李 東,譚亮成,安芷生
(1.中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710061;2.中國(guó)科學(xué)院大學(xué),北京100049;3.西安交通大學(xué) 全球環(huán)境變化研究院,西安 710054)
我國(guó)季風(fēng)區(qū)5 ka BP氣候事件
李 東1,2,譚亮成1,3,安芷生1
(1.中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710061;2.中國(guó)科學(xué)院大學(xué),北京100049;3.西安交通大學(xué) 全球環(huán)境變化研究院,西安 710054)
5.0 ka BP前后全球普遍經(jīng)歷了一次快速的降溫事件,對(duì)世界范圍內(nèi)很多地區(qū)的環(huán)境產(chǎn)生了顯著影響。本文利用公開(kāi)發(fā)表的有高精度年代控制的、高分辨率石筍和湖沼沉積記錄,系統(tǒng)回顧了5 ka BP氣候事件在我國(guó)不同地區(qū)的降雨表現(xiàn)。這次氣候事件在我國(guó)季風(fēng)區(qū)不同區(qū)域都有記錄,其中在季風(fēng)區(qū)北方和青藏高原地區(qū)記錄的最為清楚,體現(xiàn)為顯著的干旱。事件起始于5.6 — 5.5 ka BP,在5.0 ka BP左右達(dá)到峰值,其后快速回升。5 ka BP氣候事件對(duì)我國(guó)新石器文化的發(fā)展產(chǎn)生了重要影響。太陽(yáng)輻射減少導(dǎo)致的赤道輻合帶南移和大西洋經(jīng)向翻轉(zhuǎn)環(huán)流減弱導(dǎo)致的亞洲夏季風(fēng)減弱可能驅(qū)動(dòng)了此次氣候事件。然而,不同地區(qū)、特別是南方地區(qū)的不同記錄在此次事件的表現(xiàn)形式和開(kāi)始時(shí)間有所差異。云南和湖北的泥炭記錄顯示此次事件為突變事件,發(fā)生于4.7 — 4.9 ka BP,不同于其他地質(zhì)記錄的漸變狀態(tài)。未來(lái)還需加強(qiáng)在南方地區(qū),特別是華東地區(qū)重建涵蓋5 ka BP氣候事件的有絕對(duì)定年的高分辨率可靠降雨記錄。進(jìn)一步厘清這些記錄的差異是由于不同氣候代用指標(biāo)和記錄分辨率的不同以及測(cè)年誤差導(dǎo)致的,還是對(duì)氣候事件的響應(yīng)存在著區(qū)域差異。
5 ka BP事件;降雨表現(xiàn);文化影響;中國(guó)季風(fēng)區(qū)
全新世是地質(zhì)時(shí)代的最新階段,與人類(lèi)的關(guān)系最為密切,全新世氣候變化經(jīng)歷了早全新世升溫—中全新世高溫—晚全新世降溫的過(guò)程,在以上變化背景下還存在若干次突變事件(李永化等,2003;譚亮成等,2008;王紹武,2009)。這些氣候突變事件的發(fā)生背景和驅(qū)動(dòng)機(jī)制不盡相同,引起古氣候?qū)W界的廣泛關(guān)注(Alley and ágústsdóttir,2005;Yu et al,2010)。在5.0 ka BP前后全球普遍經(jīng)歷了一次快速降溫事件(Xu et al,2006;呂厚遠(yuǎn)和張健平,2008;Moros et al,2009;Dirksen et al,2013;Marcott et al,2013;Prasad and Baier,2014;Castro et al,2015),與此同時(shí)北半球中低緯許多地區(qū)經(jīng)歷了一次干旱事件。由于這次氣候事件發(fā)生于人類(lèi)文明的前夕,因此意義重大。Magny and Haas(2004)通過(guò)南北半球植被、冰川、永久凍土等陸地和海洋的資料表明5 ka BP事件具有全球性,在南北半球中高緯度特別是北大西洋附近氣候顯著變冷。在歐洲南部,Castro et al(2015)通過(guò)對(duì)伊比利亞半島西北部沼澤的植物大化石和泥炭腐殖化度分析發(fā)現(xiàn),在5.3 —4.85 cal ka BP期間有一次變冷事件。此外,來(lái)自地中海中東部的石筍δ18O記錄表明在5.2 ka BP和5.6 ka BP左右冬季降雨明顯減少,代表兩次明顯的干旱事件,其中5.2 ka BP事件持續(xù)時(shí)間短于100年,而5.6 ka BP事件可以從5.7 ka BP延伸到5.4 ka BP(Zanchetta et al,2014)。對(duì)印度西部Pariyaj湖的研究發(fā)現(xiàn)在5.86—4.68 cal ka BP期間,孢粉和植物化石數(shù)量很低,指示了一次極端干旱事件(Raj et al,2015),對(duì)Sambhar湖的研究也發(fā)現(xiàn)了類(lèi)似的干旱事件(Prasad and Enzel,2006)。Fleitmann et al(2003)重建了阿曼南部全新世石筍δ18O記錄,發(fā)現(xiàn)5.3 ka BP左右石筍δ18O較高,指示印度季風(fēng)減弱。阿拉伯海高分辨率沉積記錄也有類(lèi)似事件(Thamban et al,2007)。美國(guó)愛(ài)荷華州東北部石筍δ18O(Denniston et al,1999)也記錄了該地區(qū)5.7—5.0 ka BP左右的干旱狀態(tài)。5.5 ka BP左右,非洲地區(qū)也發(fā)現(xiàn)了顯著的氣候事件(deMenocal et al,2000),Thompson et al(2002)通過(guò)對(duì)乞力馬扎羅6個(gè)冰芯的δ18O和粉塵含量研究,發(fā)現(xiàn)~5.2 ka BP左右有一次突然降溫事件。
