国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

苯系物聯(lián)合暴露仿刺參管足轉(zhuǎn)錄組差異表達基因分析

2016-03-17 07:48:18潘泳嘉周遵春王擺高杉孫紅娟關(guān)曉燕董穎閆喜武
生態(tài)毒理學報 2016年6期
關(guān)鍵詞:苯系系物刺參

潘泳嘉,周遵春,王擺,高杉,孫紅娟,關(guān)曉燕,董穎,閆喜武

1. 大連海洋大學,大連 116023 2. 遼寧省海洋水產(chǎn)科學研究院,大連 116023

苯系物聯(lián)合暴露仿刺參管足轉(zhuǎn)錄組差異表達基因分析

潘泳嘉1,2,周遵春2,*,王擺2,#,高杉2,孫紅娟2,關(guān)曉燕2,董穎2,閆喜武1

1. 大連海洋大學,大連 116023 2. 遼寧省海洋水產(chǎn)科學研究院,大連 116023

為了分析苯系物(BTEXs)聯(lián)合暴露后仿刺參(Apostichopus japonicus)管足轉(zhuǎn)錄組差異表達基因,采用Illumina HiSeqTM2000測序技術(shù),對1.0 mg·L-1苯系物(B)聯(lián)合暴露12 h后和對照組(C)的仿刺參管足組織分別進行轉(zhuǎn)錄組測序。經(jīng)Trinity軟件進行de novo組裝,獲得了145 675條unigenes。利用公共數(shù)據(jù)庫進行同源比對,共注釋了35 330條unigenes。對比分析苯系物聯(lián)合暴露組和對照組的轉(zhuǎn)錄組測序結(jié)果,獲得了2 418個差異表達基因(DEGs) (|Log2Fold changes| ≥ 1且FDR ≤ 0.001),其中,上調(diào)表達和下調(diào)表達基因分別為1 049和1 369個。GOseq分析結(jié)果顯示,158個DEGs顯著富集在149個GO terms中,包括103個生物學過程、17個細胞組分和29個分子功能(P < 0.05);KEGG代謝通路分析結(jié)果顯示994個差異基因映射到268條代謝通路,這些差異表達基因參與的生理過程與其他生物的同源基因參與的信號傳導、癌癥、外源性化合物的生物降解代謝等過程相類似。上述結(jié)果為在轉(zhuǎn)錄組水平篩選苯系物的生物標志物,解析苯系物對仿刺參毒性作用的分子機制提供了科學參考。

苯系物;仿刺參;管足;差異表達基因;轉(zhuǎn)錄組測序

苯系物(BTEXs)包括苯(Benzene)、甲苯(Toluene)、乙基苯(Ethylbenzene)和二甲苯(Xylene)[1],具有較強的生物毒性作用。苯系物中的苯是致癌物,可導致白血病和淋巴瘤[2],引起染色體斷裂和阻礙染色體分離[3];甲苯具有神經(jīng)毒性和致畸作用[4-5];乙基苯可以誘導細胞色素P450(Cytochrome P450, CYP)和細胞色素-c-還原酶系統(tǒng),也是線粒體解偶聯(lián)劑,長期的乙基苯暴露,則會造成呼吸系統(tǒng)和腎臟損傷[6-7];二甲苯對人的神經(jīng)系統(tǒng)、肝臟和腎臟具有損傷作用[8];此外,苯系物作為全球生產(chǎn)和使用最為廣泛的50種有機化合物之一,也是水環(huán)境中優(yōu)先控制污染物之一。苯系物隨著海洋溢油、生活污水和石化廢水進入近岸海洋環(huán)境,表層海水中苯系物因揮發(fā)、光解、微生物的降解,通常維系在ng·L-1,港口表層海水苯系物含量可以達到μg·L-1,海水中部分苯系物隨著中顆粒物質(zhì)沉降,在沉積物中累積,可以達到μg·kg-1,甚至達到mg·kg-1[9-10],對近岸海洋底棲生態(tài)環(huán)境安全構(gòu)成潛在危害。

仿刺參(A. japonicus)屬于棘皮動物門,仿刺參屬,是我國北方海域重要的底棲生物類群,通過管足行動并感知環(huán)境變化[11-12]。前期研究發(fā)現(xiàn)仿刺參對苯系物暴露較為敏感,低劑量苯系物暴露導致仿刺參的脂質(zhì)過氧化損傷及相關(guān)抗氧化基因和酶活性的顯著變化[13-15]。為進一步了解苯系物對仿刺參基因組轉(zhuǎn)錄水平的影響,本研究利用Illumina HiSeqTM2000測序技術(shù),通過空白對照組和苯系物聯(lián)合暴露組的仿刺參管足組織的轉(zhuǎn)錄組測序分析,篩選出差異表達基因,并進行差異表達基因的GO富集和KEGG通路分析,為在轉(zhuǎn)錄組水平上篩選苯系物的生物標志物,解析苯系物對仿刺參毒性作用的分子機制提供參考。

