馬大寶, 楊國旺, 王笑民, 唐武軍
首都醫(yī)科大學(xué)附屬北京中醫(yī)醫(yī)院腫瘤科,北京100010
非酒精性脂肪性肝病的影像學(xué)檢查進展
馬大寶, 楊國旺, 王笑民, 唐武軍
首都醫(yī)科大學(xué)附屬北京中醫(yī)醫(yī)院腫瘤科,北京100010
肝活檢是非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)診斷和分級的黃金標(biāo)準(zhǔn),然而它具有創(chuàng)傷、出血等風(fēng)險,同樣也存在抽樣誤差。因此,各種非有創(chuàng)性檢查包括超聲、受控衰減參數(shù)、計算機斷層掃描、核磁共振光譜和氙-133掃描廣泛應(yīng)用于臨床?,F(xiàn)對NAFLD的影像學(xué)檢查進展作一概述。
非酒精性脂肪性肝??;肝脂肪變性;非有創(chuàng)性方法評估
非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)是一種與胰島素抵抗、糖尿病、肥胖等代謝危險因素密切相關(guān)的應(yīng)激性肝臟損傷,其疾病譜包括非酒精性單純性脂肪肝(nonalcoholic simple fatty liver, NAFL)、非酒精性脂肪性肝炎(nonalcoholic steatohepatitis, NASH)及其相關(guān)肝硬化和肝細(xì)胞癌[1-3]。流行病學(xué)發(fā)現(xiàn)15%~21%的亞洲人(非肥胖)患有NAFLD[4],而在肥胖等危險因素影響下其患病率高達90%以上[5]。NAFLD不僅引起肝臟病變,更增加肝外疾病的風(fēng)險,因此更需引起重視[6]。肝活檢是NAFLD診斷的金標(biāo)準(zhǔn)。但肝活檢會帶來創(chuàng)傷、出血等并發(fā)癥。此外肝活檢取樣只有1/50 000全肝組織[7-8],存在抽樣誤差。由于這些原因,各種非侵入性影像學(xué)檢查方法不斷提出,以診斷肝脂肪變性及對其嚴(yán)重程度分級,現(xiàn)將NAFLD的影像學(xué)檢查進展概述如下。
1.1 常規(guī)超聲檢查(Ultrasound, US) US具有價格低廉、無創(chuàng)傷、可重復(fù)及實用性特點,常作為篩查脂肪肝的首選手段[9-10]。在超聲影像上,肝臟脂肪變性會使肝臟實質(zhì)表面回聲增強,使肝臟看起來比腎皮質(zhì)更亮[11]。其特點:(1)肝區(qū)近場回聲彌漫性增強,遠(yuǎn)場回聲衰減,肝腎反差增大,近場增強程度和遠(yuǎn)場衰減程度與脂肪積累程度呈正比;(2)肝內(nèi)管道結(jié)構(gòu)顯示不清;(3)肝臟輕度或中度增大,肝邊界圓鈍;(4)彩色多普勒超聲顯示肝內(nèi)血流信號減少或不顯示,但肝內(nèi)血管走向正常;(5)肝右葉包膜及橫膈回聲顯示不清或不完整。具備上述第1項和第2~4項之一者為輕度脂肪肝;具備第1項和第2~4項之二者為中度脂肪肝;具備第1項和第2~4項之二及第5項者為重度脂肪肝[12]。一項系統(tǒng)評價[13]通過對1976年-2010年共49項研究(4 720人參加)分析發(fā)現(xiàn)超聲相對于組織學(xué)(黃金標(biāo)準(zhǔn))而言,對中、重度脂肪肝診斷的敏感性、特異性分別為84.8%(95%CI: 79.5~88.9)和93.6%(95%CI: 87.2~97.0);陽性似然比及陰性似然比分別為13.3(6.4~27.6)和0.16(0.12~0.22)。在5組小的比較研究(n=215)中,US在檢測脂肪變性方面與CT、MRI和MRS一樣準(zhǔn)確,其靈敏度和特異度分別為94%和80%。肝腎比(HRR)是US量化診斷肝臟脂肪變性的指標(biāo)。一項以健康志愿者為觀察對象的研究表明,HRR同肝活檢相比,有92.7%的靈敏度和92.5%的特異性[14]。