在我國(guó)季風(fēng)區(qū)的許多記錄中,也發(fā)現(xiàn)了5 ka BP氣候事件的印記(Hong et al,2001;An et al,2012;Chen et al,2015;Xu et al,2015)。本文系統(tǒng)回顧我國(guó)季風(fēng)區(qū)有絕對(duì)年齡控制的高分辨率石筍和湖沼等記錄,重點(diǎn)關(guān)注近幾年的最新成果,研究了5 ka BP氣候事件時(shí)我國(guó)季風(fēng)區(qū)的水文變化、對(duì)新石器文化的影響和可能的驅(qū)動(dòng)機(jī)制,并進(jìn)一步討論了這一事件目前研究中存在的問(wèn)題。
本文將研究區(qū)分為東北地區(qū)、華北地區(qū)、華中地區(qū)、華東地區(qū)、華南地區(qū)、西南地區(qū)以及青藏高原地區(qū)。研究點(diǎn)見(jiàn)圖1。
1.1 東北地區(qū)
吉林金川泥炭地以C3植被為主,纖維素的δ13C變化主要受控于降雨變化,降雨越少,δ13C越高。Hong et al(2001)發(fā)現(xiàn)金川泥炭纖維素的δ13C值在5.5 cal ka BP左右開(kāi)始升高,揭示氣候的變干,干旱在5.0 cal ka BP左右達(dá)到峰值(圖2)。來(lái)自孢粉和碳屑顆粒的研究也顯示,從5.5 cal ka BP開(kāi)始,金川地區(qū)落葉林減少,針葉林增多,在5.0 — 4.6 cal ka BP期間孢粉濃度降低,干旱氣候?qū)?.12 ± 0.066 cal ka BP的火事件起到了促進(jìn)作用(Jiang et al,2008)。與金川泥炭地相距不遠(yuǎn)的哈尼泥炭地的記錄顯示δ13C在5.8 cal ka BP開(kāi)始升高,在4.8 cal ka BP左右達(dá)到峰值,同樣指示環(huán)境比較干旱(Hong et al,2005)。臨近的四海龍灣瑪珥湖沉積物的生物硅凈積累速率也反映出該地區(qū)在4.9 cal ka BP夏季降水量達(dá)到極小值(Schettler et al,2006)。黑龍江鏡泊湖的研究表明在5.7 —5.43 cal ka BP,針葉林和落葉闊葉林?jǐn)?shù)量處于低值,昭示氣候寒冷干燥(Li et al,2011)。此外,Tan and Cai(2005)在遼寧本溪水洞石筍δ18O記錄中也發(fā)現(xiàn)在4.8 ka BP左右δ18O偏正。
從以上研究可以看出,5 ka BP氣候事件在東北地區(qū)表現(xiàn)較明顯。泥炭記錄有高精度的AMS14C測(cè)年結(jié)果,金川泥炭在4.84 cal ka BP(Hong et al,2001)、5.055— 5.186 cal ka BP(Jiang et al,2008)均有年齡控制點(diǎn),而哈尼泥炭在5.383 cal ka BP也有年齡控制點(diǎn)。基于泥炭記錄,我們認(rèn)為這一事件在東北地區(qū)表現(xiàn)為明顯的干旱,事件開(kāi)始于5.5 ka BP左右,于5.0 ka BP左右達(dá)到峰值。
1.2 華北地區(qū)
位于北方季風(fēng)邊緣區(qū)的岱海是一個(gè)典型的內(nèi)陸半咸水湖,同時(shí)受到亞洲夏季風(fēng)、冬季風(fēng)和西風(fēng)的影響。Peng et al(2005)對(duì)岱海湖盆中心沉積物的粒度分布研究發(fā)現(xiàn),在5.7 — 5.6 cal ka BP中值粒徑低表明季風(fēng)降水減少。Wang et al(2010b)結(jié)合了礦物磁性參數(shù)、粒度、TOC、C/N以及孢粉組合等指標(biāo)分析了過(guò)去10000年以來(lái)內(nèi)蒙古高原東南部安固里淖湖的氣候變化,研究表明從~5.5 cal ka BP開(kāi)始闊葉林孢粉百分比較低,松屬類(lèi)孢粉百分比增加,指示了氣候的干冷。劉永慧等(2014)對(duì)河北圍場(chǎng)御道口地區(qū)孢粉組合研究發(fā)現(xiàn)在5.356 — 4.684 cal ka BP期間闊葉喬木樺屬(Betula L.)和濕生草本植物如莎草科(Cyperaceae)植物花粉含量相對(duì)減少,松屬類(lèi)花粉含量增加,但總體景觀仍為疏林草原植被,揭示此時(shí)氣候比較冷干。
Wang et al(2013)將岱海黑碳的δ13C值(δ13CBC)作為監(jiān)測(cè)季風(fēng)降雨的可靠指標(biāo),記錄顯示δ13CBC在5.7 cal ka BP左右開(kāi)始升高,在5.0 cal ka BP左右達(dá)到最高,表明該時(shí)期岱海降水減少,氣候顯著干旱。Wang et al(2013)的年代是基于AMS14C測(cè)年, 在5.585—5.325 cal ka BP有一個(gè)年代控制點(diǎn),這一最新的結(jié)果表明,在華北北部的季風(fēng)邊緣區(qū),5.5 ka BP左右開(kāi)始變干,也在5.0 ka BP達(dá)到干旱的頂峰。最近,Chen et al(2015)重建了山西公海14.7 ka以來(lái)東亞夏季風(fēng)降雨記錄,記錄顯示該地區(qū)年降水量(PANN)在5.5 cal ka BP左右開(kāi)始下降,4.5 cal ka BP期間達(dá)到峰值。來(lái)自山西蓮花洞的高分辨率石筍記錄顯示δ18O 從5.3 ka BP開(kāi)始升高,在5.0 ka BP達(dá)到峰值,昭示了氣候的變干(Dong et al,2015)。
圖1 我國(guó)季風(fēng)區(qū)5 ka BP氣候事件研究地點(diǎn)(藍(lán)色虛線部分為亞洲夏季風(fēng)的北邊緣帶,A、B、C、D、E、F、G區(qū)域分別代表東北、華北、華中、華東、華南、西南和青藏高原地區(qū)。)Fig.1 Records of 5 ka BP event in monsoonal China (The blue dashline denotes the northern limit of Asian summer monsoon. A, B, C, D, E, F, G represent Northeast China, North China, Central China, East China, South China, Southwest China and the Tibetan Plateau, respectively.)