1 材料與方法(Materials and methods)

1.1 實驗材料與試劑

仿刺參(A. japonicus)為遼寧省海洋水產(chǎn)科學研究院引育種中心培育的幼參,體重(10±2) g,經(jīng)清潔海水馴養(yǎng)2周后,選取健康幼參用于后續(xù)試驗。

苯、甲苯、乙基苯、二甲苯和二甲基亞砜(DMSO)均為分析純(中國國藥有限公司)。

1.2 苯系物聯(lián)合毒性實驗

根據(jù)苯系物對仿刺參96 h-LC50,計算出苯、甲苯、乙基苯、二甲苯對仿刺參急性毒性的比值為4:2:2:3。設(shè)置苯系物聯(lián)合處理濃度1.0 mg·L-1(其中,苯0.36 mg·L-1,甲苯0.18 mg·L-1,乙基苯0.18 mg·L-1,二甲苯0.28 mg·L-1),同時設(shè)置空白對照組,各處理組設(shè)置2個平行。在玻璃缸中配制15 L實驗溶液,每個缸中加10只幼參,試驗條件:水溫15 ℃,鹽度30,pH 8.0,間斷性充氧,確保溶解氧大于4.5 mg·L-1,避光。

1.3 樣品采集、RNA提取

苯系物處理12 h后,分別取空白對照組C_1、C_2和苯系物聯(lián)合處理組B_1、B_2的仿刺參9只,冰上采集管足樣品,放于液氮中速凍,-80 ℃保存。Trizol法提取上述樣品的總RNA,DNase I進行DNA消化處理,電泳檢測總RNA的質(zhì)量和純度,Agilent 2100檢測RNA完整性。

1.4 轉(zhuǎn)錄組測序

將檢測合格的RNA樣品,用帶有Oligo(dT)的磁珠進行mRNA的富集與純化,將mRNA打斷成短片段,以mRNA為模板,進行測序文庫構(gòu)建和Illumina HiSeqTM2000測序,獲得空白對照組C_1、C_2和苯系物聯(lián)合暴露組B_1、B_2測序數(shù)據(jù)。

1.5 測序數(shù)據(jù)的拼接和組裝

測序得到的原始reads,去除帶接頭的reads,N(無法確定堿基信息)比例大于10%的不確定reads和低質(zhì)量reads,得到clean reads,采用Trinity軟件(trinityseqrnaseq_r2013_08_04)對clean reads進行de novo混合拼接。過濾和組裝以后得到高質(zhì)量的unigenes。

1.6 Unigenes功能注釋

利用Transdecoder軟件對unigenes序列中編碼區(qū)進行翻譯,在翻譯過程中調(diào)用Rfam數(shù)據(jù)庫。將翻譯后的氨基酸序列分別與NCBI蛋白數(shù)據(jù)庫(NCBI non-redundant protein sequence, Nr)、注釋的蛋白質(zhì)序列數(shù)據(jù)庫(SWISS-PROT)、蛋白質(zhì)直系同源簇數(shù)據(jù)庫(Cluster of Orthologous Groups, COG)、基因本體論(Gene Ontology, GO)數(shù)據(jù)庫、KEGG直系同源(Kyoto Encyclopedia of Genes and Genomes Orthology, KO)數(shù)據(jù)庫做BLASTP序列相似性比對,并使用Blast2GO[16]對Nr注釋的結(jié)果文件進行GO term映射,獲得GO注釋。

1.7 差異表達基因的篩選及分析

利用RSEM軟件(v1.2.6)進行基因表達定量分析,采用FPKM(fragments per kb million reads)進行表達量計算[17],使用DESeq算法進行差異表達分析[18],以P ≤ 0.05、假陽性率(false discovery rate, FDR) ≤ 0.001和|Log2Ratio| ≥ 1為標準,篩選苯系物聯(lián)合暴露后仿刺參管足的差異表達基因。

采用GOSeq軟件對差異表達基因進行GO富集分析[19],并對富集結(jié)果進行GO level 3水平上的DEG數(shù)量統(tǒng)計,獲得GO level 3水平上差異表達基因的數(shù)量。根據(jù)unigenes的KO注釋結(jié)果,統(tǒng)計差異表達基因在各個通路上的分布數(shù)量,利用超幾何分布計算方式,以P < 0.05作為閥值,確定富集通路并統(tǒng)計差異表達基因的數(shù)量。

2 結(jié)果(Results)

