張洪映,崔 紅
(河南農(nóng)業(yè)大學(xué)煙草學(xué)院,鄭州 450002)
?
煙草重要基因篇 13:
煙草腺毛發(fā)生和發(fā)育相關(guān)基因
張洪映,崔 紅*
(河南農(nóng)業(yè)大學(xué)煙草學(xué)院,鄭州 450002)
摘 要:煙草(Nicotiana tabacum L.)腺毛豐富、類型多樣、分泌旺盛,對煙株抗性和煙葉香氣品質(zhì)具有重要影響。對近年來煙草腺毛發(fā)生和發(fā)育、腺毛分泌物合成相關(guān)基因的研究進(jìn)展進(jìn)行了綜述,并展望了其在煙草葉面化學(xué)定向調(diào)控和品種改良中的應(yīng)用潛力。
關(guān)鍵詞:煙草;腺毛;發(fā)育;分泌物;基因
植物表皮毛是表皮細(xì)胞的特化結(jié)構(gòu)。作為植物與環(huán)境間的天然屏障,它具有防止水分蒸發(fā)、緩沖日光直射、抵抗病原菌、昆蟲和極端溫度等生理作用[1-2]。煙草(Nicotiana tabacum L.)全株密布表皮毛,形態(tài)結(jié)構(gòu)多種多樣,由一個(gè)至多個(gè)細(xì)胞組成。依據(jù)分泌腺的有無,可分為保護(hù)毛(無腺性細(xì)胞)和腺毛(有腺性細(xì)胞)。一般來說,只有腺毛具有分泌能力,其分泌物構(gòu)成了煙草葉面化學(xué)的重要組成部分[3-4]。煙草葉片腺毛的密度、類型及分泌物積累與煙株抗性和煙葉香氣品質(zhì)密切相關(guān)[5-6]。因此,煙草腺毛發(fā)生及物質(zhì)代謝調(diào)控對研究煙草逆境脅迫和香氣品質(zhì)具有重要意義。
擬南芥的表皮毛是一種特化的、無腺體的單細(xì)胞,可作為一種很好的模式系統(tǒng)來研究表皮毛細(xì)胞的分化過程。目前,已經(jīng)分離到的表皮毛突變體有70多個(gè),包括有無表皮毛、表皮毛簇生、減少、扭曲和玻璃狀等6種突變類型,涉及30多個(gè)基因[7-8]。其中3種轉(zhuǎn)錄因子對于表皮毛的發(fā)育啟動是必需的:GL1編碼一種R2R3 MYB類轉(zhuǎn)錄因子,GL3和EGL3(GL3的增強(qiáng)子)編碼一種bHLH型轉(zhuǎn)錄因子,TTG1編碼一種含有WD40結(jié)構(gòu)域的蛋白,是一種轉(zhuǎn)錄共調(diào)節(jié)子[9,10]。免疫共沉淀結(jié)果表明,GL1、GL3和TTG1能夠形成蛋白復(fù)合體,該轉(zhuǎn)錄調(diào)控的復(fù)合體能夠決定表皮細(xì)胞的命運(yùn)和模式,進(jìn)而調(diào)控表皮毛的發(fā)生和發(fā)育[11]。
GL1/GL3/TTG1轉(zhuǎn)錄調(diào)控復(fù)合體是在原初細(xì)胞間發(fā)揮相互作用的[12]。研究發(fā)現(xiàn)GL3/EGL3直接調(diào)控下游的GL2(含有HD2-ZIP結(jié)構(gòu)的轉(zhuǎn)錄因子),GL1直接調(diào)控TTG2(WRKY轉(zhuǎn)錄因子),而GL1和TTG1之間不存在互作[13-14]。在這個(gè)轉(zhuǎn)錄調(diào)控模型中,GL1、GL3和TTG1等作為正向調(diào)控因子促進(jìn)表皮毛發(fā)生,同時(shí)還存在一些負(fù)調(diào)控因子,例如一些部分同源的MYB蛋白:CPC、TRY以及TRY的增強(qiáng)子 CPC1(ETC1)和 CPC2 (ETC2)[15-17]。其中CPC和TRY是2個(gè)重要的負(fù)調(diào)節(jié)基因,屬于表皮毛特異表達(dá)基因,在嫩葉原基和正在發(fā)育的表皮毛細(xì)胞中表達(dá)。酵母的互作實(shí)驗(yàn)表明,CPC或TRY可以通過競爭與bHLH作用進(jìn)而阻斷“激活的”GL1/GL3/TTG1復(fù)合體的功能[18]。粒子轟擊實(shí)驗(yàn)發(fā)現(xiàn),GL1、GL2和GL3均不能在相鄰細(xì)胞間移動,而CPC、TRY和TTG1可以移動到相鄰細(xì)胞[10,19-20]。這些證據(jù)表明,GL1/GL3/TTG1轉(zhuǎn)錄調(diào)控復(fù)合體能夠調(diào)控表皮毛的發(fā)生。
