国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

風(fēng)送式水稻側(cè)深精準(zhǔn)施肥裝置的設(shè)計(jì)與試驗(yàn)

2016-03-21 12:40:41左興健武廣偉付衛(wèi)強(qiáng)李立偉魏學(xué)禮趙春江西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院楊凌712100國(guó)家農(nóng)業(yè)智能裝備工程技術(shù)研究中心北京100097農(nóng)業(yè)部農(nóng)業(yè)信息技術(shù)重點(diǎn)實(shí)驗(yàn)室北京100097農(nóng)業(yè)智能裝備技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室北京100097
關(guān)鍵詞:農(nóng)業(yè)機(jī)械農(nóng)作物設(shè)計(jì)

左興健,武廣偉,付衛(wèi)強(qiáng),李立偉,魏學(xué)禮,趙春江(1. 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,楊凌 712100; 2. 國(guó)家農(nóng)業(yè)智能裝備工程技術(shù)研究中心,北京 100097;3. 農(nóng)業(yè)部農(nóng)業(yè)信息技術(shù)重點(diǎn)實(shí)驗(yàn)室,北京 100097; 4. 農(nóng)業(yè)智能裝備技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100097)

?

風(fēng)送式水稻側(cè)深精準(zhǔn)施肥裝置的設(shè)計(jì)與試驗(yàn)

左興健1,2,3,4,武廣偉2,3,4,付衛(wèi)強(qiáng)2,3,4,李立偉2,3,4,魏學(xué)禮2,3,4,趙春江1,3※
(1. 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,楊凌 712100;2. 國(guó)家農(nóng)業(yè)智能裝備工程技術(shù)研究中心,北京 100097;3. 農(nóng)業(yè)部農(nóng)業(yè)信息技術(shù)重點(diǎn)實(shí)驗(yàn)室,北京 100097;4. 農(nóng)業(yè)智能裝備技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100097)

摘要:針對(duì)中國(guó)水稻施肥機(jī)械化程度低,傳統(tǒng)撒施肥料利用率低、施肥量大的現(xiàn)狀,結(jié)合側(cè)深施肥農(nóng)藝特點(diǎn),對(duì)風(fēng)送式排肥方法進(jìn)行了理論分析,研制了風(fēng)送式水稻側(cè)深精準(zhǔn)施肥裝置。該裝置采用模塊化設(shè)計(jì)與乘坐式插秧機(jī)配套使用,采用電機(jī)驅(qū)動(dòng)排肥、風(fēng)送肥料、全球定位系統(tǒng)(global position system,GPS)測(cè)速的工作原理,側(cè)位深施化肥的施肥方式,采用車輛行駛速度與排肥驅(qū)動(dòng)電機(jī)轉(zhuǎn)速實(shí)時(shí)匹配的精準(zhǔn)施肥控制方法。設(shè)備在黑龍江七星農(nóng)場(chǎng)開展了田間實(shí)際作業(yè)試驗(yàn)。試驗(yàn)表明,該裝置與插秧機(jī)配合使用時(shí)能一次性完成插秧與側(cè)深精準(zhǔn)施肥作業(yè),當(dāng)預(yù)置施肥量為300 kg/hm2,車輛穩(wěn)定行駛速度為1 m/s時(shí),施肥量偏差控制在5.82%以內(nèi),能夠較好的滿足實(shí)際生產(chǎn)需求。該研究為開展水稻變量施肥控制技術(shù)研究和水稻側(cè)深施肥裝置的研發(fā)提供了參考。

關(guān)鍵詞:農(nóng)業(yè)機(jī)械;設(shè)計(jì);農(nóng)作物;風(fēng)送式;精準(zhǔn)施肥;側(cè)深施肥

左興健,武廣偉,付衛(wèi)強(qiáng),李立偉,魏學(xué)禮,趙春江. 風(fēng)送式水稻側(cè)深精準(zhǔn)施肥裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):14-21.doi:10.11975/j.issn.1002-6819.2016.03.003http://www.tcsae.org