2.1 仿刺參管足轉(zhuǎn)錄組的測序與組裝

仿刺參管足4個轉(zhuǎn)錄組測序的總產(chǎn)出為217 144 662

條raw reads,去除低質(zhì)量和含有接頭的reads以后,得到212 804 626條clean reads(見表1),(G+C)%含量平均值為41.89%,堿基Q20均值為97.585%,說明轉(zhuǎn)錄組測序質(zhì)量和數(shù)據(jù)量相對較高。

利用Trinity軟件對clean reads進行組裝(表2,圖1),通過序列之間的overlap信息組裝得到238 603重疊群(Contig),平均長度為827 bp,N50為1 493 bp,其中,長度在200 ~ 500 bp的Contig有155 653個,占總體的56.85%;500~1 000 bp的Contig有46 430個,占總體的19.45%;長度大于1 000 nt的Contig有56 520條,占全部Contig的23.68%。從中挑選145 675個轉(zhuǎn)錄本作為單基因簇(unigene),占總體的60.80%。

2.2 仿刺參管足unigenes功能注釋

通過BLASP將unigenes序列比對到Nr、Swiss-PROT、COG、GO、KO數(shù)據(jù)庫(E-value<1e-5),得到與unigenes具有高度序列相似性的蛋白,從而得到該unigenes的蛋白功能注釋信息。其中匹配到Nr數(shù)據(jù)庫中的有18 361條,占全部獲得注釋unigenes的51.97% (表3)。

圖1 仿刺參管足序列長度分布圖Fig. 1 Length distribution of sequences of the A. japonicus tube feet

表1 仿刺參管足Illumina HiSeqTM 2000測序產(chǎn)出質(zhì)量統(tǒng)計Table 1 Data quality obtained by Illumina HiSeqTM 2000 sequencing of the A. japonicus tube feet

注:C_1、C_2為對照組,B_1、B_2為苯系物聯(lián)合處理組,處理時間為12 h,苯系物處理濃度為1.0 mg·L-1。

Note: C_1, C_2 are control groups, B_1, B_2 are BTEXs treatment groups (exposed to 1.0 mg·L-1BTEXs for 12 h).

表2 仿刺參管足轉(zhuǎn)錄組測序組裝質(zhì)量統(tǒng)計Table 2 Assembly quality of A. japonicus tube feet transcriptome

unigenes注釋到Nr數(shù)據(jù)庫中的E值分布圖顯示,E值小于1E-100的unigene有18.03%,E值介于1E-60到1E-100之間的unigenes有17.63%,E值介于1E-5到1E-60之間的unigenes有64.34%(圖2A)。相似度分布圖顯示,序列比對相似度在40%以上的unigenes占72.09%,相似度高于60%的unigenes占26.33%(圖2B)。功能注釋的同源序列的物種分布情況中見圖2C,注釋到紫海膽(Strongylocentrotus purpuratus)的序列有67.86%,注釋到柱頭蟲(Saccoglossus kowalevskii)的序列有2.37%。

將仿刺參管足轉(zhuǎn)錄組獲得的unigenes與COG數(shù)據(jù)庫進行比對,對其做了功能分類和統(tǒng)計,注釋到COG的8 409個unigenes分布于24個功能分類(圖3),如:翻譯,核糖體結(jié)構(gòu)和生物合成,翻譯后修飾,折疊和分子伴侶類基因,核酸復制、重組和修復,氨基酸、脂肪和糖的轉(zhuǎn)運和代謝等。

表3 unigenes在Nr、SWISS-PROT、COG、GO、KO數(shù)據(jù)庫中的注釋Table 3 Annotation of unigenes in Nr, SWISS-PROT,COG, GO and KO databases

注:Nr、SWISS-PROT、COG、GO、KO分別表示NCBI蛋白數(shù)據(jù)庫、注釋的蛋白質(zhì)序列數(shù)據(jù)庫、蛋白質(zhì)直系同源簇數(shù)據(jù)庫、基因本體論數(shù)據(jù)庫、KEGG直系同源數(shù)據(jù)庫;Percentage表示在該數(shù)據(jù)庫中得到匹配蛋白的unigenes占全部獲得注釋的unigenes的百分比。

Note: Nr, SWISS-PROT, COG, GO, KO stand for NCBI non-redundant protein sequences Database, Swiss-Prot Protein Sequence Database, Cluster of Orthologous Groups Database, Gene Ontology Database, Kyoto Encyclopedia of Genes and Genomes Orthology Database, respectively; Percentage means the percentage of unigenes matched in the database in all the annotated unigenes.