圖2 中國(guó)季風(fēng)區(qū)5 ka BP事件典型記錄(灰色柱條表示降雨減少時(shí)期)Fig.2 Typical records of the 5 ka BP event from monsoonal China (The grey bars indicate intervals of reduction of monsoon precipitation)
由此可以看出,與東北地區(qū)相似,華北地區(qū)的5 ka BP氣候事件也大約開(kāi)始于5.5 ka BP,在5.0 ka BP左右達(dá)到峰值(圖2)。
1.3 華中地區(qū)
5 ka BP事件在華中地區(qū)也有明顯表現(xiàn)。藿烷類(lèi)化合物是一種生物標(biāo)志物,其濃度隨著地下水位的降低而增大(Pancost et al,2003;Xie et al,2013)。來(lái)自湖北神農(nóng)架的大九湖泥炭記錄表明從4.9 cal ka BP開(kāi)始,泥炭藿烷類(lèi)化合物含量開(kāi)始增高,在4.7 cal ka BP左右達(dá)到峰值,揭示此時(shí)華中地區(qū)的干旱氣候(Xie et al,2013)。
譚亮成等(2014)通過(guò)對(duì)比陜南祥龍洞XL2石筍晚全新世δ18O和Sr/Ca比值記錄,發(fā)現(xiàn)兩條序列呈顯著正相關(guān)關(guān)系,揭示滲流帶水文變化這一共同因子對(duì)δ18O和Sr/Ca比值的影響;此外,來(lái)自祥龍洞的另外一支年紋層石筍XL21的δ18O與器測(cè)降雨記錄對(duì)比也顯示在過(guò)去98年中二者呈顯著負(fù)相關(guān)關(guān)系(Tan et al,2015)。因此,祥龍洞石筍氧同位素記錄在十到百年尺度上可反映季風(fēng)降雨量的變化。祥龍洞另外一只石筍XL26記錄顯示δ18O值在5.0 ka BP明顯偏正,指示季風(fēng)降雨量的顯著減少(圖2,譚亮成未發(fā)表數(shù)據(jù))。
1.4 華東地區(qū)
華東地區(qū)有可靠年代控制的中全新世氣候記錄較少。最近,來(lái)自福州盆地FZ4鉆孔的孢粉分析表明在6.0 — 5.5 cal ka BP左右氣候變冷,松屬(Pinus Linn)、楓楊屬(Pterocarya Kunth)、蕨類(lèi)植物和草(禾木科,Gramineae)增多,這可能與夏季風(fēng)的減弱有關(guān),但是植被的變化也可能與當(dāng)?shù)厝祟?lèi)活動(dòng)的影響有關(guān)系(Yue et al,2015)。Innes et al(2014)對(duì)太湖平原中部研究發(fā)現(xiàn)在5.4 cal ka BP之后,一些耐寒植物像樺木屬、水青岡屬(Fagus L.)和赤楊皮屬(Alnus)增加,而喜溫植物像楓楊屬和齒栗葉(Castanea)降低,表明了一次氣候惡化事件。巢湖則大約在5.0 ka BP之后漸漸收縮,湖平面持續(xù)下降,氣候變干,隨后氣溫下降(Wu et al,2010)。
1.5 華南地區(qū)
華南地區(qū)的高分辨率記錄主要來(lái)自湖光巖瑪珥湖。Yancheva et al(2007)利用高分辨率磁性物質(zhì)以及沉積物中鈦的含量重建了湖光巖瑪珥湖過(guò)去16 ka以來(lái)冬季風(fēng)強(qiáng)度的變化情況。在5.4 cal ka BP左右,沉積物磁化率和鈦含量的高值以及TOC的低值昭示了此時(shí)冬季風(fēng)較強(qiáng)。通過(guò)對(duì)比湖光巖瑪珥湖沉積記錄與葫蘆洞(Wang et al,2001)和董哥洞(Yuan et al,2004;Dykoski et al,2005)的石筍氧同位素發(fā)現(xiàn)兩者呈反相關(guān)系,即強(qiáng)的冬季風(fēng)對(duì)應(yīng)弱的夏季風(fēng)。湖泊沉積物中葉綠素a的濃度主要反映湖水的初級(jí)生產(chǎn)力,大量的降雨能增加湖水的營(yíng)養(yǎng)供給,使湖泊的初級(jí)生產(chǎn)力加強(qiáng),從而增加葉綠素a的濃度,因此葉綠素a的濃度是進(jìn)行古氣候重建的一個(gè)很好的指標(biāo)(Wu et al,2012)。最近,Wu et al(2012)通過(guò)湖光巖瑪珥湖沉積物葉綠素a、TOC、Sr/Rb、磁化率等高分辨率多重指標(biāo)重建了全新世夏季風(fēng)變化情況。數(shù)據(jù)顯示葉綠素a濃度在6.0 ka BP左右開(kāi)始降低,于5.5 — 5.0 ka BP達(dá)到最低值,揭示出此時(shí)夏季風(fēng)強(qiáng)度較弱,氣候比較干冷(圖2)。
1.6 西南地區(qū)
西南地區(qū)的高分辨率氣候記錄主要來(lái)自石筍和湖泊。Wang et al(2005)對(duì)貴州董哥洞DA石筍δ18O記錄研究發(fā)現(xiàn),在5.5 ka BP左右亞洲季風(fēng)減弱。來(lái)自董哥洞的另一支樣品D4石筍記錄顯示δ18O從5.8 ka BP開(kāi)始升高在5.2 ka BP達(dá)到峰值,顯示在此期間夏季風(fēng)強(qiáng)度減弱(Dykoski et al,2005)。然而,貴州的石筍氧同位素可能受到大范圍環(huán)流效應(yīng)的影響,反應(yīng)夏季風(fēng)強(qiáng)度的減弱,未必能反應(yīng)局地降水的減少(Tan,2014)。
但是,云南西湖泥炭記錄顯示,在4.8 cal ka BP左右磁化率、密度、碳酸鹽組分增高,TOC降低,表明由于印度夏季風(fēng)強(qiáng)度減弱而導(dǎo)致當(dāng)?shù)亟邓疁p少(Xu et al,2015,圖2)。同樣來(lái)自云南的星云湖孢粉記錄顯示從5.5 cal ka BP開(kāi)始,松林、落葉櫟屬(Quercus L.)和赤楊皮數(shù)量增加,常綠櫟類(lèi)數(shù)量降低,而喜溫和喜濕的植被基本消失,揭示出氣候逐漸變干的特征(Chen et al,2014)。另外,同受印度季風(fēng)控制的阿曼南部的石筍記錄顯示δ18O從6.0 ka BP開(kāi)始升高,在5.3 ka BP達(dá)到峰值,指示了季風(fēng)降雨的減少(Fleitmann et al,2003)。
綜上,5 ka BP氣候事件在西南地區(qū)主要表現(xiàn)為冷干,時(shí)間大致發(fā)生于5.5 — 4.8 ka BP。但不同的記錄在事件發(fā)生時(shí)間上存在一定差異,可能是由于不同指標(biāo)的分辨率和年代誤差導(dǎo)致的。
1.7 青藏高原地區(qū)