Zuo Xingjian, Wu Guangwei, Fu Weiqiang, Li Liwei, Wei Xueli, Zhao Chunjiang. Design and experiment on air-blast rice side deep precision fertilization device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 14-21. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.03.003 http://www.tcsae.org

Email:zuo_xj@163.com

0 引 言

水稻是中國(guó)最主要的糧食作物,是種植面積最大、單產(chǎn)最高、總產(chǎn)量最多的糧食作物。施肥是水稻生產(chǎn)過程中一個(gè)重要作業(yè)環(huán)節(jié),目前中國(guó)水稻生產(chǎn)過程中施肥環(huán)節(jié)一直沿用人工手撒施肥方式,施肥量大,且肥料在田間分布不均,秧苗吸肥量不一致,直接影響水稻產(chǎn)量[1]。水稻側(cè)深施肥是在水稻機(jī)械插秧的同時(shí)將顆粒肥料(基肥和蘗肥)一次性施于秧苗側(cè)位具有一定深度土壤中的施肥方式,肥料呈條帶狀施于耕層,距水稻根系近,利于根系吸收利用,提高肥料利用率[2-6]。

在國(guó)外,日本久保田、井關(guān)、洋馬等公司在水稻側(cè)深施肥設(shè)備方面進(jìn)行了大量的研究工作,研發(fā)了安裝有側(cè)深施肥裝置的水稻插秧機(jī)系列化產(chǎn)品,側(cè)深施肥裝置采用機(jī)械式傳動(dòng)方式,安裝復(fù)雜,與中國(guó)現(xiàn)有插秧機(jī)配套性差,阻礙了側(cè)深施肥技術(shù)的應(yīng)用[7-8],國(guó)內(nèi)水稻機(jī)械施肥環(huán)節(jié)主要利用水田拖拉機(jī)懸掛圓盤式撒肥機(jī)進(jìn)行拋撒施肥以及利用旋耕施肥一體機(jī)在旋耕的同時(shí)將肥料施在碎土層,施肥量大,肥料分布不均勻。在已開展水稻側(cè)深施肥裝置的研究方面,缺乏風(fēng)送式輸送肥料方面的理論研究,還沒有實(shí)現(xiàn)對(duì)電機(jī)排肥的精確控制,無法實(shí)現(xiàn)精準(zhǔn)施肥作業(yè)[9-14]。在已開展的精準(zhǔn)施肥技術(shù)及控制系統(tǒng)研究方面,主要是針對(duì)旱田作業(yè)環(huán)境開展基于處方圖的精準(zhǔn)施肥技術(shù)裝備研究,已有的基于處方圖的變量施肥控制方法不能滿足插秧機(jī)水田環(huán)境下側(cè)深精準(zhǔn)施肥的要求[15-19]。

本文結(jié)合水稻側(cè)深施肥農(nóng)藝特點(diǎn),開展了風(fēng)送排肥理論和水田側(cè)深精準(zhǔn)施肥控制方法的研究。針對(duì)乘坐式插秧機(jī)設(shè)計(jì)了風(fēng)送式水稻側(cè)深精準(zhǔn)施肥裝置,采用電機(jī)驅(qū)動(dòng)排肥、風(fēng)送肥料的原理,通過全球定位系統(tǒng)(global position system,GPS)數(shù)據(jù)計(jì)算得到車體行駛速度,根據(jù)車速變化實(shí)時(shí)調(diào)整施肥量,以期實(shí)現(xiàn)水田環(huán)境中的側(cè)深精準(zhǔn)施肥作業(yè),提高施肥均勻性和肥料利用率。

1 施肥裝置結(jié)構(gòu)及工作原理

1.1施肥裝置結(jié)構(gòu)

該裝置采用模塊化整體式設(shè)計(jì),包括一體化安裝底座、測(cè)速模塊、施肥控制器、車載控制終端、作業(yè)狀態(tài)傳感器、排肥驅(qū)動(dòng)電機(jī)、肥箱、排肥器、鼓風(fēng)機(jī)、風(fēng)管、排肥管、排肥口,底座通過螺栓或其他連接緊固件固定在插秧機(jī)踏板上,該裝置能與不同品牌、不同型號(hào)插秧機(jī)配套使用。該裝置與插秧機(jī)配套使用結(jié)構(gòu)簡(jiǎn)圖如圖1所示,主要技術(shù)參數(shù)如表1所示。