Marshall等[15]研究了101例接受肝活檢并除外重大肝腎疾病的患者,觀察發(fā)現(xiàn)HRR≥1.28具有100%的靈敏度和54%的特異度。US存在以下不足:(1)敏感度及特異度隨著受試者的肥胖程度增加而降低,在病態(tài)肥胖人群中敏感度下降到86%,特異度下降到68%[16];(2)彌散的肝臟脂肪變性與肝纖維化在超聲影像上具有相似性,有時難以區(qū)分[17],易造成誤診或漏診;(3)與操作者關(guān)系密切,操作者的超聲診斷經(jīng)驗、儀器的操作與各功能的熟練程度均可能影響診斷結(jié)果;(4)無法監(jiān)測肝臟脂肪含量的細(xì)小變化[18]。
1.2 定量超聲模型(Quantitative ultrasound, QUS) QUS是利用背向散射技術(shù),因脂肪滴是良好的散射源,脂滴之間散射信號相互作用能使散射信號強度增加從而準(zhǔn)確判斷肝細(xì)胞內(nèi)脂肪含量。最新一項以MRI-PDFF分析作為基準(zhǔn)的截面研究[19],發(fā)現(xiàn)QUS可準(zhǔn)確診斷和定量肝臟脂肪變性,其背向散射系數(shù)(BSC)(0.00005~0.251/CM-SR)與MRI-PDFF具有相關(guān)性(Spearmanp=0.80,P<0.0001)。在試驗組中,BSC分析診斷NAFLD患者的ROC曲線下面積(AUC)是0.98(95%CI: 0.95~1.00,P<0.0001)。最佳BSC截止值在實驗和對照組診斷NAFLD患者的敏感度分別是93%和87%,特異度分別是97%和91%,陰性預(yù)測值分別是86%和76%,陽性預(yù)測值分別是99%和95%。Zhang等[20]納入170例受試者,所有受試者在同一天接受UC和1H-MRS檢查,結(jié)果發(fā)現(xiàn)定量UC模型診斷脂肪肝的靈敏度和特異度分別為94.7%和100%。但相關(guān)研究仍不完善,還需進一步研究。
1.3 受控衰減參數(shù)(Controlled attenuation parameter, CAP) 瞬時彈性記錄儀(FibroScan)是基于超聲的振動控制瞬時彈性成像(VCTE)的儀器,可用于檢測肝臟硬度值(LSM)及脂肪含量,其用于定量檢測肝臟脂肪含量的指標(biāo)稱為受控衰減參數(shù)(CAP)。CAP是FibroScan上通過超聲衰減原理重新定義的一個新參數(shù),基于FibroScan捕獲反向射頻信號的超聲特性,測量使用頻率為3.5 MHz的超聲波,測量結(jié)果以dB/m為單位。CAP的測量區(qū)域與LSM相同,只有當(dāng)LSM測量有效時才會評價此次測量的CAP值。因此,CAP通過VCTE確保了測量時能夠自動獲取肝臟超聲衰減數(shù),實現(xiàn)了脂肪肝的無創(chuàng)定量診斷[21]。CAP除具有無創(chuàng)、定量、快速等優(yōu)點外,還具有可重復(fù)性,與操作員與機器無相關(guān)性的特點[21]。一項以超重和肥胖的慢性肝病患者為研究對象的前瞻性研究表明CAP283 dB/m截止值檢測脂肪變性具有76%的靈敏度和79%的特異度[22],257 dB/m的截止值可以從S0中區(qū)分顯著脂肪變性(S2~S3)(Sn 89%,SP 83%,陽性似然比5.33,陰性似然比0.13,AUROC=0.93)[23]。Maev等[24]研究發(fā)現(xiàn)CAP診斷輕度(1度)脂肪變性的敏感性81.0%,特異性100%,診斷中重度(2和3度)脂肪變性的敏感度和特異度均高達100%。有不同研究通過受試者工作特征曲線(ROC)計算S1(≥5%)、S2(≥34%)、S3(≥67%)的曲線下面積(AUC)分別是0.92~0.97、0.86~0.94、0.75~0.88[25-27],同樣證明CAP對脂肪變性有較高的診斷價值。