]Bracken MB, Collins WF, Freeman DF, et al. Efficacy of methylprednisolone in acute spinal cord injury. JAMA, 1984,251(1):45-52.
[29]Hashimoto T, Fukuda N. Effect of thyrotropin-releasing hormone on the neurologic impairment in rats with spinal cord injury: treatment starting 24 h and 7 days after injury. Eur J Pharmacol, 1991, 203(1):25-32.
[30]Pitts LH, Ross A, Chase GA, et al. Treatment with thyrotropinreleasing hormone(TRH)in patients with traumatic spinal cord injuries. J Neurotrauma, 1995, 12(3):235-243.
[31]Guha A, Tator CH, Piper I. Effect of a calcium channel blocker on posttraumatic spinal cord blood flow. J Neurosurg, 1987,66(3):423-430.
[32]Ford RW, Malm DN. Failure of nimodipine to reverse acute experimental spinal cord injury. Cent Nerv Syst Trauma, 1985,2(1):9-17.
[33]Petitjean ME, Pointillart V, Dixmerias F, et al. Medical treatment of spinal cord injury in the acute stage. Ann Fr Anesth Reanim, 1998, 17(2):114-122.
[34]Gaviria M, Privat A, D'Arbigny P, et al. Neuroprotective effects of a novel NMDA antagonist, Gacyclidine, after experimental contusive spinal cord injury in adult rats. Brain Res, 2000,874(2):200-209.
[35]Davis SM, Albers GW, Diener HC, et al. Termination of acute stroke studies involving selfotel treatment. ASSIST steering committed. Lancet, 1997, 349(9044):32.
[36]Hirbec H, Gaviria M, Vignon J. Gacyclidine: a new neuroprotective agent acting at the N-methyl-D-aspartate receptor. CNS Drug Rev, 2001, 7(2):172-198.
[37]Solaroglu I, Kaptanoglu E, Okutan O, et al. Magnesium sulfate treatment decreases caspase-3 activity after experimental spinal cord injury in rats. Surg Neurol, 2005, 64(Suppl 2):S17-21.
[38]Kaptanoglu E, Beskonakli E, Okutan O, et al. Effect of magnesium sulphate in experimental spinal cord injury:evaluation with ultrastructural findings and early clinical results. J Clin Neurosci, 2003, 10(3):329-334.
[39]Tuzgen S, Kaynar MY, Guner A, et al. The effect of epidural cooling on lipid peroxidation after experimental spinal cord injury. Spinal Cord, 1998, 36(9):654-657.
[40]Xu RX, Nakamura T, Nagao S, et al. Specific inhibition of apoptosis after cold-induced brain injury by moderate postinjury hypothermia. Neurosurgery, 1998, 43(1):107-115.
[41]Vanicky I, Marsala M, Galik J, et al. Epidural perfusion cooling protection against protracted spinal cord ischemia in rabbits. J Neurosurg, 1993, 79(5):736-741.
[42]Fu ES, Tummala RP. Neuroprotection in brain and spinal cord trauma. Curr Opin Anaesthesiol, 2005, 18(2):181-187.
[43]Stirling DP, Khodarahmi K, Liu J, et al. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci, 2004, 24(9):2182-2190.
[44]Teng YD, Choi H, Onario RC, et al. Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional defcits after spinal cord injury. Proc Natl Acad Sci USA, 2004, 101(9):3071-3076.
[45]Dergham P, Ellezam B, Essagian C, et al. Rho signaling pathway targeted to promote spinal cord repair. J Neurosci,2002, 22(15):6570-6577.
[46]Kapatanoglu E, Solaroglu I, Okutan O, et al. Erythropoietin exerts neuroprotection after acute spinal cord injury in rats:effect on lipid peroxidation and early ultrastructural fndings. Neurosurg Rev, 2004, 27(2):113-120.
[47]Correia PN, Meyer IA, Eskandari A, et al. Beauty parlor stroke revisited: An 11-year single-center consecutive series. Int J Stroke, 2016, 11(3):356-360.
[48]Arishima Y, Setoguchi T, Yamaura I, et al. Preventive effect of erythropoietin on spinal cord cell apoptosis following acute traumatic injury in rats. Spine, 2006, 31(21):2432-2438.
[49]Cetin A, Nas K, Buyukbayram H, et al. The effects of systemically administered methylprednisolone and recombinant human erythropoietin after acute spinal cord compressive injury in rats. Eur Spine J, 2006, 15(10):1539-1544.
[50]Samantaray S, Das A, Matzelle DC, et al. Administration of low dose estrogen attenuates gliosis and protects neurons in acute spinal cordinjury in rats. J Neurochem, 2016, 136(5):1064-1073.
[51]Sareddy GR, Zhang Q, Wang R, et al. Proline-, glutamic acid,and leucine-rich protein 1 mediates estrogen rapid signaling and neuroprotection in the brain. Proc Natl Acad Sci USA,2015, 112(48):E6673-6682.