對仿刺參管足轉(zhuǎn)錄組unigenes進行GO分析發(fā)現(xiàn),有10 532個unigenes注釋到GO數(shù)據(jù)庫,有6 722、8 018、8 503個unigenes被歸屬到細胞組分、分子功能和生物學過程中(圖4),可細分為51個亞類,如生物學過程中,細胞過程和代謝過程所占比例較高,細胞和細胞器部分在細胞組分所占比例較高,連接和催化活性在分子功能中占有較高比例。

仿刺參管足轉(zhuǎn)錄組unigenes的KO注釋結(jié)果顯示(圖5),11 756個unigenes獲得9 873個同源蛋白注釋,其中7 305個unigenes得到的5 422個同源蛋白參與344個已知代謝通路。代謝通路分為人類疾病、組織系統(tǒng)、基礎(chǔ)代謝、環(huán)境信息進程、細胞進程、遺傳信息進程等6大類。

2.3 苯系物聯(lián)合暴露仿刺參管足差異表達基因篩選

采用DESeq算法計算unigene在對照組和苯系物聯(lián)合暴露實驗組中基因表達量進行差異分析,以|Log2Fold changes| ≥ 1、P < 0.05、FDR ≤ 0.001為篩選標準,共得到2 418個差異表達基因,其中,上調(diào)基因有1 049個,下調(diào)基因有1 369個。圖6為差異表達基因的火山圖。

通過差異表達基因的相關(guān)性分析發(fā)現(xiàn),空白對照組C_1和C_2相關(guān)系數(shù)為0.95,苯系物聯(lián)合暴露實驗組B_1和B_2的相關(guān)系數(shù)為0.96,而對照組和苯系物聯(lián)合暴露實驗組的相關(guān)性為-0.98(圖7),說明平行樣測序分析獲得的差異表達基因高度相似,苯系物暴露組與對照組的差異顯著。

2.4 差異表達基因的GO富集分析

GOseq分析結(jié)果顯示,158個DEGs顯著富集在149個GO terms中,包括103個生物學過程,17個細胞組分和29個分子功能。將富集的GO terms歸類到level GO 3分類中,并統(tǒng)計詞條中DEGs的數(shù)量(圖8)。

2.5 差異表達基因的KEEG富集分析

差異表達基因的KEEG富集分析結(jié)果顯示(圖9):994個差異基因分布在268個通路中,涉及相關(guān)人類疾病、生物系統(tǒng)、基礎(chǔ)代謝、環(huán)境信息進程、細胞進程、遺傳信息進程的差異基因數(shù)量分別為284、186、183、141、111和89個。差異基因集中在以下通路較多:PI3K/Akt信號通路(ko04151)、吞噬(ko04144)、MAPK信號通路(ko04010)、Rap1信號通路(ko04015)、剪接體(ko03040)、溶酶體(ko04142)等。

統(tǒng)計通路內(nèi)基因分布情況,使用超幾何分布法進行統(tǒng)計,P < 0.05閥值篩選得到6個次級富集通路,分別為癌癥(cancers)、感染性疾病(infectious diseases)、細胞生長與死亡(cell growth and death)、轉(zhuǎn)錄(transcription)、復制與修復(replication and repair)、糖的生物合成與代謝(glycan biosynthesis and metabolism)等(圖10)。

圖2 unigene與Nr數(shù)據(jù)庫比對結(jié)果統(tǒng)計Fig. 2 Comparison results of unigene to Nr databases

圖3 仿刺參管足unigenes的COG功能分類Fig. 3 COG function classification of unigenes from A. japonicus tube feet

圖4 Unigenes的GO分類Fig. 4 GO functional categories of unigenes

圖5 unigenes的KO功能分類Fig. 5 KO functional categories of unigenes

圖6 差異表達基因的火山圖Fig. 6 Volcano map of differential expression genes (DEGs)

圖7 對照組和苯系物處理組樣本的相關(guān)性分析Fig. 7 Correlation between control and BTEXs treatment samples

圖8 GO Term富集的DEGs數(shù)量統(tǒng)計Fig. 8 The enrichment GO Term of DEGs

圖9 差異基因在通路中的分布情況Fig. 9 The number of differential expression genes in pathway

圖10 pathway通路富集圖Fig. 10 Statistics of pathway enrichment

3 討論(Discussion)

轉(zhuǎn)錄組測序技術(shù)的廣泛應用,為研究環(huán)境污染物對海洋生物基因組轉(zhuǎn)錄水平的影響,分析其分子作用機制提供了重要的技術(shù)手段。利用轉(zhuǎn)錄組測序技術(shù),Hook等[20]分析了氨、銅、原油和除草劑西瑪津?qū)Q蠊柙?Ceratoneis closterium)轉(zhuǎn)錄組的影響;Huang等[21]報道了全氟辛烷磺?;衔?PFOS)對海水青鳉(Oryzias melastigma)轉(zhuǎn)錄組的影響;Ron等[22]研究了重金屬汞、銅、鋅、鎘對海葵(Nematostella vectensis)轉(zhuǎn)錄組的影響。目前,有關(guān)苯系物對仿刺參基因組轉(zhuǎn)錄水平影響的研究尚未見報道。本研究中轉(zhuǎn)錄組測序、組裝及注釋的結(jié)果與仿刺參相關(guān)的轉(zhuǎn)錄組研究結(jié)果較為相近[23-25]。注釋的unigenes中有23 975條(67.86%)與紫海膽(S. purpuratus)的匹配,紫海膽(S. purpuratus)作為唯一完成全基因組測序的棘皮動物,具有豐富的基因組信息[26],為仿刺參管足轉(zhuǎn)錄組的unigenes注釋提供了參考序列。

