翁詩陽 朱振中 湯春 張長青
?
鋰介導(dǎo)的Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路對骨髓間充質(zhì)干細(xì)胞的影響
翁詩陽朱振中湯春張長青
人類骨髓間充質(zhì)干細(xì)胞來源于胚胎時期的中胚層,存在于骨髓、脂肪、皮膚等組織中,具有自我更新能力及多向分化潛能。研究表明,鋰劑可激活Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路而對骨髓間充質(zhì)干細(xì)胞增殖、分化等產(chǎn)生影響。該文就鋰介導(dǎo)的Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路對骨髓間充質(zhì)干細(xì)胞的影響作一綜述。
骨髓間充質(zhì)干細(xì)胞;鋰劑;Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路
鋰劑是治療抑郁癥和造血系統(tǒng)疾病最有效的藥物之一[1],它還對神經(jīng)退行性疾病如阿爾茲海默病、帕金森病導(dǎo)致的腦損傷有明顯保護(hù)作用。大量研究表明,鋰劑可激活Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路[2],Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路對骨髓間充質(zhì)干細(xì)胞增殖與分化起著舉足輕重的作用[3],人類骨髓間充質(zhì)干細(xì)胞來源于胚胎時期的中胚層,存在于骨髓、脂肪、皮膚等組織中,具有自我更新能力及多向分化潛能,它在體外易分離獲得,并可通過特定的方法誘導(dǎo)成為各種組織細(xì)胞[4]。鋰劑是否可以通過Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路調(diào)控骨髓間充質(zhì)干細(xì)胞增殖及分化,從而促進(jìn)骨壞死的自我修復(fù),近年來學(xué)者們對此進(jìn)行了許多研究。
鋰劑可以通過調(diào)控糖原合成酶激酶-3β(GSK-3β)影響Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路。GSK-3β是胞內(nèi)活躍的絲/蘇氨酸激酶,擔(dān)負(fù)著某些重要蛋白如Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路轉(zhuǎn)錄因子β-catenin磷酸化功能。正常情況下,Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路主要依靠β-catenin穩(wěn)定表達(dá),β-catenin由GSK-3β磷酸化,隨后由泛素-蛋白酶體復(fù)合物降解而清除。研究表明,鋰劑可以通過抑制GSK-3β激活Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路[5],其機制為鋰劑與鎂離子競爭性結(jié)合GSK-3β而直接發(fā)揮抑制作用,或通過激活磷脂酰肌醇-3-激酶(P13K)、蛋白激酶B1(Akt1)增強GSK-3β磷酸化作用[6]。理論上鋰劑抑制GSK-3β活性可造成胞質(zhì)內(nèi)β-catenin的蓄積,從而引起Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路的激活。有學(xué)者[7]實驗研究發(fā)現(xiàn),鋰劑可上調(diào)β-catenin蛋白表達(dá),造成Wnt下游基因如Axin2、Ahr及Nkd2表達(dá)上調(diào),從而激活Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路。
Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路對于骨骼系統(tǒng)發(fā)育、骨形成、骨愈合、骨代謝平衡調(diào)節(jié)起著重要作用[8],對骨髓間充質(zhì)干細(xì)胞也有重要影響,骨髓間充質(zhì)干細(xì)胞分化由信號通路調(diào)控,其中Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路是調(diào)控骨髓間充質(zhì)干細(xì)胞的主要信號通路之一,可在胚胎早期誘導(dǎo)骨髓間充質(zhì)干細(xì)胞成骨分化。研究[9]表明,腫瘤壞死因子通過激活Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路促進(jìn)骨髓間充質(zhì)干細(xì)胞成骨分化并抑制其成脂分化,從而緩解骨質(zhì)疏松。Weivoda等[10]研究表明,Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路可通過激活經(jīng)典及非經(jīng)典環(huán)磷酸腺苷(cAMP)/蛋白激酶A(PKA)信號轉(zhuǎn)導(dǎo)通路抑制破骨細(xì)胞分化,使體內(nèi)骨吸收減少,骨量上升。Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路是調(diào)控骨髓間充質(zhì)干細(xì)胞增殖及分化的樞紐,而其上游的GSK-3β則是該作用的開關(guān)。鋰劑憑借其組織分布特點在骨組織特異性聚集,抑制GSK-3β表達(dá),從而維持骨髓間充質(zhì)干細(xì)胞增殖與分化,達(dá)到修復(fù)骨缺損的作用。
經(jīng)典的Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路可促進(jìn)骨髓間充質(zhì)干細(xì)胞增殖并抑制其凋亡,而鋰劑也有相同作用。體外研究表明,鋰劑可調(diào)節(jié)骨髓間充質(zhì)干細(xì)胞增殖。Zhu等[11]在實驗中將骨髓間充質(zhì)干細(xì)胞分為兩組,實驗組加入5 μm 氯化鋰,空白組中不加氯化鋰,3 d后使用CCK-8檢測細(xì)胞增殖情況,發(fā)現(xiàn)與對照組相比,實驗組細(xì)胞數(shù)量明顯上升,以上作用在使用siRNA或β-catenin抑制劑Quercetin阻斷Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路后消失,表明鋰劑可促進(jìn)人類骨髓間充質(zhì)干細(xì)胞增殖。高麗娜等[12]的實驗表明,在人類骨髓間充質(zhì)干細(xì)胞培養(yǎng)基中加入不同濃度的氯化鋰(5、10、20、40 mmol/L)后,通過MTT方法檢測細(xì)胞增殖情況,發(fā)現(xiàn)小劑量鋰劑(5 mmol/L)可促進(jìn)骨髓間充質(zhì)干細(xì)胞增殖,而大劑量鋰劑(20、40 mmol/L)則會抑制骨髓間充質(zhì)干細(xì)胞增殖。Dong等[13]應(yīng)用免疫熒光法發(fā)現(xiàn),低濃度氯化鋰(0.1 mmol/L)可促進(jìn)骨髓間充質(zhì)干細(xì)胞增殖并分化為神經(jīng)細(xì)胞。
此外,鋰劑還可影響骨髓間充質(zhì)干細(xì)胞凋亡。研究[11]報道,采用5 mmol/L鋰劑干擾骨髓間充質(zhì)干細(xì)胞,4 d后使用流式細(xì)胞儀膜聯(lián)蛋白V與碘化丙啶標(biāo)記法檢測發(fā)現(xiàn),鋰劑組骨髓間充質(zhì)干細(xì)胞凋亡比例(6.9%)小于空白組(7.2%)。然而,當(dāng)鋰劑劑量達(dá)到10 mmol/L時,骨髓間充質(zhì)干細(xì)胞凋亡率明顯上升,這可能是由于高濃度鋰劑會產(chǎn)生細(xì)胞毒性的緣故。
Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路可調(diào)控骨髓間充質(zhì)干細(xì)胞分化方向,鋰劑同樣可以對體外骨髓間充質(zhì)干細(xì)胞分化產(chǎn)生影響。Yu等[14]使用不同濃度氯化鋰(1、5、10、20 mmol/L)干預(yù)小鼠骨髓間充質(zhì)干細(xì)胞成骨分化,21 d后通過聚合酶鏈?zhǔn)椒磻?yīng)(PCR)、免疫印跡技術(shù)法檢測骨鈣素(OCN)、Runt相關(guān)轉(zhuǎn)錄因子2(RUNX2)等成骨指標(biāo),發(fā)現(xiàn)5 mmol/L氯化鋰可使細(xì)胞成骨特異性指標(biāo)表達(dá)上升,茜素紅染色顯示鈣結(jié)節(jié)數(shù)目上升,表明鋰劑可增加骨髓間充質(zhì)干細(xì)胞成骨能力;在使用Quercetin阻斷Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路后骨髓間充質(zhì)干細(xì)胞促成骨作用消失。有研究[6]使用不同濃度的鋰劑干預(yù)骨髓間充質(zhì)干細(xì)胞成骨分化,7、14 d后使用逆轉(zhuǎn)錄PCR 檢測成骨特異性蛋白OCN、RUNX2及堿性磷酸酶表達(dá),發(fā)現(xiàn)實驗組骨相關(guān)基因堿性磷酸酶、RUNX2、OCN表達(dá)水平均較空白組高,且呈濃度和時間依賴性。
Tang等[15]研究表明,使用鋰劑干擾人類骨髓間充質(zhì)干細(xì)胞成脂分化,21 d后經(jīng)油紅染色觀察細(xì)胞內(nèi)脂滴數(shù)量,發(fā)現(xiàn)與對照組相比,鋰劑組脂滴數(shù)量明顯下降,此外鋰劑組成脂肪相關(guān)基因過氧化物酶體增殖物激活受體γ(PPARγ)表達(dá)下降,認(rèn)為鋰劑可抑制骨髓間充質(zhì)干細(xì)胞成脂分化。Visweswaran 等[16]的實驗表明,使用鋰劑刺激骨髓間充質(zhì)干細(xì)胞成脂分化后,油紅染色顯示與空白組相比,實驗組脂滴數(shù)量明顯減少,同時成脂特異性蛋白、PPARγ、CAAT區(qū)/增強子結(jié)合蛋白α(C/EBPα)和乙酰輔酶A羧化酶表達(dá)明顯下降,骨髓間充質(zhì)干細(xì)胞成脂分化受抑制。Zhang等[17]使用組織蛋白酶B阻斷Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路,結(jié)果鋰劑對骨髓間充質(zhì)干細(xì)胞成脂分化的抑制作用消失,表明鋰劑抑制骨髓間充質(zhì)干細(xì)胞成脂分化由Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路介導(dǎo),且是可逆的。
鋰劑可影響骨髓間充質(zhì)干細(xì)胞成軟骨分化。Eslaminejad等[18]研究表明,使用鋰劑5 mmol/L激活Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路后,骨髓間充質(zhì)干細(xì)胞成軟骨分化增加, 21 d后軟骨相關(guān)基因Sox9及聚蛋白多糖、Ⅱ型膠原蛋白表達(dá)上調(diào),表明低濃度鋰劑可促進(jìn)骨髓間充質(zhì)干細(xì)胞成軟骨分化。然而,Kapadia等[19]的研究則發(fā)現(xiàn)15 mmol/L鋰劑可對大鼠胚胎細(xì)胞軟骨內(nèi)骨化產(chǎn)生抑制作用。Kawata等[20]的實驗結(jié)果也得出相似結(jié)論,即小劑量鋰劑可促進(jìn)骨髓間充質(zhì)干細(xì)胞成軟骨分化,而大劑量鋰劑則抑制骨髓間充質(zhì)干細(xì)胞成軟骨分化。
骨髓間充質(zhì)干細(xì)胞的存在對骨的生長發(fā)育及自我修復(fù)有很大作用[21-22],是骨骼系統(tǒng)再生和修復(fù)的重要動力,骨髓間充質(zhì)干細(xì)胞的缺失很可能導(dǎo)致骨細(xì)胞凋亡、骨壞死及骨自我修復(fù)障礙。骨髓間充質(zhì)干細(xì)胞成脂分化與成骨分化在一定水平上保持平衡,打破這種平衡會導(dǎo)致骨髓間充質(zhì)干細(xì)胞增殖能力下降,成骨細(xì)胞分化減少,破骨細(xì)胞數(shù)量上升及生存周期延長,成脂能力增加,成血管能力下降,組織學(xué)上表現(xiàn)為骨小梁吸收、股骨頭塌陷及微骨折形成[23],股骨頭靜脈壓力增高,組織缺血。