青藏高原的高分辨率全新世氣候記錄主要集中在高原中南部和東北邊緣。仙女洞位于青海省河南蒙古族自治縣,來(lái)自該洞的石筍記錄表明在5.6 ka BP左右δ18O開(kāi)始升高,并在5.0 ka BP左右達(dá)到最正值,昭示了當(dāng)時(shí)該區(qū)存在一次氣候變干事件。青海湖沉積物粒度、碳酸鹽含量、TOC等指標(biāo)綜合表明,在5.3 ka BP左右亞洲夏季風(fēng)明顯減弱,青海湖地區(qū)顯著干旱(An et al,2012)。最近,Lu et al(2015)進(jìn)一步發(fā)現(xiàn),5.5 ka BP左右青海湖周邊風(fēng)成活動(dòng)增強(qiáng),表明冷干的氣候狀態(tài)。另外,青藏高原東部紅原泥炭的腐殖化度在5.6 cal ka BP左右開(kāi)始降低,在5.4 cal ka BP左右達(dá)到極小值,顯示氣候由暖濕向干冷的轉(zhuǎn)變(Wang et al,2010a)。Yu et al(2006)對(duì)紅原泥炭腐殖化度的研究也得出了近似結(jié)論。
5 ka BP氣候事件在高原中南部同樣存在。天門(mén)洞的高分辨率石筍記錄顯示在5.6 ka BP石筍δ18O開(kāi)始升高,在5.2 ka BP左右達(dá)到最高,揭示出印度夏季風(fēng)的減弱(Cai et al,2012)。Bird et al(2014)通過(guò)青藏高原東南部Paru Co湖的粒度、巖屑通量等沉積學(xué)指標(biāo)和葉蠟氫同位素比值,重建了11000年以來(lái)印度季風(fēng)降水的變化情況。發(fā)現(xiàn)5.2 ka BP之后,研究區(qū)開(kāi)始向干旱方向發(fā)展。對(duì)色林錯(cuò)沉積物礦物組合的分析和研究也表明在5.09 — 4.78 cal ka BP期間出現(xiàn)石膏沉積,湖泊強(qiáng)烈蒸發(fā),湖水鹽度較大,指示氣候的冷干化(林勇杰等,2014)。臨近的錯(cuò)鄂沉積物碳同位素值則在5.0 cal ka BP后波動(dòng)下降,氣候逐漸變干(吳艷宏等,2006)。
從這些記錄可以看出,在青藏高原,受季風(fēng)影響的中南部和東北邊緣同樣存在明顯的5 ka BP氣候變干事件。此次事件起始年代約為5.6 —5.5 ka BP,于5.2 — 5.0 ka BP達(dá)到峰值(圖2)。
2.1 影響
研究表明,世界上許多古文化衰落的原因并不僅僅是由于文化本身造成的,氣候變化也扮演了重要的角色(水濤,2001)。例如:4.2 ka BP的干旱事件很可能是印度河谷文明衰落的原因之一(Weiss and Bradley,2001;Staubwasser et al,2003;MacDonald,2011),同時(shí)此次干旱事件也導(dǎo)致了尼羅河水位的降低,最終可能導(dǎo)致了埃及古文明的衰落(Stanley et al,2003;Giosan et al,2012),而兩河流域古文明的衰落也可能與此次事件有關(guān)(Weiss et al,1993;Cullen et al,2000)。Tan et al(2011)對(duì)比研究發(fā)現(xiàn)我國(guó)北方地區(qū)幾乎所有改朝換代之際的戰(zhàn)爭(zhēng)高峰期都對(duì)應(yīng)季風(fēng)降雨的急劇減少時(shí)期。認(rèn)為我國(guó)中北部這一歷代中央王朝統(tǒng)治的核心區(qū)域的氣候惡化通過(guò)影響中央王朝的人口、兵源、財(cái)賦收入、控制力等,進(jìn)而對(duì)整個(gè)傳統(tǒng)農(nóng)業(yè)社會(huì)的發(fā)展有重要影響。
5 ka BP事件發(fā)生于人類(lèi)文明的前夜,對(duì)新石器時(shí)代古文化的發(fā)展產(chǎn)生了重要影響。朱艷等(2001)認(rèn)為5 ka BP氣候事件導(dǎo)致我國(guó)各地新石器文化出現(xiàn)衰退或斷層,如內(nèi)蒙古中南部的老虎山文化與海生不浪文化和紅山文化之間有200年的文化缺失,西遼河流域之前十分流行的“之”字紋陶器也在5.0 ka BP突然消失。李永化等(2003)也認(rèn)為此次事件導(dǎo)致燕遼地區(qū)紅山文化和小河沿文化之間出現(xiàn)了文化斷層。而山西臨汾盆地的西王村文化每百年的遺址點(diǎn)數(shù)量在4.9 ka BP之后由0.21驟降到0.034,這可能是由于5 ka BP氣候事件導(dǎo)致的(Li et al,2014)。在5.5 —5.0 ka BP期間,長(zhǎng)江三角洲太湖流域一帶的遺址數(shù)量也處于低值,此次事件還造成了原始人類(lèi)的生產(chǎn)方式和生活方式發(fā)生了變化(施少華,1993)。在關(guān)中地區(qū),5.5 — 5.0 ka BP的干冷事件導(dǎo)致興盛了2000多年的仰韶文化被龍山文化替代(呂厚遠(yuǎn)和張健平,2008)。伴隨5 ka BP氣候的冷干化,史前人類(lèi)掀起了從高地向低地、從四周向中心遷徙的熱潮(吳文祥和劉東生,2002)。然而,陳棟棟等(2011)認(rèn)為5 ka BP氣候事件并沒(méi)有嚴(yán)重影響到山東地區(qū)海岱文明的傳承,一些考古發(fā)現(xiàn)甚至顯示此次事件促進(jìn)了大汶口文化的發(fā)展。吳文祥和葛全勝(2005)也認(rèn)為應(yīng)該用辯證的眼光看待氣候變化對(duì)古文化的影響:如果氣候變化幅度在人類(lèi)承受范圍之內(nèi),氣候變化對(duì)文明發(fā)展在某種程度上能起到促進(jìn)作用,若氣候變化幅度較大,超過(guò)了人類(lèi)承受范圍,則其對(duì)人類(lèi)文明的發(fā)展可能更多的起到抑制作用。具體到各區(qū)域的古文化如何響應(yīng)這次氣候事件,還需要進(jìn)一步研究。
2.2 驅(qū)動(dòng)機(jī)制
許多因素可能導(dǎo)致5 ka BP事件的發(fā)生和傳播,包括太陽(yáng)活動(dòng)的變化,赤道輻合帶(ITCZ)位置的變化,大洋海水表面溫度(SST)的變化,厄爾尼諾-南方濤動(dòng)(ENSO),大西洋經(jīng)向翻轉(zhuǎn)環(huán)流(AMOC)的變化等。
Bond et al(2001)通過(guò)對(duì)全新世大氣14C和10Be產(chǎn)率的研究認(rèn)為5.2 ka BP左右太陽(yáng)活動(dòng)較弱;從Steinhilber et al(2009)通過(guò)冰芯10Be 重建的總太陽(yáng)輻射度記錄也可以看出,總太陽(yáng)輻射度在5.6 ka BP左右顯著下降,于5.2 ka BP達(dá)到最低值(圖3)。Goosse et al(2002)通過(guò)模擬研究認(rèn)為太陽(yáng)活動(dòng)的減弱有可能導(dǎo)致類(lèi)似于5 ka BP氣候異常。太陽(yáng)輻射減少可能導(dǎo)致北大西洋浮冰增加,北大西洋經(jīng)向翻轉(zhuǎn)環(huán)流(AMOC)變慢(Oppo et al,2003),熱帶印度洋南部SST增加, 海陸熱力差異減少,導(dǎo)致印度夏季風(fēng)減弱(Hong et al,2003)。另外,亞洲季風(fēng)也可能通過(guò)大氣過(guò)程快速響應(yīng)北大西洋地區(qū)氣候變化,比如和尚洞高分辨率石筍地球化學(xué)指標(biāo)記錄的8.2 ka BP氣候事件在時(shí)間上和格陵蘭冰芯記錄看不到區(qū)別(Liu et al,2013)。除了這種間接影響,Gupta et al(2005)認(rèn)為,太陽(yáng)輻射的微小變化可以直接導(dǎo)致熱帶季風(fēng)的顯著變化。Fleitmann et al(2007)也提出,中晚全新世過(guò)渡時(shí)期的太陽(yáng)輻射減弱導(dǎo)致了ITCZ位置南移和印度夏季風(fēng)的減弱,從而導(dǎo)致阿曼地區(qū)氣候變干。