圖1 施肥裝置與插秧機(jī)配套使用結(jié)構(gòu)簡(jiǎn)圖Fig.1 Supporting use of fertilizing device and transplanting machine structural diagram

表1 風(fēng)送式水稻側(cè)深精準(zhǔn)施肥裝置主要技術(shù)參數(shù)Table 1 Main technical parameters of rice side deep precision fertilization device based on wind feed type

1.2一體化安裝底座及肥箱結(jié)構(gòu)

為簡(jiǎn)化安裝方式,提高施肥裝置的通用性,底座與肥箱采用一體化結(jié)構(gòu)設(shè)計(jì)。肥箱采用輕質(zhì)透明塑料肥箱,肥箱底部橫截面為頂大底小的倒梯形狀,肥箱通過支架安裝在底座上,底座一端固定風(fēng)機(jī),一端支架固定排肥驅(qū)動(dòng)電機(jī)及施肥控制器。一體化安裝底座及肥箱如圖2所示。

圖2 一體化安裝底座及肥箱結(jié)構(gòu)示意圖Fig.2 Structure of integrated installation base and fertilizer box

1.3工作原理

施肥裝置采用電機(jī)驅(qū)動(dòng)排肥、風(fēng)送肥料的工作原理。施肥作業(yè)時(shí),車載控制終端設(shè)定目標(biāo)施肥量,排肥驅(qū)動(dòng)電機(jī)帶動(dòng)排肥輪轉(zhuǎn)動(dòng)進(jìn)行排肥,鼓風(fēng)機(jī)強(qiáng)制氣吹輸送肥料。施肥深度及肥料距秧苗之間的距離通過排肥口與滑動(dòng)板之間的距離來進(jìn)行調(diào)整。采用車輛行駛速度與排肥驅(qū)動(dòng)電機(jī)轉(zhuǎn)速實(shí)時(shí)匹配的施肥控制方法,利用GPS數(shù)據(jù)計(jì)算得到插秧機(jī)行進(jìn)速度,采用作業(yè)狀態(tài)傳感器感知插秧機(jī)工作狀態(tài),根據(jù)插秧機(jī)作業(yè)速度,實(shí)時(shí)控制施肥量。田間作業(yè)時(shí),排肥口在秧苗側(cè)邊3 cm處劃出一道深5 cm的矩形溝槽,排肥器排出的肥料在風(fēng)力和重力的作用下,經(jīng)風(fēng)送輸肥管、排肥管、排肥口,下落至已劃溝槽的底部,最后,在覆土板作用下將肥料覆蓋于溝槽中[10-14]。施肥原理圖如圖3所示。

圖3 施肥原理圖Fig.3 Fertilization principle diagram

2 排肥覆土部件設(shè)計(jì)

2.1排肥口設(shè)計(jì)

排肥口通過螺栓固定于插秧機(jī)滑動(dòng)板上。作業(yè)過程中滑動(dòng)板底部的根茬、雜草在通過排肥口時(shí)被楔形塊壓入泥漿或隨泥漿分流到排肥口兩側(cè),兩側(cè)泥漿無法快速?gòu)浐蟿澇龅木匦螠喜郏瑸榕欧士诜柿系呐懦鰟?chuàng)造了條件。楔形塊按照船形鏟式開溝器原理進(jìn)行設(shè)計(jì),迎面切角為35°,排肥口底部與滑動(dòng)板之間的距離為5 cm,排肥口中心與秧爪之間的距離為3 cm,從而保證定位施肥。排肥口安裝位置及結(jié)構(gòu)如圖4所示。

圖4 排肥口結(jié)構(gòu)示意圖Fig.4 Structure of fertilizer outlet

2.2覆土裝置

覆土裝置如圖5所示,包括滑動(dòng)板,板式覆土板。覆土板通過預(yù)留孔安裝在滑動(dòng)板上,覆土板設(shè)置在左右排肥口的正后方,兩覆土板呈V形結(jié)構(gòu),板長(zhǎng)不超過100 mm,過長(zhǎng)刮傷秧苗,過短覆土能力差。兩覆土板板間夾角為120°,夾角過小覆土能力差,夾角過大易壅土堵塞,覆土板與地面夾角為60°。