骨壞死患者體內(nèi)骨髓間充質(zhì)干細(xì)胞數(shù)量下降,成脂分化增多,成骨分化減少,造成再生動力不足,再生方向改變,兩者結(jié)合導(dǎo)致骨壞死發(fā)生?;诖?,有研究[24-26]嘗試將外源性骨髓間充質(zhì)干細(xì)胞移植到股骨頭壞死或骨不連部位,以補充病變處骨髓間充質(zhì)干細(xì)胞數(shù)量。然而,外源性骨髓間充質(zhì)干細(xì)胞移植治療只能在確診相應(yīng)疾病的情況下進(jìn)行,治療時機相對滯后,且該方法需涉及骨髓間充質(zhì)干細(xì)胞體外分離和培養(yǎng),手術(shù)所帶來的并發(fā)癥也無法避免。目前臨床上外源性骨髓間充質(zhì)干細(xì)胞移植治療骨壞死尚缺乏安全性及有效性全面評估,因此如何通過合理有效的手段激活內(nèi)源性骨髓間充質(zhì)干細(xì)胞,針對致病因素合理調(diào)控骨髓間充質(zhì)干細(xì)胞增殖及分化,達(dá)到對抗外界不利因素及促進(jìn)局部細(xì)胞、組織結(jié)構(gòu)再生及功能重建的目的,是目前干細(xì)胞治療研究領(lǐng)域的新理念[27]。
鋰劑是一種治療躁狂、雙向情感障礙等精神疾病的常用藥物,大多數(shù)患者經(jīng)治療有顯著改善,早在1974年就有學(xué)者對鋰劑的藥理學(xué)展開研究[28]。研究發(fā)現(xiàn),抑郁癥患者局部神經(jīng)干細(xì)胞增殖能力下降,神經(jīng)元分化減少。而鋰劑可明顯提高該區(qū)域神經(jīng)干細(xì)胞級神經(jīng)元數(shù)量。隨后的體外實驗[29]證實,鋰劑對神經(jīng)干細(xì)胞增殖及分化都有顯著的調(diào)控作用。那么鋰劑是否對骨壞死區(qū)域骨髓間充質(zhì)干細(xì)胞也能發(fā)揮相同作用,值得進(jìn)一步研究。
Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路在骨骼系統(tǒng)發(fā)育及成年后骨代謝平衡調(diào)節(jié)中發(fā)揮重要作用。該信號通路可促進(jìn)骨髓間充質(zhì)干細(xì)胞增殖及成骨分化和成軟骨分化,減少破骨細(xì)胞生成。研究[30]表明,糖皮質(zhì)激素通過激活GSK-3β抑制Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路,此為激素性股骨頭壞死可能的分子學(xué)機制之一?;诖藱C制,鋰劑可拮抗激素作用并預(yù)防激素性股骨頭壞死[31]。眾多研究表明,低濃度鋰劑可通過激活Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路增加骨髓間充質(zhì)干細(xì)胞增殖能力,并促進(jìn)其數(shù)量明顯上升,從而使骨再生動力增加;鋰劑可明顯影響骨髓間充質(zhì)干細(xì)胞分化,促進(jìn)其成骨分化,抑制其成脂分化,從而造成骨再生方向改變,其綜合作用有助于修復(fù)骨缺損。然而,目前臨床上尚缺乏使用鋰劑治療股骨頭壞死、骨不連等報道。使用鋰劑治療骨壞死是否有效,仍需大量動物實驗及臨床數(shù)據(jù)支持。
近年來有許多動物實驗使用鋰劑促進(jìn)小鼠骨形成[32]、改善骨質(zhì)疏松[33],增加大鼠骨密度[34],為鋰劑治療骨壞死提供了良好的理論基礎(chǔ)。長期服用鋰劑是否引起骨骼系統(tǒng)不良反應(yīng)如可能致癌[35]并引起多器官病變[36],使用鋰劑治療骨科疾病的有效劑量,如何控制鋰劑局部濃度,鋰劑導(dǎo)致的骨量增加、骨密度上升、骨髓間充質(zhì)干細(xì)胞增殖能力增強及分化方向改變是否可逆,停藥后是否會復(fù)發(fā),都需要大量研究進(jìn)行探索。
[1]Loebel A, Cucchiaro J, Silva R, et al. Lurasidone as adjunctive therapy with lithium or valproate for the treatment of bipolar Ⅰ depression: a randomized, double-blind, placebo-controlled study[J]. Am J Psychiatry, 2014, 171(2):169-177.