圖3 北大西洋浮冰記錄與太陽(yáng)活動(dòng)記錄對(duì)比(灰色柱條表示太陽(yáng)輻射減弱時(shí)期)Fig.3 Comparison between the drift ice records in the North Atlantic Ocean and solar activities (The grey bars indicate intervals of reduction of solar irradiance)
綜上,太陽(yáng)輻射的減少是5 ka BP氣候事件的外部驅(qū)動(dòng)力,輻射減少導(dǎo)致的赤道輻合帶(ITCZ)南移和大西洋經(jīng)向翻轉(zhuǎn)環(huán)流(AMOC)減弱導(dǎo)致的亞洲夏季風(fēng)減弱可能最終導(dǎo)致了我國(guó)季風(fēng)區(qū)降水的普遍減少。
從以上綜述的研究結(jié)果可以看出,5 ka BP氣候事件在我國(guó)季風(fēng)區(qū)不同區(qū)域都有體現(xiàn)。其中在季風(fēng)區(qū)北方和青藏高原地區(qū)記錄的最為清楚,體現(xiàn)為顯著的干旱;事件起始于5.6 — 5.5 ka BP,在5.0 ka BP左右達(dá)到峰值,其后快速回升。華中地區(qū)的石筍記錄也和北方地區(qū)的結(jié)果一致。在西南地區(qū)也有顯著的冷干表現(xiàn),已有記錄顯示這次事件在西南大致發(fā)生于5.5 — 4.8 ka BP。華南地區(qū)在5.5—5.0 ka BP期間也表現(xiàn)為顯著的干旱氣候。盡管在華東地區(qū)也能看到5 ka BP事件的印記,但由于已有記錄分辨率和年齡控制的原因,難以確定其起止時(shí)間。此次氣候事件對(duì)我國(guó)新石器文化的發(fā)展產(chǎn)生了重要的影響。太陽(yáng)輻射減少導(dǎo)致的赤道輻合帶(ITCZ)南移和大西洋經(jīng)向翻轉(zhuǎn)環(huán)流(AMOC)減弱導(dǎo)致的亞洲夏季風(fēng)減弱可能驅(qū)動(dòng)了此次氣候事件。
不過(guò)對(duì)這次事件還需要進(jìn)行深入研究。從我國(guó)季風(fēng)區(qū)不同區(qū)域在5 ka BP氣候事件時(shí)的高分辨率記錄的對(duì)比可以看出,不同地區(qū),特別是南方地區(qū)的不同記錄在此次事件的表現(xiàn)形式和開(kāi)始時(shí)間有所差異。比如在云南西湖和湖北大九湖泥炭記錄顯示此次事件為突變事件,時(shí)間發(fā)生于4.7 — 4.9 ka BP;而其余記錄則顯示為漸變狀態(tài),事件開(kāi)始時(shí)間在5.6 — 5.5 ka BP,在5.0 ka BP左右達(dá)到峰值。這些差異到底是由于不同氣候代用指標(biāo)和記錄分辨率的不同以及測(cè)年的誤差導(dǎo)致的?還是對(duì)氣候事件的響應(yīng)存在著區(qū)域差異?需要進(jìn)一步厘清。進(jìn)一步在我國(guó)南方地區(qū)重建涵蓋5 ka BP氣候事件的有絕對(duì)定年的高分辨率可靠降雨記錄是解決這一問(wèn)題的基礎(chǔ)。另外,此次氣候事件對(duì)我國(guó)不同類(lèi)型的新石器文化的影響也還需進(jìn)一步探討。
陳棟棟, 彭淑貞, 張 偉, 等. 2011.山東全新世典型氣候事件的區(qū)域響應(yīng)及其對(duì)海岱文明發(fā)展的影響[J].地理科學(xué)進(jìn)展, 30(7): 846–852. [Chen D D, Peng S Z, Zhang W, et al. 2011. The response to Holocene climatic events of Shandong and their impacts on human activity [J].Progress in Geography, 30(7): 846–852.]
李永化, 尹懷寧, 張小詠, 等. 2003. 東北地區(qū)5000 a BP~ 4700 a BP左右的降溫事件及對(duì)考古文化的影響[J].云南地理環(huán)境研究, 15(1): 12–18. [Li Y H, Yin H N, Zhang X Y, et al. 2003. Temperature drop at about 5000 a BP~4700 a BP in north-east of China and effect on archaeological culture [J].Yunnan Geographic Environment Research, 15(1): 12–18.]
林勇杰, 鄭綿平, 王海雷. 2014.青藏高原中部色林錯(cuò)礦物組合特征對(duì)晚全新世氣候的響應(yīng)[J].科技導(dǎo)報(bào), 32(35): 35–40. [Lin Y J, Zheng M P, Wang H L, et al. 2014. Late Holocene climatical and environmental evolutions inferred from mineralogical records in Selin Co, Central Qinghai-Tibetan Plateau [J].Science &Technology Review, 32(35): 35–40.]
劉永慧, 田 冶, 劉敖然, 等. 2014. 河北圍場(chǎng)御道口地區(qū)中全新世以來(lái)古植被與古氣候演變[J].南水北調(diào)與水利科技, 12(1): 69–72. [Liu Y H, Tian Y, Liu A R, et al. 2014. Variation of paleovegetation and paleoclimate since the Mid-Holocene in the Yudaokou Area of Weichang County, Hebei Province [J].South-to-North Water Transfers and Water Science&Technology, 12(1): 69–72.]
呂厚遠(yuǎn), 張健平. 2008.關(guān)中地區(qū)的新石器古文化發(fā)展與古環(huán)境變化的關(guān)系[J].第四紀(jì)研究, 8(6): 1050–1060. [Lü H Y, Zhang J P. 2008. Neolithic cultural evolution and Holocene climate change in the Guanzhong Basin, Shaanxi, China [J].Quaternary Sciences, 28 (6): 1050–1060.]