擬南芥葉片表皮毛的發(fā)生和發(fā)育受到嚴(yán)格的時(shí)空調(diào)控,不同的表皮毛發(fā)生和發(fā)育階段涉及不同的基因[7-15,21]:影響表皮毛發(fā)生及排布的基因包括GL1、GL2、GL3、EGL3、TTG1、MYB23、CPC、TRY、ETC1、ETC2和SAD2;影響表皮毛核內(nèi)復(fù)制的基因包括CPR5、ICK/KRP、HYP6、KAK、RHL2、SIM和SPY;影響表皮毛分支形成的基因包括AN、FRC、STI、TFCC、TFCA和ZWI;影響表皮毛分支生長方向的基因包括BRICK1、CRK、DIS1、DIS2、GRL、KLK、ROP2和WRM。棉花纖維作為一種與單細(xì)胞表皮毛類似的結(jié)構(gòu),其分子調(diào)控機(jī)制與擬南芥表皮毛相似。
2.1 煙草腺毛發(fā)生和發(fā)育相關(guān)基因
根據(jù)微管植物的分類系統(tǒng),擬南芥和棉花屬于薔薇類,金魚草、番茄和煙草屬于菊類。煙草的腺毛結(jié)構(gòu)不同于擬南芥表皮毛,屬于多細(xì)胞結(jié)構(gòu),由1個(gè)基細(xì)胞、1~5個(gè)柄細(xì)胞和1~12頭細(xì)胞組成。組織結(jié)構(gòu)的差異決定腺毛的分子遺傳機(jī)制具有其特異性。早期的遺傳學(xué)研究發(fā)現(xiàn),分泌型腺毛的出現(xiàn)由單一位點(diǎn)的等位基因控制。在純合顯性(TeTe)和雜合基因(Tete)存在時(shí)表現(xiàn)為分泌型腺毛,純合隱性時(shí)為非分泌型腺毛[22]。Burk等報(bào)道有腺型腺毛的出現(xiàn)受3個(gè)等位基因控制[23]。目前這些基因的信息尚不清楚。
目前的研究表明,煙草腺毛發(fā)生機(jī)制與擬南芥有所不同,雖然都受bHLH-WD40調(diào)控,但涉及的MYB基因差異很大[24]。有研究發(fā)現(xiàn),煙草自身的R2R3 MYB類轉(zhuǎn)錄因子GL1過表達(dá)后并不能改變煙草表皮毛的表型,但將從金魚草中分離出來的R2R3 MYB類轉(zhuǎn)錄因子MIXTA和MIXTA LIKE 1,分別在煙草中過表達(dá)時(shí),均能導(dǎo)致表皮毛增多,說明煙草中存在MIXTA和MIXTA LIKE 1同源基因,能參與表皮毛發(fā)生調(diào)控[25-26]。生物信息學(xué)分析發(fā)現(xiàn),MIXTA和MIXTA LIKE 1存在幾乎完全相同的結(jié)合結(jié)構(gòu)域,但都不存在與bHLH互作的保守結(jié)構(gòu)域,表明煙草腺毛的形成可能不受MYB-bHLH-WD40蛋白復(fù)合體的調(diào)控[27]。煙草TTG1和TTG2基因均可調(diào)控植物防衛(wèi)反應(yīng)信號的傳導(dǎo),但對腺毛發(fā)生和發(fā)育的影響未見報(bào)道[28-29]。
番茄Woolly (Wo)基因與擬南芥中調(diào)控表皮分化的PDF2基因具有73%同源性,是番茄多細(xì)胞表皮毛形成的關(guān)鍵基因,能夠與細(xì)胞周期相關(guān)基因SlCycB2互作,從而促使細(xì)胞從G2期向M期的轉(zhuǎn)換,最終促進(jìn)多細(xì)胞表皮毛的形成[30]。Wo基因的等位突變體LA1531(WoV)存在2個(gè)位點(diǎn)的變異(異亮氨酸-692→精氨酸,天冬氨酸-695→酪氨酸),導(dǎo)致腺毛數(shù)量顯著增加。在煙草中表達(dá)WoV后,整個(gè)煙株密布表皮毛,但會導(dǎo)致植株矮小、生長緩慢和花發(fā)育畸形。轉(zhuǎn)錄組分析結(jié)果表明,WoV基因的表達(dá)會改變一些重要的代謝途徑,包括脂肪酸代謝、氨基酸的合成與代謝,以及植物激素信號傳遞途徑等[31]。
2.2 煙草腺毛分泌物合成基因