苯系物作為單環(huán)芳烴化合物,其正辛醇-水分配系數(shù)logKow值在2.13~3.20之間,具有親脂性和一定的生物富集性。Roose和Brinkman[27]研究發(fā)現(xiàn)海洋魚類鱈魚(Merlangius merlangus)和比目魚(Limanda limanda)肌肉、肝臟組織中的苯系物含量在ng·g-1,是環(huán)境中苯系物含量的100倍以上。苯系物進入生物體后,可以被CYP同工酶(如:CYP1A1)代謝為可溶性產(chǎn)物排出體外[5]。差異表達基因的KEEG富集分析發(fā)現(xiàn),41.1%的差異表達基因富集到286個代謝通路。部分差異表達基因富集到外源化合物生物降解代謝通路:CYP參與的外源化合物代謝(ko00980)和藥物代謝(ko00982)以及其他酶參與的藥物代謝(ko00983)通路,包括CYP A46、谷胱甘肽硫轉(zhuǎn)移酶(glutathione S-transferase, GST)、微粒體環(huán)氧化物酶(microsomal epoxide hydrolase, EPHX1)、羧酸酯酶(carboxylesterase 2, CES2)、黃嘌呤脫氫酶/氧化酶(xanthine dehydrogenase/oxidase, XDH)等。這表明苯系物進入仿刺參管足組織后,可能被CYP氧化代謝。由芳香烴受體(aryl hydrocarbon receptor, AhR)介導的芳烴化合物CYP氧化代謝是耗氧過程,在產(chǎn)生氧自由基的同時,造成細胞內(nèi)缺氧,進而激活缺氧誘導因子(hypoxia-inducible factor 1, HIF-1)調(diào)控的缺氧應答機制[28-29]。KEEG富集分析發(fā)現(xiàn)苯系物暴露后,仿刺參管足差異表達的基因在HIF-1代謝通路(ko04066)富集,如:缺氧誘導因子脯氨酰羥化酶(hypoxia-inducible factor prolyl hydroxylase, HPH)、己糖激酶(hexokinase, HK)等。

苯系物聯(lián)合暴露導致仿刺參管足細胞內(nèi)大量與人類癌癥相關(guān)基因同源性較高的基因差異表達(上調(diào)基因44個,下調(diào)基因70個),包括:腫瘤壞死因子聯(lián)合受體3(TNF receptor-associated factor 3, TRAF3)、細胞粘合素(tenascin, TN)、蛋白水解酶caspase 9等。這些差異表達基因富集的代謝通路包括:ko05200、ko05202、ko05203、ko05230、ko05231等。TRAFs為TNF轉(zhuǎn)接上游分子信號激活下游基因,在適應性和先天性免疫中發(fā)揮重要作用[30]。TRAF3基因缺失導致新生小鼠(Mus musculus)的死亡[31]。TRAF3存在于仿刺參的各種組織中,可能在抗菌的過程通過調(diào)節(jié)ROS產(chǎn)生發(fā)揮重要的作用[32]。

此外,差異表達基因富集較多的信號通路有磷脂酰肌醇3-激酶/Akt信號通路(PI3K/Akt)、信號通路(ko04151)、絲裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信號通路(ko04010)等。其中,PI3Ks蛋白家族參與細胞增殖、分化、凋亡和葡萄糖轉(zhuǎn)運等多種細胞功能的調(diào)節(jié),PI3K活性的增加常與多種癌癥相關(guān)[33]。MAPK是一組能被不同的細胞外刺激(如細胞因子、神經(jīng)遞質(zhì)、激素、細胞應激及細胞黏附等激活的絲氨酸-蘇氨酸蛋白激酶)調(diào)節(jié)細胞的生長、分化、對環(huán)境的應激適應、炎癥反應等多種重要的細胞生理/病理過程[34]。

通過對差異基因的GO富集分析,可以定位差異基因最可能相關(guān)的GO term,有助于了解差異表達基因的功能[35]。苯系物聯(lián)合暴露后,GOseq分析發(fā)現(xiàn),158個DEGs顯著富集在149個GO terms中,包括103個生物學過程,17個細胞組分和29個分子功能。為深入研究這些差異表達基因的生物學功能和了解苯系物對仿刺參毒性作用的分子機制提供了參考。

