国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

幾何之父

2016-03-03 08:32高宏志
初中生世界·七年級 2016年2期
關(guān)鍵詞:歐幾里得公理學(xué)園

高宏志

歐幾里得(Euclid)是古希臘著名數(shù)學(xué)家、歐氏幾何學(xué)開創(chuàng)者. 歐幾里得生于雅典,當(dāng)時雅典就是古希臘文明的中心. 濃郁的文化氣氛深深地感染了歐幾里得,當(dāng)他還是個十幾歲的少年時,就迫不及待地想進入“柏拉圖學(xué)園”學(xué)習(xí).

一天,一群年輕人來到位于雅典城郊林蔭中的“柏拉圖學(xué)園”. 只見學(xué)園的大門緊閉著,門口掛著一塊木牌,上面寫著:“不懂幾何者,不得入內(nèi)!”這是當(dāng)年柏拉圖親自立下的規(guī)矩,為的是讓學(xué)生們知道他對數(shù)學(xué)的重視,然而卻把前來求教的年輕人給鬧糊涂了. 有人在想,正是因為我不懂?dāng)?shù)學(xué),才要來這兒求教的呀,如果懂了,還來這兒做什么?正在人們面面相覷,不知是退、是進的時候,歐幾里得從人群中走了出來,只見他整了整衣冠,看了看那塊牌子,然后果斷地推開了學(xué)園大門,頭也不回地走了進去.

“柏拉圖學(xué)園”是柏拉圖40歲時創(chuàng)辦的一所以講授數(shù)學(xué)為主要內(nèi)容的學(xué)校. 在學(xué)園里,師生之間的教學(xué)完全通過對話的形式進行,因此要求學(xué)生具有高度的抽象思維能力. 數(shù)學(xué),尤其是幾何學(xué),所涉及的對象都是普遍而抽象的東西. 它們同生活中的實物有關(guān),但是又不同于這些具體的事物,因此學(xué)習(xí)幾何被認(rèn)為是尋求真理的最有效的途徑.

柏拉圖甚至聲稱:“上帝就是幾何學(xué)家. ”這一觀點不僅成為學(xué)園的主導(dǎo)思想,而且也為越來越多的希臘民眾所接受. 人們都逐漸地喜歡上了數(shù)學(xué),歐幾里得也不例外. 他在有幸進入學(xué)園之后,便全身心地沉潛在數(shù)學(xué)王國里. 他潛心求索,以繼承柏拉圖的學(xué)術(shù)為奮斗目標(biāo),除此之外,他哪兒也不去,什么也不干,熬夜翻閱和研究柏拉圖的所有著作和手稿.可以說,連柏拉圖的親傳弟子也沒有誰能像他那樣熟悉柏拉圖的學(xué)術(shù)思想、數(shù)學(xué)理論. 經(jīng)過對柏拉圖思想的深入探究,他得出結(jié)論:圖形是神繪制的,所有一切現(xiàn)象的邏輯規(guī)律都體現(xiàn)在圖形之中. 因此,對智慧訓(xùn)練,就應(yīng)該從以圖形為主要研究對象的幾何學(xué)開始. 他確實領(lǐng)悟到了柏拉圖思想的要旨,并開始沿著柏拉圖當(dāng)年走過的道路,把幾何學(xué)的研究作為自己的主要任務(wù),并最終取得了世人敬仰的成就.

最早的幾何學(xué)興起于公元前7世紀(jì)的古埃及,后經(jīng)古希臘人傳到古希臘的都城,又借畢達(dá)哥拉斯學(xué)派系統(tǒng)奠基. 在歐幾里得以前,人們已經(jīng)積累了許多幾何學(xué)的知識,然而這些知識存在一個很大的缺點和不足,就是缺乏系統(tǒng)性,它們大多數(shù)是片斷、零碎的,公理與公理之間、證明與證明之間并沒有什么很強的聯(lián)系性,更不要說對公式和定理進行嚴(yán)格的邏輯論證和說明. 因此,隨著社會經(jīng)濟的繁榮和發(fā)展,特別是隨著農(nóng)林畜牧業(yè)的發(fā)展、土地開發(fā)和利用的增多,把這些幾何學(xué)知識加以條理化和系統(tǒng)化,成為一整套可以自圓其說、前后貫通的知識體系,已經(jīng)是刻不容緩,成為科學(xué)進步的大勢所趨. 歐幾里得通過對柏拉圖早期數(shù)學(xué)思想,尤其是幾何學(xué)理論系統(tǒng)而周詳?shù)难芯浚衙翡J地察覺到了幾何學(xué)理論的發(fā)展趨勢. 他下定決心,要在有生之年完成這一工作. 為了完成這一重任,歐幾里得不辭辛苦,長途跋涉,從愛琴海邊的雅典古城,來到尼羅河流域的埃及新埠——亞歷山大城,為的就是在這座新興的,但文化蘊藏豐富的異域城市實現(xiàn)自己的初衷. 在此地的無數(shù)個日日夜夜里,他一邊收集以往的數(shù)學(xué)專著和手稿,向有關(guān)學(xué)者請教,一邊試著著書立說,闡明自己對幾何學(xué)的理解,哪怕是尚膚淺的理解. 經(jīng)過歐幾里得忘我的勞動,終于在公元前300年結(jié)出豐碩的果實,這就是幾經(jīng)易稿而最終定形的《幾何原本》一書. 這是一部傳世之作,幾何學(xué)正是有了它,不僅第一次實現(xiàn)了系統(tǒng)化、條理化,而且又孕育出一個全新的研究領(lǐng)域——歐幾里得幾何學(xué),簡稱歐氏幾何.