煙草腺毛是煙草香氣物質(zhì)合成的主要場所。煙草腺毛分泌物中所積累的雙萜烯類(西柏烷類和賴百當(dāng)類)和糖酯的生物合成主要發(fā)生在可分泌腺毛的腺頭細(xì)胞中。將煙草腺毛cDNA文庫隨機(jī)測序獲得的EST序列點(diǎn)制腺毛cDNA芯片,利用該芯片對煙草 K326腺毛和去腺毛葉片基因表達(dá)譜進(jìn)行比較分析,獲得207個(gè)腺毛優(yōu)勢表達(dá)基因,這些基因多與類萜代謝、生物堿代謝、苯丙烷代謝及防御反應(yīng)相關(guān)。其中萜類環(huán)化酶、細(xì)胞色素 P450加氧酶基因和葉面抗性蛋白基因(T-phylloplanin)均在腺毛特異表達(dá)[32]
研究表明,西柏烷二萜的合成反應(yīng)分為兩步:第一步,香葉基香葉基焦磷酸(geranylgeranyl diphosphate,GGPP0在植物質(zhì)體代謝途徑中的西柏三烯醇合酶(cembratrienol synthase,CBTS)的催化作用下,發(fā)生環(huán)化反應(yīng),形成α-和β-CBT-ol[5];第二步,CBT-ol在細(xì)胞色素 CYPP450加氧酶(cytochrome P450 hydroxylase,CYP450)的催化作用下,第 6位碳發(fā)生羥化反應(yīng)形成 α-和 β-CBT-diol[33]。通過對CBTS 的候選 cDNA 序列進(jìn)行的基因沉默處理后的轉(zhuǎn)基因鑒定,在轉(zhuǎn)基因煙草中發(fā)現(xiàn)一些西柏烷二萜含量極低的煙株腺毛中都具有CYC-1 基因缺失的mRNA片段,說明該基因編碼了CBTS,且在西柏烷二萜合成中具有重要作用[34]。有研究表明,在煙草中負(fù)責(zé)催化CBT-ol發(fā)生羥化反應(yīng)形成CBT-diol 的羥化酶屬于CYP450酶蛋白家族,其編碼基因?yàn)镃YP71D16,抑制該基因表達(dá)會增加CBT-ol的含量,阻止CBT-diol的合成,而且植株的抗蟲性得到了提高[33,35]。
賴百當(dāng)類雙萜的合成也是通過GGPP發(fā)生環(huán)化作用而形成的[36]:第一步,GGPP在柯巴基焦磷酸合酶(copalyl diphosphate synthases,CPSs)的作用下形成 8-羥基-柯巴基焦磷酸(8-α-hydroxycopalyl diphosphate,8-OH-CPP)。第二步,8-OHCPP在貝殼杉烯合成酶(kaurene synthase,KS)的催化下轉(zhuǎn)變?yōu)轫?冷杉醇或類賴百當(dāng)二醇。目前的研究發(fā)現(xiàn)[37],順-冷杉醇生物合成途徑中的關(guān)鍵基因分別為NtCPS2和NtABS (KS-like),兩個(gè)基因均在煙草腺毛特異表達(dá)。
煙草腺毛的腺頭細(xì)胞能直接分泌糖酯,在葉片上形成類樹脂物質(zhì)。Choi研究室進(jìn)行煙草的腺毛特異基因的轉(zhuǎn)錄組分析發(fā)現(xiàn),部分脂轉(zhuǎn)移蛋白(lipid transfer protein,LTP)基因在煙草腺毛特異或優(yōu)勢表達(dá)[38]。該小組首次克隆4個(gè)NtLTP基因,研究發(fā)現(xiàn)NtLTP1在長腺毛中特異表達(dá),與腺頭細(xì)胞的酯類和蠟質(zhì)分泌、以及蚜蟲抗性密切相關(guān)[39]。
腺毛對于煙草香氣品質(zhì)和抗性具有重要作用,不同煙草品種腺毛類型、結(jié)構(gòu)、物質(zhì)代謝及分泌能力各不相同,因而賦予了各自不同的抗性和風(fēng)味特征。目前,對煙葉腺毛的研究主要集中在形態(tài)學(xué)觀察和分泌物成分鑒定方面,對于腺毛發(fā)生和發(fā)育的分子機(jī)制和腺毛分泌物的生物代謝途徑知之甚少,使得煙草科技工作者無法根據(jù)栽培和烘烤需要對腺毛進(jìn)行遺傳改良。隨著煙草全基因組測序的完成和功能基因組學(xué)的開展,煙草腺毛發(fā)生和發(fā)育、物質(zhì)代謝和分泌的分子機(jī)制將逐步被闡明,從而奠定煙草葉面化學(xué)定向改良的理論基礎(chǔ)。
參考文獻(xiàn)
[1] Johnson H B. Plant pubescence∶ an ecological perspective[J]. Bot Rev,1975,41(3)∶ 233-258.