[1] 李學峰, 周啟星. BTEX的環(huán)境質(zhì)量標準研究進展[J]. 生態(tài)學雜志, 2011, 30(2): 369-375

Li X F, Zhou Q X. Environmental quality standard of BTEX: A review [J]. Chinese Journal of Ecology, 2011, 30(2): 369-375 (in Chinese)

[2] Recio L, Bauer A, Faiola B. Use of genetically modified mouse models to assess pathways of benzene-induced bone marrow cytotoxicity and genotoxicity [J]. Chemico-Biological Interactions, 2005, 153-154(6): 159-164

[3] Bird M G, Greim H, Snyder R, et al. International symposium: Recent advances in benzene toxicity [J]. Chemico-Biological Interactions, 2005, 153-154(6): 1-5

[4] Chen C S, You C H, Liang S H, et al. Assessment of genotoxicity of methyl-tert-butyl ether, benzene, toluene, ethylbenzene, and xylene to human lymphocytes using comet assay [J]. Journal of Hazardous Materials, 2008, 153(1-2): 351-356

[5] Rosa J C F D, Fiegenbaum M, Soledar A L, et al. Cytogenetic evaluation and the association with polymorphisms of the CPY1A1 and NR1I3 genes in individuals exposed to BTEX [J]. Environmental Monitoring & Assessment, 2012, 185(7): 5883-5890

[6] Hammer K D. Metabolite ratio of toluene-exposed rotogravure printing plant workers reflects individual mutagenic risk by sister chromatid exchanges [J]. Mutation Research, 2002, 519(1-2): 171-177

[7] National Toxicology Program. NTP toxicology and carcinogenesis studies of ethylbenzene (CAS No. 100-41-4) in F344/N rats and B6C3F1 mice (inhalation studies) [R]. Public Health Service, National Institutes of Health, US Department of Health and Human Services, 1999

[8] US EPA. Toxicological review of xylenes [R]. Washington DC: US Environmental Protection Agency, 2003

[9] Cavalcante R M, de Andrade M V F, Marins R V, et al. Development of a headspace-gas chromatography (HS-GC-PID-FID) method for the determination of VOCs in environmental aqueous matrices: Optimization, verification and elimination of matrix effect and VOC distribution on the Fortaleza Coast, Brazil [J]. Microchemical Journal, 2010, 96(2): 337-343

[10] 朱四喜, 周唯, 楊紅麗, 等. 浙江舟山潮間帶沉積物中二甲苯的檢測[J]. 廣東化工, 2010, 37(2): 125-127

Zhu S X, Zhou W, Yang H L, et al. Determination of xylene in interdial sediments in Zhoushan, Zhejiang Province [J]. Guangdong Chemical Industry, 2010, 37(2): 125-127 (in Chinese)

[11] 張寶琳, 孫道元, 吳耀泉. 靈山島淺海巖礁區(qū)刺參(Apostichopus japonicus)食性初步分析[J]. 海洋科學, 1995, 3: 11-13

Zhang B L, Sun D Y, Wu Y Q. Preliminary analysis on the feeding habit of Apostichopus japonicus in the rocky coast water off Lingshan Island [J]. Marine Science, 1995, 3: 11-13 (in Chinese)

[12] 劉曉威, 姜森顥, 周一兵, 等. 大連地區(qū)仿刺參養(yǎng)殖池塘底棲硅藻生產(chǎn)狀況的周年變化研究[J]. 水產(chǎn)科學, 2013, 31(11): 679-682

Liu X W, Jiang S H, Zhou Y B, et al. Annual changes in production of benthic diatoms in sea cucumber Apostichopus japonicus culture ponds in Dalian [J]. Fisheries Science, 2013, 31(11): 679-682 (in Chinese)

[13] 姜北, 劉薇, 周遵春, 等. 苯系物對仿刺參體內(nèi)脂質(zhì)過氧化程度的影響[J]. 水產(chǎn)科學, 2014, 33(1): 15-21

Jiang B, Liu W, Zhou Z C, et al. Effects of benzene, toluene, ethylbenzene, and xylene (BTEX) on lipid peroxidation in sea cucumber Apostichopus japonicus [J]. Fisheries Science, 2014, 33(1): 15-21 (in Chinese)

[14] 高士博, 王擺, 董穎, 等. 苯系物對仿刺參catalase基因表達及酶活性的影響[J]. 生態(tài)毒理學報, 2015, 10(2): 297-305

Gao S B, Wang B, Dong Y, et al. The effects of BTEXs on the catalase gene expression and catalase activities in respiratory tree and intestine of sea cucumber Apostichopus japonicus [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 297-305 (in Chinese)

[15] 董穎, 王擺, 崔程, 等. 苯系物對仿刺參腸、呼吸樹谷胱甘肽過氧化物酶基因表達的影響[J]. 水產(chǎn)科學, 2015, 34(5): 311-315