水 濤. 2001.中國(guó)西北地區(qū)青銅時(shí)代考古論集[M].北京:科學(xué)出版社: 99–237. [Shui T. 2001. Paper on the bronze age archaeology of northwest China [M]. Beijing: Science Press, 99–237.]
譚亮成, 安芷生, 蔡演軍, 等. 2008. 4.2 ka BP氣候事件在中國(guó)的降雨表現(xiàn)及其全球聯(lián)系[J].地質(zhì)論評(píng), 54(1): 94–104. [Tan L C, An Z S, Cai Y J, et al. 2008. The Hydrological exhibition of 4200 a BP event in China and its global linkages [J].Geological Review, 54(1): 94–104.]
譚亮成, 蔡演軍, 安芷生, 等. 2014.石筍氧同位素和微量元素記錄的陜南地區(qū)4200 ~ 2000 a BP高分辨率季風(fēng)降雨變化[J].第四紀(jì)研究, 34(6): 1238–1245. [Tan L C, Cai Y J, An Z S, et al. 2014. High-resolution monsoon precipitation variations in southern Shaanxi, Central China during 4200~2000a B.P. as revealed by speleothemδ18O and Sr/Ca records[J].Quaternary Sciences, 34(6): 1238–1245.]
王紹武. 2009.全新世北大西洋冷事件: 年代學(xué)和氣候影響[J].第四紀(jì)研究, 29(6): 1146–1153. [Wang S W. 2009. Holocene cold events in the North Atlantic: chronology and climatic impact [J].Quaternary Sciences, 29(6): 1146–1153.]
吳文祥, 劉東生. 2002. 5500 a BP氣候事件在三大文明古國(guó)古文明和古文化演化中的作用[J].地學(xué)前緣, 9(1): 155-162. [Wu W X, Liu T S. 2002. 5500 a BP climatic event and its implications for the emergence of civilizations in Egypt and Mesopotamia and Neolithic cultural development in China [J].Earth Science Frontiers, 9(1): 155–162.]
吳文祥, 葛全勝. 2005. 全新世氣候事件及其對(duì)古文化發(fā)展的影響[J].華夏考古, (3): 60–67. [Wu W X, Ge Q S. 2005. Climate events of the recent epoch and their influence upon the development of ancient culture [J].Huaxia Archaeology, (3): 60–67.]
吳艷宏, 王蘇民, 侯新花. 2006.青藏高原中部錯(cuò)鄂全新世湖泊沉積物年代學(xué)研究[J].中國(guó)科學(xué): 地球科學(xué) (中文版), 36(8): 713–722. [Wu Y H, Wang S M, Hou X H.2006. Chronology of Holocene lacustrine sediments in Co Ngoin, Central Tibetan Plateau [J].Science in China, 36(8): 713–722.]
施少華. 1993.中國(guó)全新世高溫期中的氣候突變事件及其對(duì)人類(lèi)的影響[J].海洋地質(zhì)與第四紀(jì)地質(zhì), 13(4): 65–73. [Shi S H. 1993. Climatic abrupt change events and their impact on human civilization during Holocene megathermal in China [J].Marine Geology & Quaternary Geology, 13(4): 65–73.]
朱 艷, 陳發(fā)虎, 張家武, 等. 2001. 距今五千年左右環(huán)境惡化事件對(duì)中國(guó)新石器文化的影響及原因的初步探討[J].地理科學(xué)進(jìn)展, 20(2): 111–121. [Zhu Y, Chen F H, Zhang J W, et al. 2001. A discussion on the effects of deteriorated environment event on the Neolithic Culture of China, around 5 000 a BP [J].Progress in Geography, 20(2): 111–121.]
Alley R B, ágústsdóttir A M. 2005. The 8 k event: cause and consequences of a major Holocene abrupt climate change [J].Quaternary Science Reviews, 24(10): 1123–1149.
An Z S, Colman S M, Zhou W J, et al. 2012. Interplay between the westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka [J].Scientific Reports, 2: 619, doi: 10.1038/srep00619.
Bond G, Kromer B, Beer J, et al. 2001. Persistent solar in fl uence on North Atlantic climate during the Holocene [J].Science, 294(5549): 2130–2136.
Bird B W, Polisar P J, Lei Y, et al. 2014. A Tibetan lake sediment record of Holocene Indian summer monsoon variability [J].Earth and Planetary Science Letters, 399: 92–102.
Cai Y J, Zhang H W, Cheng H, et al. 2012. The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections [J].Earth and Planetary Science Letters, 335 / 336: 135–144.
Castro D, Souto M, Garcia-Rodeja E, et al. 2015. Climate change records between the mid-and late Holocene in a peat bog from Serra do Xistral (SW Europe) using plant macrofossils and peat humification analyses [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 420: 82–95.
Chen F, Chen X, Chen J, et al. 2014. Holocene vegetation history, precipitation changes and Indian summer monsoon evolution documented from sediments of Xingyun Lake, south-west China [J].Journal of Quaternary Science, 29(7): 661–674.
Chen F H, Xu Q H, Chen J H, et al. 2015. East Asian summer monsoon precipitation variability since the last deglaciation [J].Scienti fi c Reports, doi:10.1038/srep11186.
Cullen H M, Hemming S, Hemming G, et al. 2000. Climate change and the collapse of the Akkadian empire: evidence from the deep sea [J].Geology, 28(4): 379–382.
deMenocal P, Ortiz J, Guilderson T, et al. 2000. Abrupt onset and termination of the African humid period: Rapid climate responses to gradual insolation forcing [J].Quaternary Science Reviews, 19(1/2 / 3 /4 /5): 347–361.
Denniston R F, González L A, Asmerom Y, et al. 1999. Evidence for increased cool season moisture during the middle Holocene [J].Geology, 27(9): 815-818.
Dirksen V, Dirksen O, Diekmann B. 2013. Holocene vegetation dynamics and climate change in Kamchatka Peninsula, Russian Far East [J].Review of Palaeobotany & Palynology, 190(2): 48–65.
Dong J G, Shen C C, Kong X G, et al. 2015. Reconciliation of hydroclimate sequences from the Chinese Loess Plateau and low-latitude East Asian summer monsoon regions over the past 14,500 years [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 435: 127–135.
Dykoski C A, Edwards R L, Cheng H, et al. 2005. 2A highresolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J].Earth and Planetary Science Letters, 33(1): 71–86.
Fleitmann D, Burns S J, Mangini A, et al. 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra) [J].Quaternary Science Reviews, 26(1): 170–188.
Fleitmann D, Burns S J, Mudelsee M, et al. 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman [J].Science, 300(5626): 1737–1739.
Giosan L, Clift P D, Macklin M G, et al. 2012. Fluvial landscapes of the Harappan civilization [J].Proceedings of the National Academy of Sciences, 109(26): E1688–E1694.
Goosse H, Renssen H, Selten F M, et al. 2002. Potential causes of abrupt climate events: A numerical study with a threedimensional climate model [J].Geophysical Research Letters, 29(18), doi: 10.1029/2002GL014993.