但是CAP仍存在不足,研究[27]發(fā)現(xiàn)在肥胖患者中CAP診斷脂肪變性S1(≥5%)、S2(≥34%)、S3(≥67%)的AUC分別下降為0.92、0.64、0.58。同樣Shen等[28]研究發(fā)現(xiàn)對于所有患者,當(dāng)BMI<25 kg/m2,CAP診斷≥5%肝脂肪變性的AUROC為0.853,最佳截止值為244.5 dB/m;然而,當(dāng)BMI≥25 kg/m2時,AUROC為0.835,最適截止值269.5 dB/m。2014年一項大樣本調(diào)查中[29],共進行了5 323次檢查,發(fā)現(xiàn)CAP有7.7%的失敗率。通過多因素分析,與CAP測量失敗高度相關(guān)的因素是BMI=25~30 kg/m2,BMI>30 kg/m2,代謝綜合征和肝臟硬度>6 kPa等。隨著患者BMI增加,CAP測量失敗率也隨之明顯升高,BMI≤25 kg/m2、25~29.9 kg/m2、30~40 kg/m2和>40 kg/m2,CAP測量失敗率分別為1.0%、5.6%、19.4%、58.4%。皮膚囊距離(SCD)<25 mm與SCD≥25 mm相比,其AUROC在脂肪變性≥5%(0.88與0.81),>33%(0.90與0.85)和>66%(0.84與0.72)均小幅增高[30],說明SCD同樣影響CAP診斷的準(zhǔn)確性。目前CAP的診斷價值及閾值還有待于進一步驗證。開發(fā)可用于測量CAP的XL探頭將改善肥胖人群測量成功率欠佳的現(xiàn)狀。
CT通過提供精確可靠的肝臟可視化圖像,可準(zhǔn)確診斷彌散性或局灶性肝實質(zhì)脂肪變性[31]。肝/脾CT比值(L/S)是CT用以檢測甚至量化肝臟的脂肪含量的重要指標(biāo)。中華醫(yī)學(xué)會肝臟病學(xué)分會制定的《中國非酒精性脂肪性肝病診療指南》[32]規(guī)定L/S<1.0是診斷脂肪肝的重要影像學(xué)指標(biāo)之一,其中,L/S<1.0但> 0.7者為輕度,≤0.7但> 0.5者為中度,≤0.5者為重度脂肪肝。最新研究發(fā)現(xiàn)L/S排除脂肪變性的最佳截止值為1.1,其ROC曲線下的面積為0.886,故認(rèn)為L/S=1.1可排除臨床上重要的肝脂肪變性[33]。在一項比較研究[34]中,CT診斷≥5%的脂肪變性的敏感性50%,特異度77.2%,低于UC。CT識別≥5%的脂肪變性的準(zhǔn)確性低于梯度回波MRI和MRS(AUROC分別為0.65、0.88和0.85)。值得注意的是,診斷≥30%的脂肪變性,這3種方法的準(zhǔn)確性相似(AUROC分別為0.92、0.99和0.91)。CT在NAFLD患者的的廣泛應(yīng)用受到限制,其原因是多方面的,如輻射暴露的風(fēng)險,成本高,診斷輕度脂肪變性的準(zhǔn)確性較低,使其很難后續(xù)用[31]。
磁共振成像(Magnetic resonance imaging, MRI)和磁共振波譜(Magnetic resonance spectroscopy, MRS)具有相同的物理原理,MRS可作為全身MRI的一個輔助手段,在肝臟脂肪含量與全身脂肪組織的分布作一對比[35]。脂肪肝的分級按肝細(xì)胞內(nèi)脂肪含量,被分為0~3級:0級,脂肪含量<5%;1級,脂肪含量6%~33%;2級,脂肪含量34%~66%;3級,脂肪含量>66%[36-37]。