[52]Gonzalez SL, Labombarda F, Gonzalez DM, et al. Progesterone neuroprotection in spinal cord trauma involves up-regulation of brain-derived neurotrophic factor in motoneurons. J Steroid Biochem Mol Biol, 2005, 94(1-3):143-149.
[53]Thomas AJ, Nockels RP, Pan HQ, et al. Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine, 1999, 24(20):2134-2138.
[54]Hall ED, Wolf DL. A pharmacological analysis of the pathophysiological mechanisms of posttraumatic spinal cord ischemia. J Neurosurg, 1986, 64(6):951-961.
[55]Dumont RJ, Verma S, Okonkwo DO, et al. Acute spinal cord injury, part II: contemporary pharmacotherapy. Clin Neuropharmacol, 2001, 24(5):265-279.
[56]Karadimas SK, Laliberte AM, Tetreault L, et al. Riluzole blocks perioperative ischemia-reperfusion injury and enhances postdecompression outcomes in cervical spondylotic myelopathy. Sci Transl Med, 2015, 7(316):194r-316r.
[57]Kitzman PH. Effectiveness of riluzole in suppressing spasticity in the spinal cord injured rat. Neurosci Lett, 2009, 455(2):150-153.
[58]Springer JE, Azbill RD, Kennedy SE, et al. Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem, 1997, 69(4):1592-1600.
[59]Stutzmann JM, Pratt J, Boraud T, et al. The effect of riluzole on post-traumatic spinal cord injury in the rat. Neuroreport, 1996,7(2):387-392.
[60]Pannu R, Barbosa E, Singh AK, et al. Attenuation of acute infammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res, 2005, 79(3):340-350.
[61]Lou J, Lenke LG, Ludwig FJ, et al. Apoptosis as a mechanism of neuronal cell death following acute experimental spinal cord injury. Spinal Cord, 1998, 36(10):683-690.
[62]Kaptanoglu E, Tuncel M, Palaoglu S, et al. Comparison of the effects of melatonin and methylprednisolone in experimental spinal cord injury. J Neurosurg, 2000, 93(Suppl 1):S77-84.
[63]Fujimoto T, Nakamura T, Ikeda T, et al. Effects of EPC-K1 on lipid peroxidation in experimental spinal cord injury. Spine,2000, 25(1):24-29.
[64]Anderson DK, Means ED, Waters TR, et al. Microvascular perfusion and metabolism in injured spinal cord after methylprednisolone treatment. J Neurosurg, 1982, 56(1):106-113.
[65]Sharma HS, Badgaiyan RD, Alm P, et al. Neuroprotective effects of nitric oxide synthase inhibitors in spinal cord injuryinduced pathophysiology and motor functions: an experimental study in the rat. Ann N Y Acad Sci, 2005, 1053:422-434.
[66]Baptiste DC, Austin JW, Zhao W, et al. Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury. J Neuropathol Exp Neurol,2009, 68(6):661-676.
[67]Davis AE, Campbell SJ, Wilainam P, et al. Post-conditioning with lipopolysaccharide reduces the infammatory infltrate to the injured brain and spinal cord: a potential neuroprotective treatment. Eur J Neurosci, 2005, 22(10):2441-2450.
[68]Ditor DS, Bao F, Chen Y, et al. A therapeutic time window for anti-CD 11d monoclonal antibody treatment yielding reduced secondary tissue damage and enhanced behavioral recovery following severe spinal cord injury. J Neurosurg Spine, 2006,5(4):343-352.
[69]Liu F, You SW, Yao LP, et al. Secondary degeneration reduced by inosine after spinal cord injury in rats. Spinal Cord, 2006,44(7):421-426.
[70]Mctigue DM, Tripathi R, Wei P, et al. The PPAR gamma agonist Pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol, 2007, 205(2):396-406.
[71]Garcia-Alias G, Lopez-Vales R, Fores J, et al. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat. J NeurosciRes, 2004, 75(5):632-641.
[72]Akiyama Y, Honmou O, Kato T, et al. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol, 2001, 167(1):27-39.
[73]Liu Y, Himes BT, Murray M, et al. Grafts of BDNF-producing fbroblasts rescue axotomized rubrospinal neurons and prevent their atrophy. Exp Neurol, 2002, 178(2):150-164.
[74]Oudega M, Xu XM. Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma, 2006, 23(3-4):453-467.
[75]Garcia-Alias G, Lopez-Vales R, Fores J, et al. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat. J Neurosci Res, 2004, 75(5):632-641.
[76]Barakat DJ, Gaglani SM, Neravetla SR, et al. Survival,integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Cell Transplant, 2005,14(4):225-240.
[77]Baptiste DC, Fehlings MG. Update on the treatment of spinal cord injury. Prog Brain Res, 2007, 161:217-233.