Gupta A K, Das M, Anderson D M. 2005. Solar in fl uence on the Indian summer monsoon during the Holocene [J].Geophysical Research Letters, 32, doi: 10.1029/2005GL022685.
Hong Y T, Hong B, Lin Q H, et al. 2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene [J].Earth and Planetary ScienceLetters, 211(3): 371–380.
Hong Y T, Hong B, Lin Q H, et al. 2005. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12000 years and paleo-El Ni?o [J].Earth and Planetary Science Letters, 231(3): 337–346.
Hong Y T, Wang Z G, Jiang H B, et al. 2001. A 6000-year record of changes in drought and precipitation in northeastern China based on aδ13C time series from peat cellulose [J].Earth and Planetary Science Letters, 185(1): 111–119.
Innes J B, Zong Y, Wang Z, et al. 2014. Climatic and palaeoecological changes during the mid-to Late Holocene transition in eastern China: high-resolution pollen and nonpollen palynomorph analysis at Pingwang, Yangtze coastal lowlands [J].Quaternary Science Reviews, 99: 164–175.
Jiang W Y, Leroy S A G, Ogle N, et al. 2008. Natural and anthropogenic forest fi res recorded in the Holocene pollen record from a Jinchuan peat bog, northeastern China [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 261(1): 47–57.
Li C H, Wu Y H, Hou X H. 2011. Holocene vegetation and climate in Northeast China revealed from Jingbo Lake sediment [J].Quaternary International, 229(1): 67–73.
Li T Y, Mo D, Kidder T, et al. 2014. Holocene environmental change and its influence on the prehistoric culture evolution and the formation of the Taosi site in Linfen basin, Shanxi province, China [J].Quaternary International, 349: 402–408.
Liu Y H, Henderson G M, Hu C Y, et al. 2013. Links between the East Asian monsoon and North Atlantic climate during the 8,200 year event [J].Nature Geoscience, 6(2): 117–120.
Lu R J, Jia F F, Gao S Y, et al. 2015. Holocene aeolian activity and climatic change in Qinghai Lake basin, northeastern Qinghai–Tibetan Plateau [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 430: 1–10.
MacDonald G. 2011. Potential in fl uence of the Paci fi c Ocean on the Indian summer monsoon and Harappan decline [J].Quaternary International, 229(1): 140–148.
Magny M, Haas J N. 2004. A major widespread climatic change around 5300 cal yr BP at the time of the Alpine Iceman [J].Journal of Quaternary Science, 19(5): 423–430.
Marcott S A, Shakun J D, Clark P U, et al. 2013. A reconstruction of regional and global temperature for the past 11,300 years [J].science, 339(6124): 1198–1201.
Moros M, De Deckker P, Jansen E, et al. 2009. Holocene climate variability in the Southern Ocean recorded in a deep-sea sediment core off South Australia [J].Quaternary Science Reviews, 28(19): 1932–1940.
Oppo D W, McManus J F, Cullen J L. 2003. Palaeooceanography: Deepwater variability in the Holocene epoch [J].Nature, 422(6929): 277–278.
Pancost R D, Baas M, van Geel B, et al. 2003. Response of an ombrotrophic bog to a regional climate event revealed by macrofossil, molecular and carbon isotopic data [J].The Holocene, 13(6): 921–932.
Peng Y J, Xiao J L, Nakamura T, et al. 2005. Holocene East Asian monsoonal precipitation pattern revealed by grainsize distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China [J].Earth and Planetary Science Letters, 233(3): 467–479.
Prasad S, Baier J. 2014. Tracking the impact of mid-to late Holocene climate change and anthropogenic activities on Lake Holzmaar using an updated Holocene chronology [J].Global and Planetary Change, 122: 251–264.
Prasad S, Enzel Y. 2006. Holocene paleoclimates of India [J].Quaternary Research, 66(3): 442–453.
Raj R, Chamyal L S, Prasad V, et al. 2015. Holocene climatic fluctuations in the Gujarat Alluvial Plains based on a multiproxy study of the Pariyaj Lake archive, western India [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 421: 60–74.
Schettler G, Liu Q, Mingram J, et al. 2006. East-Asian monsoon variability between 15 000 and 2000 cal yr BP recorded in varved sediments of Lake Sihailongwan (northeastern China, Long Gang volcanic field) [J].The Holocene, 16(8): 1043–1057.
Stanley J D, Krom M D, Cliff R A, et al. 2003. Short contribution: Nile flow failure at the end of the Old Kingdom, Egypt: strontium isotopic and petrologic evidence [J].Geoarchaeology, 18(3): 395–402.
Staubwasser M, Sirocko F, Grootes P M, et al. 2003. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability [J].Geophysical Research Letters, 30,doi:10.1029/2002GL016822.
Steinhilber F, Beer J, Fr?hlich C. 2009. Total solar irradiance during the Holocene [J].Geophysical Research Letters, 36,doi:10.1029/2009GL040142.
Tan L, Cai Y, An Z, et al. 2011. Centennial- to decadal-scale monsoon precipitation variability in the semihumid region,northern China during the last 1860 years: records from stalagmites in Huangye Cave [J].The Holocene, 21: 287–296.
Tan L, Cai Y, Cheng H, et al. 2015. Climate significance of speleothemδ18O from central China on decadal timescale [J].Journal of Asian Earth Sciences, 106: 150–155.
Tan M. 2014. Circulation effect: Response of precipitationδ18O to the ENSO cycle in monsoon regions of China [J].Climate Dynamics, 42: 1067–1077.
Tan M, Cai B G. 2005. Preliminary calibration of stalagmite oxygen isotopes from eastern monsoon China with northern Hemisphere temperatures [J].Pages News, 13(2): 16–17.
Thamban M, Kawahata H, Rao V P. 2007. Indian summer monsoon variability during the Holocene as recorded in sediments of the Arabian Sea: timing and implications [J].Journal of Oceanography, 63(6): 1009–1020.
Thompson L G, Mosley-Thompson E, Davis M E, et al. 2002. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa [J].Science, 298(5593): 589–593.
Wang H, Hong Y T, Lin Q H, et al. 2010a. Response of humification degree to monsoon climate during the Holocene from the Hongyuan peat bog, eastern Tibetan Plateau [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 286(3): 171–177.
Wang H Y, Liu H Y, Zhu J L, et al. 2010b. Holocene environmental changes as recorded by mineral magnetism of sediments from Anguli-nuur Lake, southeastern Inner Mongolia Plateau, China [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 285(1): 30–49.
Wang X, Cui L L, Xiao J L, et al. 2013. Stable carbon isotope of black carbon in lake sediments as an indicator of terrestrial environmental changes: An evaluation on paleorecord from Daihai Lake, Inner Mongolia, China [J].Chemical Geology, 347: 123–134.