3.1 MRI MRI技術(shù)利用正反相位中水和脂肪信號不同的共振頻率[38]。最廣泛使用的方法是Dixon方法。許多研究人員改進原始Dixon方法以減少它的局限性。這些改進包括更好后處理算法,更快的掃描時間,提高了T2/T1補償,減少場不均勻性的效果,并減少脂肪和水之間的模糊性[39]。如多點Dixon方法采用多脂肪峰和雙指數(shù)T2模型可準(zhǔn)確定量NAFLD,用于篩查高危人群及無創(chuàng)監(jiān)測疾病進展[40]。MRI具有無輻射性,比CT和UC更能區(qū)分組織特點[41],與相關(guān)的組織學(xué)性聯(lián)系緊密等優(yōu)勢,其檢測輕度脂肪變性具有85%的靈敏度和100%的特異度,檢測中-重度脂肪變性具有80%的靈敏度,95%的特異度[42]。研究發(fā)現(xiàn)梯度回波磁共振(DGE-MRI)檢測中重度肝脂肪變性,其敏感度和特異度均>90%,在探測>5%的肝脂肪變性,DGE-MRI也具有76.7%的敏感性和87.1%的特異性[34]。一項前瞻性研究[43]證明MRI與微觀脂肪含量的相關(guān)性比UC更好(r=0.77,P<0.001vsr=0.41,P<0.05)。但是MRI在診斷和監(jiān)測肝臟脂肪變性患者中的應(yīng)用受到限制,其原因主要是相對昂貴的花費,患者的依從性降低、成像時間過長等。
3.2 MRS 目前,用于脂肪肝定性及定量的主要為1H-MRS[44]。1H-MRS可用來檢測脂質(zhì)、膽堿等多種含氫化合物的代謝變化,對肝臟的脂質(zhì)代謝變化在分子水平上進行定量分析,是評估肝脂肪變性的一個準(zhǔn)確的方法[34,45-46]。1H-MRS的敏感度(80%)明顯高于CT(50%)和US(53.3%)(P≤0.004)[34],因此常用于脂肪肝的研究。脂肪肝1H-MRS成像,主要采集的是水峰、脂質(zhì)峰及其他少量化合物雜峰,通過軟件校正和圖像函數(shù)濾過,在特定化學(xué)位移點上得到水峰和脂質(zhì)峰,因水峰相對穩(wěn)定,測得水峰和脂質(zhì)峰下面積的相對比值,即可得到脂質(zhì)含量的量化值。最新研究發(fā)現(xiàn)31P-MRS可測定各種磷酸鹽代謝物如無機磷、磷酸肌酸、三磷酸腺苷等,從而反映肝臟病變的能量和磷酸鹽代謝,在不同的NAFLD階段顯示出不同生化改變而被提議作為慢性肝病潛在的標(biāo)記。因此可作為未來研究的一個重要方向[47]。MRS同樣存在不足包括有限的利用率、高成本[34,45-46]及結(jié)果誤差。因MRS采用的是自由呼吸方法,其結(jié)果易受到呼吸運動影響[34]。
3.3 肝臟脂肪成分質(zhì)子密度磁共振檢查(Magnetic resonance imaging of liver proton density fat fraction,MRI-PDFF) MRI-PDFF是一個減少MRS的視覺偏倚并與MRS高度相關(guān)[48-49]的新方法,被認(rèn)為可準(zhǔn)確量化肝臟脂肪[48,50]。最近有臨床研究發(fā)現(xiàn),初始MRI-PDFF與肝活檢在量化患者肝臟脂肪方面有高度關(guān)聯(lián)性(r=0.758,P<0.001)[51]。Tang等[52]發(fā)現(xiàn)MRI-PDFF在6.4%閾值下診斷1級或更高的脂肪變性有86%的敏感度和83%的特異度,17.4%的閾值診斷2級或更高的脂肪變性有64%的敏感度和96%的特異度,22.1%的閾值來診斷3級脂肪變性有71%的敏感度和92%的特異度。與MRS相比,MRI-PDFF更易應(yīng)用,所需時間更短,價格較便宜,且具有一定的商業(yè)價值[53]。
氙133肝掃描是利用Xe-133的高度脂溶性來診斷及量化脂肪肝的一種新方法。氙-133氣體廉價、安全,具有非常低的輻射風(fēng)險[54],5 min估計吸收的輻射劑量是155MBq(5mCi)。最近,在一項回顧性研究[54]中,AL-Busafi和他的同事發(fā)現(xiàn),氙-133掃描檢測NAFLD具有94.3%的靈敏度和87.5%的特異度,優(yōu)于超聲檢查(US分別是62.9%和75%)。氙-133肝掃描安全、可靠、無創(chuàng),是一種診斷及量化脂肪肝的有前途的工具。其主要限制是僅檢測脂肪,不能區(qū)別單純性脂肪肝和纖維化,易造成誤診或漏診。氙133肝掃描在NAFLD的診斷和管理的效能還未得到很好的研究。