圖5 覆土裝置結(jié)構(gòu)示意圖Fig.5 Structure of trenching and casing soil

3 氣力輸送系統(tǒng)

3.1氣力輸送系統(tǒng)結(jié)構(gòu)及工作原理

風(fēng)送式水稻側(cè)深精準(zhǔn)施肥裝置是側(cè)深施肥技術(shù)應(yīng)用的載體,氣力輸送系統(tǒng)是實(shí)現(xiàn)水田環(huán)境中穩(wěn)定排肥的關(guān)鍵。水田施肥,排肥管路長(zhǎng)且曲折,傳統(tǒng)的憑重力排肥效果不佳,水和泥漿會(huì)影響肥料從排肥管排出,有時(shí)會(huì)倒灌進(jìn)排肥管阻礙肥料正常排出,造成堵塞。本裝置采用開放式氣力輸送肥料的方法[20-21]。

本施肥裝置氣力輸送系統(tǒng)氣源壓力低于0.1 MPa,采用正壓壓送式氣力輸送系統(tǒng)[20-21]。系統(tǒng)主要由鼓風(fēng)機(jī)、風(fēng)速調(diào)節(jié)開關(guān)、風(fēng)管、風(fēng)送輸肥管、排肥器、料斗、排肥管組成。圖6為氣力輸送系統(tǒng)簡(jiǎn)圖,氣源設(shè)在系統(tǒng)前端,系統(tǒng)工作時(shí),肥料經(jīng)排肥器下落至風(fēng)送輸肥管,鼓風(fēng)機(jī)將具有一定壓力的壓縮氣體通入風(fēng)送輸肥管,在文丘里效應(yīng)的作用下,風(fēng)送輸肥管進(jìn)料口呈負(fù)壓,氣流沿進(jìn)氣口通向出氣口,與被輸送的顆粒肥料混合,顆粒肥料在輸送管中以流動(dòng)的氣體為載體,經(jīng)排肥管、排肥口在氣流和重力的雙重作用下落入下肥口劃出的位于已插秧苗側(cè)位具有一定深度的矩形溝槽內(nèi)[22-24]。

圖6 氣力輸送系統(tǒng)Fig.6 Pneumatic conveying system

3.2氣力輸送系統(tǒng)主要參數(shù)

3.2.1空氣流量

為保證顆粒肥料在輸肥管路中順利輸送而不被堵塞,顆粒肥料和空氣要保持適當(dāng)?shù)幕旌蠞舛缺龋据斔拖到y(tǒng)屬于低壓系統(tǒng),生產(chǎn)率較小,混合濃度比取0.6[20],空氣流量為

式中Q為空氣流量,m3/s;W為輸送機(jī)構(gòu)生產(chǎn)率,t/h;γ為空氣容重,γ=1.2 kg/m3;μ為混合濃度比。

插秧機(jī)作業(yè)效率為0.2~0.61 hm2/h,按最大作業(yè)效率0.61 hm2/h、施肥量300 kg/hm2計(jì)算,可知輸送機(jī)構(gòu)生產(chǎn)率W為0.183 t/h,經(jīng)計(jì)算,空氣流量Q為250 m3/h。

3.2.2輸送氣速

輸送氣速是評(píng)價(jià)系統(tǒng)輸送性能的重要指標(biāo),此速度必須保證顆粒肥料能在輸肥管中正常運(yùn)輸。因輸肥管有高低起伏,速度過低容易造成管道堵塞,速度過高不但浪費(fèi)能量,還會(huì)增加肥料對(duì)管道的磨損,同時(shí)加劇顆粒肥料的破損,降低肥料緩釋效應(yīng)[21,25]。由于輸送氣速為

式中V*為輸送氣速,m/s;VL為肥料懸浮速度,m/s;k為速度系數(shù)(一般為1.5~2.5,與物料濃度,管道復(fù)雜性有關(guān)。)