Wang Y J, Cheng H, Edwards R L, et al. 2001. A highresolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China [J].Science, 294(5550): 2345–2348.
Wang Y J, Cheng H, Edwards R L, et al. 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate [J].Science, 308(5723): 854–857.
Weiss H, Bradley R S. 2001. What drives societal collapse? [J].Science, 291(5504): 609–610.
Weiss H, Courty M A, Wetterstrom W, et al. 1993. The genesis and collapse of third millennium north Mesopotamian civilization [J].Science, 261(5124): 995–1004.
Wu L, Wang X Y, Zhou K S, et al. 2010. Transmutation of ancient settlements and environmental changes between 6000 — 2000 a BP in the Chaohu Lake Basin, East China [J].Journal of Geographical Sciences, 20(5): 687–700.
Wu X D, Zhang Z H, Xu X M, et al. 2012. Asian summer monsoonal variations during the Holocene revealed by Huguangyan maar lake sediment record [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 323: 13–21.
Xie S C, Evershed R P, Huang X Y, et al. 2013. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China [J].Geology, 41(8): 827–830.
Xu H, Hong Y T, Lin Q H, et al. 2006. Temperature responses to quasi-100-yr solar variability during the past 6000 years based onδ18O of peat cellulose in Hongyuan, eastern Qinghai–Tibet plateau, China [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 230(1): 155–164.
Xu H, Yeager K M, Lan J H, et al. 2015. Abrupt Holocene Indian summer monsoon failures: A primary response to solar activity? [J].Holocene, 25(4): 677–685.
Yancheva G, Nowaczyk N R, Mingram J, et al. 2007. In fl uence of the intertropical convergence zone on the East Asian monsoon [J].Nature, 445(7123): 74–77.
Yu S Y, Colman S M, Lowell T V, et al. 2010. Freshwater outburst from Lake Superior as a trigger for the cold event 9300 years ago [J].Science, 328(5983): 1262–1266.
Yu X F, Zhou W J, Franzen L G, et al. 2006. High-resolution peat records for Holocene monsoon history in the eastern Tibetan Plateau [J].Science in China Series D, 49(6): 615–621.
Yuan D, Cheng H, Edwards R L, et al. 2004. Timing, duration, and transitions of the last interglacial Asian monsoon [J]. Science, 304(5670): 575–578.
Yue Y F, Zheng Z, Rolett B V, et al. 2015. Holocene vegetation, environment and anthropogenic influence in the Fuzhou Basin, southeast China [J].Journal of Asian Earth Sciences, 99: 85–94.
Zanchetta G, Bar-Matthews M, Drysdale R N, et al. 2014. Coeval dry events in the central and eastern Mediterranean basin at 5.2 and 5.6 ka recorded in Corchia (Italy) and Soreq caves (Israel) speleothems [J].Global and Planetary Change, 122: 130–139.
5 ka BP event in monsoonal China
LI Dong1,2, TAN Liangcheng1,3, AN Zhisheng1
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an,710061, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710054, China)
Background, aim, and scopeA lot of studies suggested the Holocene climate change had played an important role in the evolution of the Neolithic cultures around the world. During the Holocene, there were a series of abrupt climate changes. One of the abrupt events occurred around ~5 ka BP, which signi fi cantly changed the environment of many regions over the world. Because this event occurred before the dawn of civilization, it had caused important in fl uences on human society. In this paper, we reviewed the recently published high-resolution, absolutely-dated speleothem and limnological records from different regions of monsoonal China, which had recorded hydrological changes during the5 ka BP event period. We further discussed its impacts on the Neolithic culture of China, as well as the driving mechanisms.Materials and methodsWe divided the monsoonal China into Northeast China, North China, Central China, East China, South China, Southwest China and the Tibetan Plateau. We compared the hydrological changes in different regions of monsoonal China, by using recent published high-resolution, absoluted dated records.ResultsWe suggested the monsoonal China, from the north to the south, had experienced dry climate during this event. The dry event was most signi fi cantly recorded in North China, Northeast China and Tibetan Plateau. It began at 5.6 — 5.5 ka BP, reaching to the driest at ~5.0 ka BP, and then the precipitation rapidly recovered. Stalagmite record from Central China also showed similar result with North China. There was also cold and dry climate in Southwest China during the period of 5.5 —4.8 ka BP. In South China, notably dry climate was observed in 5.5 — 5.0 ka BP. It seems there was imprint of 5 ka BP event in East China, although it’s hard to determine the exact timing, because of low resolutions and poor age controls of the published records. The extreme dry climate had played an important role on the evolution of Chinese Neolithic culture. The reduction of solar irradiance might cause the southward migration of ITCZ during the 5 ka BP event. Meanwhile, reduced AMOC during this event might weaken the Asian summer monsoon. The common effects of these two aspects might significantly reduce the monsoon precipitation in China.DiscussionDespite the similarities, some discrepancies were observed on the existed records in southern China. Peat records from Xihu in Southwest China and Dajiuhu in Central China show an abrupt and strongly dry event in 4.7— 4.9 ka BP. This is different from other geological records which show gradually decreasing precipitation from 5.6— 5.5 ka BP, with the driest time at 5.0 ka BP. Further studies are needed to clarify whether these discrepancies were caused by dating errors and resolutions of different proxies or different regional responses to the 5 ka BP event.ConclusionsThe monsoonal China had experienced notably dry climate during the 5 ka BP event. The extreme dry climate had played an important role on the evolution of Chinese Neolithic culture. The reduction of solar irradiance might cause the southward migration of ITCZ, and reduce the AMOC, weakening the Asian summer monsoon. Ultimately, those factors had caused the reduction of monsoon precipitation in China.Recommendations and perspectivesIt is crucial to build reliable precipitation records covering the 5 ka BP event period with high resolution and absolute dates in southern China. In addition, the impacts of this event on the evolution of Neolithic culture in different regions of monsoonal China need to be further discussed.
5 ka BP event; hydrological changes; culture impacts; monsoonal China
TAN Liangcheng, E-mail: tanlch@ieecas.cn
10.7515/JEE201605003
2016-04-29;錄用日期:2016-07-01
Received Date:2016-04-29;Accepted Date:2016-07-01
科技部全球變化專(zhuān)項(xiàng)(2013CB955902);國(guó)家自然科學(xué)基金項(xiàng)目(41372192,41290254);中國(guó)科學(xué)院西部之光項(xiàng)目;陜西省青年科技新星項(xiàng)目(2015KJXX-57)
Foundation Item:National Basic Research Program of China (2013CB955902); National Natural Science Foundation of China (41372192, 41290254); the West Light Foundation of the Chinese Academy of Sciences; Young Scientist Project of Shaanxi Province (2015KJXX-57)
譚亮成,E-mail: tanlch@ieecas.cn