綜上所述,在NAFLD的影像學(xué)診斷方面,US因其價格低廉及在檢測中重度脂肪變性方面較高的準(zhǔn)確性,常作為診斷肝臟脂肪變性的首選方法,但是其靈敏度及特異度同MRI、MRS相比較低,無法準(zhǔn)確判斷細(xì)小脂肪性變,且準(zhǔn)確性易受到操作者影響。CT和MRI、MRS、MRI-PDFF雖然具有較高的準(zhǔn)確性,但分別由于其射線的輻射及高額的費用并未廣泛用于NAFLD的臨床診斷及分級。Xe-133肝掃描作為新的定量工具并未充分研究。CAP因其簡便,敏感度及特異度高于CT、MRI、US,且與肝活檢相比,CAP更少受到抽樣誤差的干擾的優(yōu)點而成為一種極具發(fā)展前景的工具,但仍需大量的臨床試驗。
[1]Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases,American College of Gastroenterology [J]. Gastroenterology,2012,142(7): 1592-1609.
[2]Dowman JK, Tomlinson JW, Newsome PN. Pathogenesis of non-alcoholic fatty liver disease [J]. QJM, 2010, 103(2): 71-83.
[3]Chang E, Park CY, Park SW. Role of thiazolidinediones, insulin sensitizers, in non-alcoholic fatty liver disease [J]. J Diabetes Investig, 2013, 4(6): 517-524.
[4]Liu CJ. Prevalence and risk factors for non-alcoholic fatty liver disease in Asian people who are not obese [J]. J Gastroenterol Hepatol, 2012, 27(10): 1555-1560.
[5]Gaggini M, Morelli M, Buzzigoli E, et al. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease [J]. Nutrients, 2013, 5(5): 1544-1560.
[6]Armstrong MJ, Adams LA, Canbay A, et al. Extrahepatic complications of nonalcoholic fatty liver disease [J]. Hepatology, 2014, 59(3): 1174-1197.
[7]Ratziu V, Charlotte F, Heurtier A, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease [J]. Gastroenterology, 2005, 128(7): 1898-906.
[8]Sumida Y, Nakajima A, Itoh Y. Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fattyliver disease/nonalcoholic steatohepatitis [J]. World J Gastroenterol, 2014, 20(2): 475-485.
[9]Palmentieri B, de Sio I, La Mura V, et al. The role of bright liver echo pattern on ultrasound B-mode examination in the diagnosis of liver steatosis [J]. Dig Liver Dis, 2006, 38(7): 485-489.