本研究通過懸浮試驗(yàn),實(shí)測(cè)得到懸浮速度為10.58m/s,由于水稻側(cè)深施肥所用緩釋復(fù)合肥料體積、密度大,風(fēng)送管道長(zhǎng),速度系數(shù)k等于2為宜[20-21],輸送氣速V*為21.16 m/s。

本文同時(shí)在靜止條件下,當(dāng)排肥口處于水及泥漿環(huán)境中,進(jìn)行了排肥試驗(yàn)。本對(duì)水及泥漿沒過排肥口1、2、3、4、5 cm進(jìn)行了排肥試驗(yàn),并用太倉(cāng)華??刂圃O(shè)備有限公生產(chǎn)的基于熱膜風(fēng)速原理的風(fēng)速傳感器測(cè)定了水及泥漿不堵塞排肥口的臨界風(fēng)速。試驗(yàn)數(shù)據(jù)如圖7所示。試驗(yàn)表明輸送氣速能滿足排肥要求。

圖7 臨界風(fēng)速圖Fig.7 Critical wind speed chart

3.2.3風(fēng)送輸肥管結(jié)構(gòu)設(shè)計(jì)

為實(shí)現(xiàn)風(fēng)送系統(tǒng)肥料進(jìn)口無空氣泄漏,設(shè)計(jì)了如圖8所示風(fēng)送輸肥管,該管由進(jìn)料口、入口圓筒段、圓錐收縮段、圓筒形喉部、圓錐擴(kuò)散段、出口圓筒段組成。鼓風(fēng)機(jī)排出的氣流通過入口圓筒段,以很高的速度經(jīng)過圓筒形喉部,該高速氣流通過圓筒形喉部時(shí)在文丘里效應(yīng)的作用下在進(jìn)料口形成負(fù)壓,從而使進(jìn)料口無氣體外泄[26]。

輸肥管路內(nèi)徑由空氣消耗量和輸送氣速共同決定,內(nèi)徑為式中d1為輸肥管內(nèi)徑,m。

計(jì)算可得輸肥管內(nèi)徑d1為26.5 mm,由于與風(fēng)送輸肥管對(duì)接的標(biāo)準(zhǔn)鋼絲骨架塑料軟管內(nèi)徑為25、32 mm,本設(shè)備選用接近理論直徑的內(nèi)徑為25 mm的鋼絲骨架塑料軟管,適當(dāng)減小輸肥管內(nèi)徑有助于提高風(fēng)速,降低堵塞。根據(jù)經(jīng)典文丘里管設(shè)計(jì)方法對(duì)風(fēng)送輸肥管進(jìn)行設(shè)計(jì),收縮角為21°,當(dāng)擴(kuò)散角為8°時(shí),圓錐擴(kuò)散段壓差最小[27-28],當(dāng)節(jié)流比為0.7時(shí)收縮段壓差較小,所以喉部直徑為d2= 17.5 mm,喉段長(zhǎng)度常為0.5 d2或者d2,為保證肥料入口空間,該管喉部長(zhǎng)度為d2=17.5 mm[27-28]。

圖8 風(fēng)送輸肥管結(jié)構(gòu)圖Fig.8 Structure of fertilizer delivery tube

3.2.4風(fēng)機(jī)選型

根據(jù)流量及氣速要求,本設(shè)備選用工作電壓為12 V、功率為72 W的可調(diào)速離心風(fēng)機(jī),機(jī)芯由德國(guó)ebmpapst公司生產(chǎn),額定轉(zhuǎn)速為3 200 r/min,型號(hào)為R1G190-AC11-52。

4 施肥控制系統(tǒng)設(shè)計(jì)

4.1風(fēng)送式水田側(cè)深施肥控制系統(tǒng)總體設(shè)計(jì)

風(fēng)送式水田側(cè)深施肥控制系統(tǒng)是基于實(shí)時(shí)車速的精準(zhǔn)施肥作業(yè)控制[29-30],系統(tǒng)包括具有GPS接收模塊的車載控制終端,施肥控制器、作業(yè)狀態(tài)傳感器、排肥驅(qū)動(dòng)電機(jī)、鼓風(fēng)機(jī)等,系統(tǒng)結(jié)構(gòu)如圖9a所示。