[78]Cummings BJ, Uchida N, Tamaki SJ, et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA, 2005, 102(39):14069-14074.
[79]Rapalino O, Lazarov-Spiegler O, Agranov E, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med, 1998, 4(7):814-821.
[80]Beattie MS, Bresnahan JC, Komon J, et al. Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol, 1997,148(2):453-463.
[81]Takami T, Oudega M, Bates ML, et al. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci, 2002, 22(15):6670-6681.
[82]Garcia-Alias G, Lopez-Vales R, Fores J, et al. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat. J Neurosci Res, 2004, 75(5):632-641.
[83]Oudega M, Xu XM. Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma, 2006, 23(3-4):453-467.
[84]Firouzi M, Moshayedi P, Saberi H, et al. Transplantation of Schwann cells to subarachnoid space induces repair in contused rat spinal cord. Neurosci Lett, 2006, 402(1-2):66-70.
[85]Oudega M, Xu XM. Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma, 2006, 23(3-4):453-467.
[86]Gilmore SA. Autoradiographic studies of intramedullary Schwann cells in irradiated spinal cords of immature rats. Anat Rec, 1971, 171(4):517-528.
[87]Huard JM, Youngentob SL, Goldstein BJ, et al. Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol, 1998, 400(4):469-486.
[88]Boyd JG, Doucette R, Kawaja MD. Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. FASEB J, 2005, 19(7):694-703.
[89]Mackay-Sim A, Feron F, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia:a 3-year clinical trial. Brain, 2008, 131(Pt 9):2376-2386.
[90]Guest J, Herrera LP, Qian T. Rapid recovery of segmental neurological function in a tetraplegic patient following transplantation of fetal olfactory bulb-derived cells. Spinal Cord, 2006, 44(3):135-142.
[91]Munoz-Elias G, Woodbury D, Black IB. Marrow stromal cells,mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells, 2003, 21(4):437-448.
[92]Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci, 2002, 22(15):6623-6630.
[93]Kawada H, Takizawa S, Takanashi T, et al. Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation,2006, 113(5):701-710.
[94]Schwartz M, Cohen A, Stein-Izsak C, et al. Dichotomy of the glial cell response to axonal injury and regeneration. FASEB J,1989, 3(12):2371-2378.
[95]Heumann R, Lindholm D, Bandtlow C, et al. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration,and regeneration: role of macrophages. Proc Natl Acad Sci USA, 1987, 84(23):8735-8739.
[96]Rapalino O, Lazarov-Spiegler O, Agranov E, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med, 1998, 4(7):814-821.
[97]Perry VH, Brown MC, Gordon S. The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med, 1987, 165(4):1218-1223.
[98]Barres BA, Hart IK, Coles HS, et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell, 1992, 70(1):31-46.
[99]Bunge RP, Puckett WR, Hiester ED. Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv Neurol, 1997, 72:305-315.
[100]Crowe MJ, Bresnahan JC, Shuman SL, et al. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med, 1997, 3(1):73-76.
(本文編輯:李貴存)
. 綜述 Review .
DOI:10.3969/j.issn.2095-252X.2016.06.008中圖分類號:R683.2
作者單位:100020 北京,首都醫(yī)科大學(xué)附屬北京朝陽醫(yī)院骨科
通信作者:海涌,Email: spinesurgeon@163.com
Corresponding author:HAI Yong, Email: spinesurgeon@163.com
收稿日期:(2016-02-18)
Development in the non-surgical treatment of spinal cord injury
SUN Xiang-yao, HAI Yong.
Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, PRC
【Abstract】Spinal cord injury(SCI)leads to high rate of mortality. SCI consists of primary spinal cord injury and secondary spinal cord injury. The frst step is primary mechanical damage that occurs within minutes as a result of mechanical SCI. The second step is the secondary injury triggered by the primary damage. Then it leads to apoptotic nerve cell death. Currently, the management of patients with acute spinal cord injury(SCI)includes pharmacological agents, surgical intervention and cellular therapies. Pharmacological agents includes steroids,including methylprednisolone, ganglioside GM-1, opioid receptor antagonists, thyrotropin releasing hormone and its analogs, nimodipine, gacyclidine(GK11), magnesium, minocycline, cethrin , erythropoietin, estrogen,progesterone, cyclooxygenase inhibitors, riluzole, atorvastatin, and antioxidants. Recently, attempted cellular therapy and transplantations are promising. Cellular therapy consists of Schwann cell transplantation, olfactory ensheathing cells transplantation, bone marrow cells transplantation, stimulated macrophages transplantation and oligodendrocyte progenitor cells transplantation. Today, the most important problem is ineffectiveness of nonsurgical treatment choices in human SCI that showed neuroprotective effects in animal studies. Simultaneously, there is still no consensus about the treatment.
【Key words】Spinal cord injury; Wounds and injuries; Treatment; Drug therapy; Tissue therapy