[10]Saverymuttu SH, Joseph AE, Maxwell JD. Ultrasound scanning in the detection of hepatic fibrosis and steatosis [J]. Br Med J(Clin Res Ed), 1986, 292(6512): 13-15.
[11]Quinn SF, Gosink BB. Characteristic sonographic signs of hepatic fatty infiltration [J]. AJR Am J Roentgenol, 1985, 145(4): 753-755.
[12]中華醫(yī)學(xué)會肝臟病學(xué)分會脂肪肝和酒精性肝病學(xué)組. 非酒精性脂肪性肝病診療指南[J]. 中華肝臟病雜志, 2006, 14(3): 161-163. Fatty Liver and Alcoholic Liver Disease Study Group of the Chinese Liver Disease Association. Guidelines for diagnosis and treatment of nonalcoholic fatty liver diseases [J]. Chin J Hepatol, 2006, 14(3): 161-163.
[13]Hernaez R, Lazo M, Bonekamp S, et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis [J]. Hepatology, 2011, 54(3): 1082-1090.
[14]Borges VF, Diniz AL, Cotrim HP, et al. Sonographic hepatorenal ratio: a noninvasive method to diagnose nonalcoholic steatosis [J]. J Clin Ultrasound, 2013, 41(1): 18-25.
[15]Marshall RH, Eissa M, Bluth EI, et al. Hepatorenal index as an accurate,simple,and effective tool in screening for steatosis [J]. AJR Am J Roentgenol, 2012, 199(5): 997-1002.
[16]Wu J, You J, Yerian L, et al. Prevalence of liver steatosis and fibrosis and the diagnostic accuracy of ultrasound in bariatric surgery patients [J]. Obes Surg, 2012, 22(2): 240-247.
[17]Joseph AE, Saverymuttu SH, al-Sam S, et al. Comparison of liver histology with ultrasonography in assessing diffuse parenchymal liver disease [J]. Clin Radiol, 1991, 43(1): 26-31.
[18]Mehta SR, Thomas EL, Bell JD, et al. Non-invasive means of measuring hepatic fat content [J]. World J Gastroenterol, 2008, 14(22): 3476-3483.
[19]Lin SC, Heba E, Wolfson T, et al. Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat using a new quantitative ultrasound technique [J]. Clin Gastroenterol Hepatol, 2015, 13(7): 1337-1345.
[20]Zhang B, Ding F, Chen T, et al. Ultrasound hepatic/renal ratio and hepatic attenuation rate for quantifying liver fat content [J]. World J Gastroenterol, 2014, 20(47): 17985-17992.
[21]Sasso M, Beaugrand M, de Ledinghen V, et al. Controlled attenuation parameter (CAP):a novel VCTETMguided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes [J]. Ultrasound Med Biol, 2010, 36(11): 1825-1835.
[22]Myers RP, Pollett A, Kirsch R, et al. Controlled Attenuation Parameter (CAP): a noninvasive method for the detection of hepatic steatosis based on transient elastography [J]. Liver Int, 2012, 32(6): 902-910.
[23]Yilmaz Y, Yesil A, Gerin F, et al. Detection of hepatic steatosis using the controlled attenuation parameter:a comparative study with liver biopsy [J]. Scand J Gastroenterol, 2014, 49(5): 611-616.
[24]Maev IV, Kaziulin AN, Babina SM, et al. Possibilities of using the noninvasive methods of investigating the morphofunctional changes in the liver in patients with non alcoholic steatohepatitis and type 2 diabetes mellitus [J]. Eksp Klin Gastroenterol, 2014, (3): 38-45.
[25]Shen F, Zheng RD, Mi YQ, et al. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis in Chinese patients [J]. World J Gastroenterol, 2014, 20(16): 4702-4711.
[26]Karlas T, Petroff D, Garnov N, et al. Non-invasive assessment of hepatic steatosis in patients with NAFLD using controlled attenuation parameter and 1H-MR spectroscopy [J].PLoS One, 2014, 9(3): e91987.