施肥控制系統(tǒng)使用排肥軸目標(biāo)轉(zhuǎn)速訊息、實(shí)際排肥軸轉(zhuǎn)速訊息和車速訊息等將車載控制終端和施肥控制器聯(lián)系起來[30-31]。排肥軸目標(biāo)轉(zhuǎn)速訊息是車載控制終端發(fā)送給施肥控制器的目標(biāo)轉(zhuǎn)速訊息;實(shí)際排肥軸轉(zhuǎn)速訊息是施肥控制器反饋給車載控制終端的當(dāng)前施肥量表征值;車速訊息是車載控制終端通過GPS接收器接收到的數(shù)據(jù)計(jì)算所得的當(dāng)前車速,車速訊息通過總線發(fā)送給施肥控制器。車載控制終端與施肥控制器通過RS485總線通信,按照串行鏈路上MODBUS協(xié)議的定義,采用RTU傳輸模式。作業(yè)過程中,車載控制終端通過解析GPS數(shù)據(jù)計(jì)算車體行駛速度,計(jì)算排肥驅(qū)動(dòng)電機(jī)目標(biāo)轉(zhuǎn)速,實(shí)現(xiàn)電機(jī)轉(zhuǎn)速的實(shí)時(shí)控制。施肥作業(yè)控制流程如圖9b所示。

4.2車載控制終端

車載控制終端是Windows XP操作系統(tǒng),針對(duì)水田側(cè)深精準(zhǔn)施肥作業(yè)需求,利用eMbeddedVisualC++集成開發(fā)環(huán)境,在該終端的操作系統(tǒng)上設(shè)計(jì)了施肥控制軟件,車載控制終端與施肥控制器采用RS485串行總線通訊模式。該軟件通過調(diào)用終端中集成的高精度GPS模塊,解析接收到的GPS數(shù)據(jù),通過計(jì)算,獲取車體行駛速度。軟件界面能實(shí)時(shí)顯示電機(jī)轉(zhuǎn)速、作業(yè)狀態(tài)傳感器狀態(tài)值信息,同時(shí)該軟件允許用戶根據(jù)實(shí)際作業(yè)需求設(shè)定工作參數(shù)。軟件界面如圖9c所示。

圖9 施肥控制系統(tǒng)框圖Fig.9 Control system block diagram

4.3施肥控制器

施肥控制器主要任務(wù)是采集當(dāng)前排肥驅(qū)動(dòng)電機(jī)轉(zhuǎn)速并將數(shù)據(jù)上報(bào)給車載控制終端,接收車載控制終端發(fā)送的電機(jī)目標(biāo)轉(zhuǎn)速,并驅(qū)動(dòng)電機(jī)達(dá)到目標(biāo)轉(zhuǎn)速。施肥控制器采用型號(hào)為AQMD2410NS的直流有刷電機(jī)驅(qū)動(dòng)器,設(shè)置為自測(cè)速閉環(huán)控制,電機(jī)轉(zhuǎn)速用驅(qū)動(dòng)器內(nèi)部集成的PID調(diào)節(jié)方式實(shí)現(xiàn)穩(wěn)速,其中比例系數(shù)Kp值為0.2,積分時(shí)間常數(shù)Ti值為0.15,微分時(shí)間常數(shù)Td值為0.15,采樣節(jié)拍周期Td為1 ms。

本施肥裝置共6行,插秧機(jī)幅寬為1.8 m,肥盒每轉(zhuǎn)排肥量為20 g,目標(biāo)施肥量、機(jī)具行駛速度、排肥驅(qū)動(dòng)電機(jī)轉(zhuǎn)速之間具有如下關(guān)系

式中n1為排肥驅(qū)動(dòng)電機(jī)轉(zhuǎn)速,r/min;t為時(shí)間,s;S為作業(yè)面積,hm2;l為機(jī)具行駛路程,m;v為行駛速度,m/s;G為目標(biāo)施肥量,kg/hm2。