Dong Y, Wang B, Cui C, et al. The effects of BTEXs on the glutathione peroxidase gene expression in intestine and respiratory tree of sea cucumber Apostichopus japonicus [J]. Fisheries Science, 2015, 34(5): 311-315 (in Chinese)

[16] Conesa A, G?tz S, Garcíagómez J M, et al. Blast2GO:A universal tool for annotation, visualization and analysis in functional genomics research [J]. Bioinformatics, 2005, 21(18): 3674-3676

[17] Li B, Dewey C N. RSEM:Accurate transcript quantification from RNA-Seq data with or without a reference genome [J]. BMC Bioinformatics, 2011, 12(31): 93-99

[18] Anders S, Huber W. Differential expression of RNA-Seq data at the gene level- the DESeq package [R]. The European Molecular Biology Laboratory, 2013

[19] Young M D, Wakefield M J, Smyth G K, et al. Goseq: Gene Ontology testing for RNA-seq datasets [OL]. (2013-10-15) [2016-03-07]. http://159.226.251.229/videoplayer/goseq.pdf?ich_u_r_i=f68ba4c61b48099258830ed3d156c05e&ich_s_t_a_r_t=0&ich_e_n_d=0&ich_k_e_y=1645128906750963352452&ich_t_y_p_e=1&ich_d_i_s_k_i_d=4&ich_u_n_i_t=1

[20] Hook S E, Osborn H L, Gissi F, et al. RNA-Seq analysis of the toxicant-induced transcriptome of the marine diatom, Ceratoneis closterium [J]. Marine Genomics, 2014, 16(1): 45-53

[21] Huang Q, Dong S, Fang C, et al. Deep sequencing-based transcriptome profiling analysis of Oryzias melastigma exposed to PFOS [J]. Aquatic Toxicology, 2012, 120-121(3): 54-58

[22] Ron E, Maayan R, Roey K, et al. Early and late response of Nematostella vectensis transcriptome to heavy metals [J]. Molecular Ecology, 2014, 23(19): 4722-4736

[23] Ye Z, Yang H, Storey K B, et al. RNA-Seq dependent transcriptional analysis unveils gene expression profile in the intestine of sea cucumber Apostichopus japonicus during aestivation [J]. Comparative Biochemistry & Physiology Part D Genomics & Proteomics, 2014, 10(6): 30-43

[24] Zhou Z C, Dong Y, Sun H J, et al. Transcriptome sequencing of sea cucumber (Apostichopus japonicus) and the identification of gene-associated markers [J]. Molecular Ecology Resources, 2013, 14(1): 127-138

[25] Du H, Bao Z, Hou R, et al. Transcriptome sequencing and characterization for the sea cucumber Apostichopus japonicus (Selenka, 1867) [J]. Plos One, 2012, 7(3): e33311

[26] Sodergren E, Weinstock G M, Davidson E H, et al. The genome of the sea urchin Strongylocentrotus purpuratus [J]. Science, 2006, 314(5801): 941-952

[27] Roose P, Brinkman U A T. Determination of volatile organic compounds in marine biota [J]. Journal of Chromatography A, 1998, 799(s1-2): 233-248

[28] Fleming C R, Billiard S M, Di Giulio R T. Hypoxia inhibits induction of aryl hydrocarbon receptor activity in topminnow hepatocarcinoma cells in an ARNT-dependent manner [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2009, 150(3): 383-389

[29] Vorrink S U, Severson P L, Kulak M V, et al. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines [J]. Toxicology and Applied Pharmacology, 2014, 274(3): 408-416

[30] Chung J Y, Park Y C, Ye H, et al. All TRAFs are not created equal: Common and distinct molecular mechanisms of TRAF-mediated signal transduction [J]. Journal of Cell Science, 2002, 115(Pt 4): 679-688

[31] Xu Y, Cheng G, Baltimore D.Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses [J]. Immunity, 1996, 5(5): 407-415

[32] Yang L, Chang Y, Wang Y, et al. Identification and functional characterization of TNF receptor associated factor 3 in the sea cucumber Apostichopus japonicus [J]. Developmental & Comparative Immunology, 2016, 59(6): 128-135

[33] Balachandran C, Emi N, Arun Y, et al. In vitro antiproliferative activity of 2, 3-dihydroxy-9, 10-anthraquinone induced apoptosis against COLO320 cells through cytochrome C release caspase mediated pathway with PI3K/AKT and COX-2 inhibition [J]. Chemico-Biological Interactions, 2016, 249(2): 23-35

[34] Cao C, Cui N, Wang P, et al. Sulfated polysaccharide isolated from the sea cucumber Apostichopus japonicus against PC12 hypoxia/reoxygenation injury by inhibition of the MAPK signaling pathway [J]. Cellular & Molecular Neurobiology, 2015, 35(8): 1-12