[27]Chan WK, Nik Mustapha NR, Mahadeva S. Controlled attenuation parameter for the detection and quantification of hepatic steatosis in nonalcoholic fatty liver disease [J]. J Gastroenterol Hepatol, 2014, 29(7): 1470-1476.
[28]Shen F, Zheng R, Mi Y, et al. A multi-center clinical study of a novel controlled attenuation parameter for assessment of fatty liver [J]. Zhonghua Gan Zang Bing Za Zhi, 2014, 22(12): 926-931.
[29]de Lédinghen V, Vergniol J, Capdepont M, et al. Controlled attenuation parameter (CAP)for the diagnosis of steatosis:a prospective study of 5323 examinations [J]. J Hepatol, 2014, 60(5): 1026-1031.
[30]Shen F, Zheng RD, Shi JP, et al. Impact of skin capsular distance on the performance of controlled attenuation parameter in patients with chronic liver disease [J]. Liver Int, 2015, 35(11): 2392-2400.
[31]Fierbinteanu-Braticevici C, Dina I, Petrisor A, et al. Noninvasive investigations for non alcoholic fatty liver disease and liver fibrosis [J]. World J Gastroenterol, 2010, 16(38): 4784-4791.
[32]The Chinese National Workshop on Fatty Liver and Alcoholic Liver Disease for the Chinese Liver Disease Association. Guidelines for management of nonalcoholic fatty liver disease: an updated and revised edition[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2012, 4(7): 4-10. 中華醫(yī)學(xué)會肝病學(xué)分會脂肪肝和酒精性肝病學(xué)組. 中國非酒精性脂肪性肝病診療指南(2010年修訂版)[J].中國醫(yī)學(xué)前沿雜志(電子版), 2012, 4(7): 4-10.
[33]Kan H, Kimura Y, Hyogo H, et al. Non-invasive assessment of liver steatosis in non-alcoholic fatty liver disease [J]. Hepatol Res, 2014, 44(14): E420-E427.
[34]Lee SS, Park SH, Kim HJ, et al. Non-invasive assessment of hepatic steatosis:prospective comparison of the accuracy of imaging examinations [J]. J Hepatol, 2010, 52(4): 579-585.
[35]Mehta SR, Thomas EL, Bell JD, et al. Non-invasive means of measuring hepatic fat content [J]. World J Gastroenterol, 2008, 14(22): 3476-3483.
[36]Bedossa P, Poitou C, Veyrie N, et al. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients [J]. Hepatology, 2012, 56(5): 1751-1759.
[37]Dyson JK, McPherson S, Anstee QM. Republished: Non-alcoholic fatty liver disease: non-invasive investigation and risk stratification [J]. Postgrad Med J, 2014, 90(1063): 254-266.
[38]Schwenzer NF, Springer F, Schraml C, et al. Non-invasive assessment and quantification of liver steatosis by ultrasound,computed tomography and magnetic resonance [J]. J Hepatol, 2009, 51(3): 433-445.
[39]Outwater EK, Blasbalg R, Siegelman ES, et al. Detection of lipidin abdominal tissues with opposed-phase gradient-echo images at 1.5 T:Techniques and diagnostic importance [J]. Radiographics, 1998, 18(6): 1465-1480.
[40]Deng J, Fishbein MH, Rigsby CK, et al. Quantitative MRI for hepatic fat fraction and T2*measurement in pediatric patients with non-alcoholic fatty liver disease [J]. Pediatr Radiol, 2014, 44(11): 1379-1387.
[41]Hatta T, Fujinaga Y, Kadoya M, et al. Accurate and simple method for quantification of hepatic fat content using magnetic resonance imaging: A prospective study in biopsy-proven nonalcoholic fatty liver disease [J]. J Gastroenterol, 2010, 45(12): 1263-1271.
[42]Mazhar SM, Shiehmorteza M, Sirlin CB. Noninvasive assessment of hepatic steatosis [J]. Clin Gastroenterol Hepatol, 2009, 7(2): 135-140.