[2] Mauricio R,Rausher M D. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense[J]. Evolution,1997,51(5)∶ 1435-1444.
[3] Goodspeed T H. The genus Nicotiana[J]. Chron Bot,1954,16∶ 109-121.
[4] Tanaka M. Leaf hairs in Nicotiana[J]. Hatano Exp Sta Special Bull,1955,6∶ 1-22.
[5] Guo Z,Wagner G J. Biosynthesis of cembratrienols in cell-free extracts from trichomes of Nicotiana tabacum[J]. Plant Sci,1995,110(1)∶ 1-10.
[6] Guo Z H,Serverson R F,Wagner G J. Biosynthesis of the diterpene cis-abienol in cell-free extracts of tobacco trichomes[J]. Arch Biochem Biophys,1994,308(1)∶103-108.
[7] Hulskamp M,Misra S,Jurgens G. Genetic dissection of trichome cell development in Arabidopsis[J]. Cell,1994,76(3)∶ 555-566.
[8] Larkin J C,Oppenheimer D G,Lloyd A M,et al. Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development[J]. Plant Cell,1994,6(8)∶ 1065-1076.
[9] Szymanski D B,Jilk R A,Pollock S M,et al. Control of GL2 expression in Arabidopsis leaves and trichomes[J].Development,1998,125(7)∶ 1161-1171.
[10] Szymanski D B,Lloyd A M,Marks M D. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis[J]. Trends Plant Sci,2000,5(5)∶ 214-219.
[11] Larkin J C,Brown M L,Schiefelbein J. How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis[J]. Annu Rev Plant Biol,2003,54∶ 403-430.
[12] Payne C T,Zhang F,Lloyd A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1[J]. Genetics,2000,156(3)∶ 1349-1362.
[13] Morohashi K,Zhao M,Yang M,et al. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events[J]. Plant Physiol,2007,145(3)∶ 736-746.
[14] Ishida T,Hattori S,Sano R,et al. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation[J]. Plant Cell,2007,19(8)∶2531-2543.
[15] Schellmann S,Hulskamp M. Epidermal differentiation∶trichomes in Arabidopsis as a model system[J]. Int J Dev Biol,2005,49(5-6)∶ 579-584.
[16] Kirik V,Grini P E,Mathur J,et al. The Arabidopsis TUBULIN-FOLDING COFACTOR A gene is involved in the control of the alpha/beta-tubulin monomer balance[J]. Plant Cell,2002,14(9)∶ 2265-2276.
[17] Kirik V,Simon M,Huelskamp M,et al. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis[J]. Dev Biol,2004,268(2)∶ 506-513.
[18] Esch J J,Chen M,Sanders M,et al. A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis[J]. Development,2003,130(24)∶ 5885-5894.
[19] Bouyer D,Geier F,Kragler F,et al. Two-dimensional patterning by a trapping/depletion mechanism∶ the role of TTG1 and GL3 in Arabidopsis trichome formation[J]. PLoS Biol,2008,6(6)∶ e141.
[20] Schellmann S,Schnittger A,Kirik V,et al. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis[J]. EMBO J,2002,21(19)∶ 5036-5046.
[21] Marks M D. Molecular genetic analysis of trichome development in Arabidopsis[J]. Annu Rev Plant Physiol Plant Mol Biol,1997,48∶ 137-163.