[2]Zhu Z, Kremer P, Tadmori I, et al. Lithium suppresses astrogliogenesis by neural stem and progenitor cells by inhibiting STAT3 pathway independently of glycogen synthase kinase 3 beta[J]. PLoS One, 2011, 6(9):e23341.
[3]Tao K, Xiao D, Weng J, et al. Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/β-catenin signaling pathway[J]. Toxicol Lett, 2016, 240(1):68-80.
[4]Ma X, Sun Y, Cheng X, et al. Repair of osteochondral defects by mosaicplasty and allogeneic BMSCs transplantation[J]. Int J Clin Exp Med, 2015, 8(4):6053-6059.
[5]Ferensztajn-Rochowiak E, Rybakowski JK. The effect of lithium on hematopoietic, mesenchymal and neural stem cells[J]. Pharmacol Rep, 2016,68(2):224-230.
[6]Tian N, Kanno T, Jin Y, et al. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation[J]. Biochem Biophys Res Commun, 2014, 450(1):746-749.
[7]Cuesta S, Severin MJ, Batuecas J, et al. Wnt/β-catenin pathway in the prefrontal cortex is required for cocaine-induced neuroadaptations[J]. Addict Biol, 2016, [Epub ahead of print].
[8]Vriend J, Reiter RJ. Melatonin, bone regulation and the ubiquitin-proteasome connection: a review[J]. Life Sci, 2016, 145:152-160.
[9]Sang C, Zhang Y, Chen F, et al. Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/β-catenin signaling in estrogen-deficiency induced osteoporosis[J]. Bone, 2016, 84: 78-87.
[10]Weivoda MM, Ruan M, Hachfeld CM, et al. Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways[J]. J Bone Miner Res, 2016, 31(1):65-75.
[11]Zhu Z, Yin J, Guan J, et al. Lithium stimulates human bone marrow derived mesenchymal stem cell proliferation through GSK-3β-dependent β-catenin/Wnt pathway activation[J]. FEBS J, 2014, 281(23):5371-5389.
[12]高麗娜,安瑩,楊昊,等. 氯化鋰對人頜骨來源的骨髓間充質(zhì)干細(xì)胞增殖及骨向分化能力的影響[J]. 實用口腔醫(yī)學(xué)雜志, 2013, 29(2):203-208.
[13]Dong BT, Tu GJ, Han YX, et al. Lithium enhanced cell proliferation and differentiation of mesenchymal stem cells to neural cells in rat spinal cord[J]. Int J Clin Exp Pathol, 2015, 8(3):2473-2483.
[14]Yu Z, Fan L, Li J, et al. Lithium chloride attenuates the abnormal osteogenic/adipogenic differentiation of bone marrow-derived mesenchymal stem cells obtained from rats with steroid-related osteonecrosis by activating the β-catenin pathway[J]. Int J Mol Med, 2015, 36(5):1264-1272.
[15]Tang L, Chen Y, Pei F, et al. Lithium chloride modulates adipogenesis and osteogenesis of human bone marrow-derived mesenchymal stem cells[J]. Cell Physiol Biochem, 2015, 37(1):143-152.
[16]Visweswaran M, Schiefer L, Arfuso F, et al. Wnt antagonist secreted frizzled-related protein 4 upregulates adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells[J]. PLoS One, 2015, 10(2):e0118005.
[17]Zhang ZY, Mai Y, Yang H, et al. CTSB promotes porcine preadipocytes differentiation by degrading fibronectin and attenuating the Wnt/β-catenin signaling pathway[J]. Mol Cell Biochem, 2014, 395(1-2):53-64.
[18]Eslaminejad MB, Karimi N, Shahhoseini M. Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells treated by GSK-3 inhibitors[J]. Histochem Cell Biol, 2013,140(6):623-633.
[19]Kapadia RM, Guntur AR, Reinhold MI, et al. Glycogen synthase kinase 3 controls endochondral bone development: contribution of fibroblast growth factor 18[J]. Dev Biol, 2005, 285(2):496-507.