《幾何原本》是一部集前人思想和歐幾里得個人創(chuàng)造性于一體的不朽之作. 傳到今天的歐幾里得著作并不多,然而我們卻可以從這部書詳細(xì)的寫作筆調(diào)中,看出他真實的思想底蘊.

全書共分13卷. 書中包含了5條“公理”、5條“公設(shè)”、23個定義和467個命題. 在每一卷內(nèi)容當(dāng)中,歐幾里得都采用了與前人完全不同的敘述方式,即先提出公理、公設(shè)和定義,然后再由簡到繁地證明它們, 這使得全書的論述更加緊湊和明快. 而在整部書的內(nèi)容安排上,也同樣貫徹了他的這種獨具匠心的安排. 它由淺到深,從簡至繁,先后論述了直邊形、圓、比例論、相似形、數(shù)、立體幾何以及窮竭法等內(nèi)容. 其中有關(guān)窮竭法的討論,成為近代微積分思想的來源. 僅僅從這些卷帙的內(nèi)容安排上,我們就不難發(fā)現(xiàn),這部書已經(jīng)基本囊括了幾何學(xué)從公元前7世紀(jì)的古埃及,一直到公元前4世紀(jì)的古希臘——歐幾里得生活時期——前后總共400多年的數(shù)學(xué)發(fā)展歷史. 這其中,頗有代表性的便是在第1卷到第4卷中,歐幾里得對直邊形和圓的論述. 正是在這幾卷中,他總結(jié)和發(fā)揮了前人的思維成果,巧妙地論證了畢達(dá)哥拉斯定理,也稱“勾股定理”,即在一直角三角形中,斜邊上的正方形的面積等于兩條直角邊上的兩個正方形的面積之和. 他的這一證明,從此確定了勾股定理的正確性并延續(xù)了2 000多年. 《幾何原本》是一部在科學(xué)史上千古流芳的巨著. 它不僅保存了許多古希臘早期的幾何學(xué)理論,而且通過歐幾里得開創(chuàng)性的系統(tǒng)整理和完整闡述,使這些遠(yuǎn)古的數(shù)學(xué)思想發(fā)揚光大. 它開創(chuàng)了古典數(shù)論的研究,在一系列公理、定義、公設(shè)的基礎(chǔ)上,創(chuàng)立了歐幾里得幾何學(xué)體系,成為用公理化方法建立起來的數(shù)學(xué)演繹體系的最早典范. 照歐氏幾何學(xué)的體系,所有的定理都是從一些確定的、不需證明而礴然為真的基本命題即公理演繹出來的. 在這種演繹推理中,對定理的每個證明必須或者以公理為前提,或者以先前就已被證明了的定理為前提,最后做出結(jié)論. 這一方法后來成了用以建立任何知識體系的嚴(yán)格方式,人們不僅把它應(yīng)用于數(shù)學(xué)中,也把它應(yīng)用于科學(xué)中,而且也應(yīng)用于神學(xué)甚至哲學(xué)和倫理學(xué)中,對后世產(chǎn)生了深遠(yuǎn)的影響. 盡管歐幾里得的幾何學(xué)在差不多2 000年間,被奉為嚴(yán)格思維的范例,但實際上它并非那么完美. 人們發(fā)現(xiàn),一些被歐幾里得作為不證自明的公理,卻難以自明,越來越遭到懷疑. 比如“第五平行公設(shè)”,歐幾里得在《幾何原本》一書中斷言:“通過已知直線外一已知點,能作且僅能作一條直線與已知直線平行. ”這個結(jié)果在普通平面當(dāng)中尚能夠得到經(jīng)驗的印證,但是在無處不在的閉合球面之中(地球就是個大曲面)這個平行公理卻是不成立的. 俄國人羅巴切夫斯基和德國人黎曼由此創(chuàng)立了非歐幾何學(xué).

歐幾里得將公元前7世紀(jì)以來希臘幾何積累起來的豐富成果整理在嚴(yán)密的邏輯系統(tǒng)之中,使幾何學(xué)成為一門獨立的、演繹的科學(xué). 除了《幾何原本》之外,他還有不少著作,可惜大都失傳. 《已知數(shù)》是除《原本》之外唯一保存下來的他的希臘文純粹幾何著作,體例和《原本》前6卷相近,包括94個命題,指出若圖形中某些元素已知,則另外一些元素也可以確定. 《圖形的分割》現(xiàn)存拉丁文本與阿拉伯文本,論述用直線將已知圖形分為相等的部分或成比例的部分. 《光學(xué)》是早期幾何光學(xué)著作之一,研究透視問題,敘述光的反射角等于入射角,認(rèn)為視覺是眼睛發(fā)出光線到達(dá)物體的結(jié)果. 還有一些著作未能確定是否屬于歐幾里得,而且已經(jīng)散失.

除了《幾何原本》之外,歐幾里得還有另外五本著作流傳至今. 它們與《幾何原本》一樣,內(nèi)容都包含定義及證明.

猜你喜歡
歐幾里得公理學(xué)園
歐幾里得:助力幾何學(xué)的獨立與發(fā)展
歐幾里得的公理方法
歐幾里得和塑料袋
Abstracts and Key Words
公理是什么
數(shù)學(xué)機械化視野中算法與公理法的辯證統(tǒng)一