[22] Nielson M T,Jones G A,Collins G B. Inheritance pattern for secreting and nonsecreting glandular trichomes in tobacco[J]. Crop Sci,1982,22(5)∶ 1051-1055.
[23] Burk L G,Chaplin J F,Jackson D M,et al. Inheritance of the glandless leaf trichome trait in Nicotiana tabacum L[J]. Tob Sci,1982,26∶ 51-53.
[24] Glover B J,Perez-Rodriguez M,Martin C. Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor[J]. Development,1998,125(17)∶ 3497-3508.
[25] Payne T,Clement J,Arnold D,et al. Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum[J]. Development,1999,126(4)∶ 671-682.
[26] Perez-Rodriguez M,Jaffe F W,Butelli E,et al. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers[J]. Development,2005,132(2)∶ 359-370.
[27] Serna L. A network of interacting factors triggering different fates[J]. Plant Cell,2004,16(9)∶ 2258-2263.
[28] Wang Y P,Liu R X,Chen L,et al. Nicotiana tabacum TTG1 contributes to ParA1-induced signalling and cell death in leaf trichomes[J]. J Cell Sci,2009,122(Pt 15)∶2673-2685.
[29] Zhu Q,Li B Y,Mu S Y,et al. TTG2-regulated development is related to expression of putative AUXIN RESPONSE FACTOR genes in tobacco[J]. BMC Genomics,2013,14∶ 806.
[30] Yang C X,Li H X,Zhang J H,et al. A regulatory gene induces trichome formation and embryo lethality in tomato[J]. Proc Natl Acad Sci USA,2011,108(29)∶11836-11841.
[31] Yang C X,Gao Y N,Gao S H,et al. Transcriptome profile analysis of cell proliferation molecular processes during multicellular trichome formation induced by tomato Wov gene in tobacco[J]. BMC Genomics,2015,16(1)∶ 868.
[32] Cui H,Zhang S T,Yang H J,et al. Gene expression profile analysis of tobacco leaf trichomes[J]. BMC Plant Biol,2011,11∶ 76.
[33] Wang E,Wang R,DeParasis J,et al. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance[J]. Nat Biotechnol,2001,19(4)∶ 371-374.
[34] Wang E,Wagner G J. Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing[J]. Planta,2003,216(4)∶ 686-691.
[35] Ennajdaoui H,Vachon G,Giacalone C,et al. Trichome specific expression of the tobacco (Nicotiana sylvestris)cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions[J]. Plant Mol Biol,2010,73(6)∶ 673-685.
[36] Peters R J. Two rings in them all∶ the labdane-related diterpenoids[J]. Nat Prod Rep,2010,27(11)∶ 1521-1530.
[37] Sallaud C,Giacalone C,Topfer R,et al. Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes[J]. Plant J,2012,72(1)∶1-17.
[38] Harada E,Kim J A,Meyer A J,et al. Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses[J]. Plant Cell Physiol,2010,51(10)∶ 1627-1637.
[39] Choi Y E,Lim S,Kim H J,et al. Tobacco NtLTP1,a glandular-specific lipid transfer protein,is required for lipid secretion from glandular trichomes[J]. Plant J,2012,70(3)∶ 480-491.
Advances in Molecular Mechanism of Tobacco Glandular Trichome Development
ZHANG Hongying,CUI Hong*
(College of Tobacco,Henan Agricultural University,Zhengzhou 450002,China)
Abstract:Tobacco (Nicotiana tabacum L.) is densely covered with various types of glandular trichomes,which secrete a wide range of natural products. Tobacco glandular trichomes play important roles in stress responses and aroma components. Recently,significant progress has been obtained about the molecular mechanism of tobacco glandular trichome development. The paper reviews the current research progress on the tobacco genes involved in trichome development and trichome secretion synthesis. It provided useful information for the molecular regulation of trichome secretions and variety improvement.
Keywords:tobacco;glandular trichome;development;secretion;gene
中圖分類號:S572.03
文章編號:1007-5119(2016)01-0097-04
DOI:10.13496/j.issn.1007-5119.2016.01.017
基金項(xiàng)目:中國煙草總公司基因組重大專項(xiàng)項(xiàng)目[110201301005(JY-05),110201401003(JY-03)]
作者簡介:張洪映(1982-),講師,主要從事煙草腺毛分子調(diào)控研究。E-mail:zhangying198215@163.com*通信作者,E-mail∶ cuihonger_13@163.com
收稿日期:2016-02-23