[20]Kawata K, Kubota S, Eguchi T, et al. Role of the low-density lipoprotein receptor-related protein-1 in regulation of chondrocyte differentiation[J]. J Cell Physiol, 2010, 222(1):138-148.
[21]Lebouvier A, Poignard A, Cavet M, et al. Development of a simple procedure for the treatment of femoral head osteonecrosis with intra-osseous injection of bone marrow mesenchymal stromal cells: study of their biodistribution in the early time points after injection[J]. Stem cell Res Ther, 2015, 6:68.
[22]Ma XW, Cui DP, Zhao DW. Vascular endothelial growth factor/bone morphogenetic protein-2 bone marrow combined modification of the mesenchymal stem cells to repair the avascular necrosis of the femoral head[J]. Int J Clin Exp Med, 2015, 8(9):15528-15534.
[23]Jones LC, Hungerford DS. Osteonecrosis: etiology, diagnosis, and treatment[J]. Curr Opin Rheumatol, 2004, 16(4):443-449.
[24]Persiani P, De Cristo C, Graci J, et al. Stage-related results in treatment of hip osteonecrosis with core-decompression and autologous mesenchymal stem cells[J]. Acta Orthop Belg, 2015, 81(3):406-412.
[25]Gomez-Barrena E, Rosset P, Lozano D, et al. Bone fracture healing: cell therapy in delayed unions and nonunions[J]. Bone, 2015, 70:93-101.
[26]Pan ZM, Zhang Y, Cheng XG, et al. Treatment of femoral head necrosis with bone marrow mesenchymal stem cells expressing inducible hepatocyte growth factor[J]. Am J Ther, 2015, [Epub ahead of print].
[27]VandenBerg-Foels WS. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment[J]. Tissue Eng Part B Rev, 2014, 20(1):28-39.
[28]Ebadi MS, Simmons VJ, Hendrickson MJ, et al. Pharmacokinetics of lithium and its regional distribution in rat brain[J]. Eur J Pharmacol, 1974, 27(3):324-329.
[29]Yoneyama M, Shiba T, Hasebe S, et al. Lithium promotes neuronal repair and ameliorates depression-like behavior following trimethyltin-induced neuronal loss in the dentate gyrus[J]. PLoS One, 2014, 9(2):e87953.
[30]Ngkelo A, Hoffmann RF, Durham AL, et al. Glycogen synthase kinase-3β modulation of glucocorticoid responsiveness in COPD[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(10):L1112-L1123.
[31]Zheng LZ, Cao HJ, Chen SH, et al. Blockage of Src by specific siRNA as a novel therapeutic strategy to prevent destructive repair in steroid-associated osteonecrosis in rabbits[J]. J Bone Miner Res, 2015, 30(11):2044-2057.
[32]Clement-Lacroix P, Ai M, Morvan F, et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice[J]. Proc Natl Acad Sci USA, 2005, 102(48):17406-17411.
[33]Wolski H, Drweska-Matelska N, Seremak-Mrozikiewicz A, et al. The role of Wnt/β-catenin pathway and LRP5 protein in metabolism of bone tissue and osteoporosis etiology[J]. Ginekol Pol, 2015, 86(4):311-314.
[34]Kobayashi Y, Uehara S, Udagawa N, et al. Regulation of bone metabolism by Wnt signals[J]. J Biochem, 2016, 159(4):387-392.
[35]Liu J, Guo X, Ge Z, et al. Mutation and expression of LEF1 in adult acute lymphocytic leukemia and their clinical significance[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2014, 22(5):1212-1216.
[36]Castro VM, Roberson AM, McCoy TH, et al. Stratifying risk for renal insufficiency among lithium-treated patients: an electronic health record study[J]. Neuropsychopharmacology, 2016, 41(4):1138-1143.
(收稿:2015-12-18; 修回:2016-03-19)
(本文編輯:盧千語)
國家自然科學(xué)基金(81472066)
200233,上海交通大學(xué)附屬第六人民醫(yī)院骨科
10.3969/j.issn.1673-7083.2016.03.012