[35] Zhong S, Xie D. Geneontology analysis in multiple gene clusters under multiple hypothesis testing framework [J]. Artificial Intelligence in Medicine, 2007, 41(2): 105-115

Analysis of Differentially Expressed Genes in the Tube Feet of Sea Cucumber (Apostichopusjaponicus) Co-exposed to BTEXs by Transcriptome Sequencing

Pan Yongjia1,2, Zhou Zunchun2,*, Wang Bai2,#, Gao Shan2, Sun Hongjuan2, Guan Xiaoyan2, Dong Ying2, Yan Xiwu1

1. Dalian Ocean University, Dalian 116023, China 2. Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China

Received 07 March 2016 accepted 04 May 2016

In order to identify and analyze the differentially expressed genes (DEGs), transcriptome sequencing in the tube feet of sea cucumber Apostichopus japonicus exposed to 0.0 (C), 1.0 mg·L-1BTEXs (B) for 12 h, was performed respectively using the Illumina HiSeqTM2000 platform. The clean reads were then de novo assembled into 145 675 unigenes, and 35 330 unigenes were annotated by a similarity search against the public databases. By comparing B and C using the criteria |Log2Fold changes| ≥ 1 and false discovery rate (FDR) ≤ 0.001, 2 418 DEGs were identified, among which 1 049 were up-regulated and 1 369 were down-regulated. GOseq analysis revealed that for B vs. C, 158 DEGs were highly enriched in 149 GO terms, including 103 biological processes, 17 cellular components and 29 molecular function terms (P value < 0.05). Pathways associated with BTEXs challenge were also mined. The result indicated that 994 DEGs were enriched in 268 pathways, including signal transduction, cancer, xenobiotics biodegradation and metabolism pathways. The results obtained in this study could be used for the screening of BTEXs biomarkers on the transcriptome level, and provide the reference to understand the molecular mechanism of toxic effects of BTEXs on sea cucumber A. japonicus.

BTEXs; Apostichopus japonicus; tube feet; differentially expressed gene; transcriptome sequencing

海洋公益性行業(yè)科研專項(201205012-7);大連市科學技術(shù)基金(2012J21DW029)

潘泳嘉(1988-),男,碩士研究生,研究方向為動物遺傳育種與繁殖,E-mail: 820092256@qq.com;

*通訊作者(Corresponding author), E-mail: zunchunz@hotmail.com

10.7524/AJE.1673-5897.20160307002

2016-03-07 錄用日期:2016-05-04

1673-5897(2016)6-082-11

X171.5

A

周遵春(1967—),男,海洋生物學博士,研究員,主要研究方向海洋生物學,發(fā)表學術(shù)論文80余篇。

王擺(1981—),男,海洋生物學博士,副研究員,主要研究方向海洋生態(tài)毒理學,發(fā)表論文20余篇。

# 共同通訊作者(Co-corresponding author), E-mail:wangbai1980@hotmail.com

潘泳嘉, 周遵春, 王擺, 等. 苯系物聯(lián)合暴露仿刺參管足轉(zhuǎn)錄組差異表達基因分析[J]. 生態(tài)毒理學報,2016, 11(6): 82-92

Pan Y J, Zhou Z C, Wang B, et al. Analysis of differentially expressed genes in the tube feet of sea cucumber (Apostichopus japonicus) co-exposed to BTEXs by transcriptome sequencing [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 82-92 (in Chinese)

猜你喜歡
苯系系物刺參
蜂窩活性炭吸/脫附苯系物性能及水汽的影響
室內(nèi)污染物苯系物危害現(xiàn)狀及防治措施
夏眠的刺參
夏眠的刺參
氣相色譜法測定固定污染源有組織廢氣中的苯系物
光照對白刺參、青刺參和紫刺參生長、消化及免疫的影響
室內(nèi)空氣中苯系物的溶劑解吸氣相色譜法測定
固相萃取/在線熱解吸-氣相色譜法分析水樣中苯系物
化工行業(yè)苯系物接觸作業(yè)人員職業(yè)健康狀況分析
仿刺參生殖腺營養(yǎng)成分分析
食品科學(2013年14期)2013-03-11 18:25:09
旺苍县| 新津县| 镇雄县| 黄龙县| 中江县| 保康县| 左云县| 上思县| 长子县| 佛山市| 读书| 大石桥市| 南溪县| 合作市| 塔河县| 徐闻县| 工布江达县| 仙游县| 柘城县| 枣阳市| 凤凰县| 长顺县| 吉首市| 昌邑市| 尚志市| 台湾省| 楚雄市| 从江县| 黄山市| 化德县| 日土县| 绩溪县| 河西区| 汕尾市| 临漳县| 桂平市| 奎屯市| 扎兰屯市| 漯河市| 绥江县| 南丹县|