[43]Fishbein M, Castro F, Cheruku S, et al. Hepatic MRI for fat quantitation:Its relationship to fat morphology, diagnosis, and ultrasound [J]. J Clin Gastroenterol, 2005, 39(7): 619-625.
[44]Zhong L, Chen JJ, Chen J, et al. Nonalcoholic fatty liver disease:quantitative assessment of liver fat content by computed tomography, magnetic resonance imaging and proton magnetic resonance spectroscopy [J]. J Dig Dis, 2009, 10(4): 315-320.
[45]Roldan-Valadez E, Favila R, Martínez-López M, et al. In vivo 3T spectroscopic quantification of liver fat content in nonalcoholic fatty liver disease:Correlation with biochemical method and morphometry [J]. J Hepatol, 2010, 53(4): 732-737.
[46]Karlas T, Petroff D, Garnov N, et al. Non-invasive assessment of hepatic steatosis in patients with NAFLD using controlled attenuation parameter and 1H-MR spectroscopy [J]. PLoS One, 2014, 9(3): e91987.
[47]Abrigo JM, Shen J, Wong VW, et al. Non-alcoholic fatty liver disease:Spectral patterns observed from an in vivo phosphorus magnetic resonance spectroscopy study [J]. J Hepatol, 2014, 60(4): 809-815.
[48]Noureddin M, Lam J, Peterson MR, et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials [J]. Hepatology, 2013, 58(6): 1930-1940.
[49]Tang A, Tan J, Sun M, et al. Nonalcoholic fatty liver disease:MR imaging of liver proton density fat fraction to assess hepatic steatosis [J]. Radiology, 2013, 267(2): 422-431.
[50]Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction:a standardized MR based biomarker of tissue fat concentration [J]. J Magn Reson Imaging, 2012, 36(5): 1011-1014.
[51]Idilman IS, Keskin O, Elhan AH, et al. Impact of sequential proton density fat fraction for quantification of hepatic steatosis in nonalcoholic fatty liver disease [J]. Scand J Gastroenterol, 2014, 49(5): 617-624.
[52]Tang A, Desai A, Hamilton G, et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease [J]. Radiology, 2015, 274(2): 416-425.
[53]Reeder SB. Emerging quantitative magnetic resonance imaging biomarkers of hepatic steatosis [J]. Hepatology, 2013, 58(6): 1877-1880.
[54]Al-Busafi SA, Ghali P, Wong P, et al. The utility of Xenon-133 liver scan in the diagnosis and management of nonalcoholic fatty liver disease [J]. Can J Gastroenterol, 2012, 26(3): 155-159.
(責(zé)任編輯:王全楚)
Progress of imaging examination of nonalcoholic fatty liver disease
MA Dabao, YANG Guowang, WANG Xiaomin, TANG Wujun
Department of Oncology, Beijing TCM Hospital Affiliated to Capital Medical University, Beijing 100010, China
Liver biopsy remains the gold standard to diagnose and stage nonalcoholic fatty liver disease(NAFLD). However, it comes with the risk of complications ranging from simple pain to life-threatening bleeding. It is also associated with sampling error.For these reasons, a variety of noninvasive radiological markers,including ultrasound, controlled attenuation parameter, computed tomography, magnetic resonance spectroscopy and Xenon-133 scan have been widely used in clinic. The progress of imaging examination of NAFLD was reviewed in this paper.
Nonalcoholic fatty liver disease; Hepatic steatosis; Noninvasive methods assessment
10.3969/j.issn.1006-5709.2016.11.030
北京市科委首都市民健康項目培育(Z151100003915128)
馬大寶,在讀碩士研究生,住院醫(yī)師,研究方向:中西醫(yī)結(jié)合腫瘤學(xué)。 E-mail:18810956959@163.com
唐武軍,博士,主任醫(yī)師,研究方向:中西醫(yī)結(jié)合腫瘤學(xué)。 E-mail:tangwujun@bjzhongyi.com
R575.5
A
1006-5709(2016)11-1321-05
2015-12-29