5 機(jī)具性能試驗(yàn)與分析

參照GB/T 20346.1-2006《施肥機(jī)械試驗(yàn)方法》第1部分全幅寬施肥機(jī)及NY/T 1003-2006《施肥機(jī)械質(zhì)量評(píng)價(jià)技術(shù)規(guī)范》對(duì)風(fēng)送式水稻側(cè)深精準(zhǔn)施肥裝置進(jìn)行了臺(tái)架及田間試驗(yàn)。

5.1臺(tái)架試驗(yàn)

在北京市昌平區(qū)小湯山國(guó)家精準(zhǔn)農(nóng)業(yè)示范基地對(duì)電機(jī)在不同轉(zhuǎn)速下對(duì)各行排肥量一致性進(jìn)行測(cè)定。試驗(yàn)時(shí),肥料容積超過肥箱容積的二分之一,測(cè)定行數(shù)為6行,由于水田側(cè)深施肥量小,寒地水稻側(cè)深施肥量在300 kg/hm2左右[2-3],正常穩(wěn)定施肥作業(yè)時(shí),排肥驅(qū)動(dòng)電機(jī)轉(zhuǎn)速為20~30 r/min,本試驗(yàn)所設(shè)置排肥驅(qū)動(dòng)電機(jī)轉(zhuǎn)速分別為10、20、30、40 r/min,測(cè)定時(shí)間為5 min,每個(gè)排肥器在每個(gè)轉(zhuǎn)速下重復(fù)試驗(yàn)5次,試驗(yàn)完成后,將6個(gè)排肥口的肥料分別收集編號(hào),用精度為0.001 g的電子天平進(jìn)行稱量并記錄。將20組試驗(yàn)結(jié)果進(jìn)行匯總統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如表2所示,并按式(5)計(jì)算各行排量一致性的標(biāo)準(zhǔn)差和變異系數(shù)。

式中xi為每行各次平均排肥量,g;x為每行各次平均排量的平均值,g;S*為各行排量一致性的標(biāo)準(zhǔn)差,g;V為各行排量一致性的變異系數(shù),%;n為測(cè)定行數(shù)(排肥口個(gè)數(shù))。在式(5)中,當(dāng)n<30時(shí),分母?。╪-1),當(dāng)n≥30時(shí),分母取n。

從表2中可以看出,相同轉(zhuǎn)速下,各行之間排肥量變異系數(shù)小,一致性好,排肥量比較恒定,隨著轉(zhuǎn)速的提高平均排肥量基本呈線性增加,不同轉(zhuǎn)速下,肥盒每轉(zhuǎn)排肥量比較穩(wěn)定,隨轉(zhuǎn)速的提高,每轉(zhuǎn)排肥量有減小的趨勢(shì)。

表2 各行排肥量一致性測(cè)定統(tǒng)計(jì)結(jié)果Table 2 Statistical results of each row fertilizer quantity consistency determination

5.2田間試驗(yàn)

5.2.1試驗(yàn)設(shè)計(jì)

為檢驗(yàn)設(shè)備的實(shí)際作業(yè)性能,2015年5月中旬在黑龍江七星農(nóng)場(chǎng)建三江北大荒精準(zhǔn)農(nóng)業(yè)農(nóng)機(jī)中心試驗(yàn)田進(jìn)行試驗(yàn),并對(duì)施肥裝置進(jìn)行了施肥均勻性試驗(yàn),施肥總面積為6 666.7 m2,試驗(yàn)所用肥料為云南天化國(guó)際化工有限公司生產(chǎn)的復(fù)合肥料,所用車載平臺(tái)為洋馬VP6乘坐式水稻插秧機(jī)。田間試驗(yàn)如圖10所示。

圖10 插秧機(jī)與施肥裝置配合使用進(jìn)行田間試驗(yàn)Fig.10 Field experiment of using rice transplanter and fertilizing device

試驗(yàn)時(shí)將施肥區(qū)域分為10個(gè)46.3 m×14.4 m的小施肥區(qū),在長(zhǎng)度方向上每隔14.4 m(8倍幅寬)樹立一個(gè)標(biāo)記桿,每個(gè)小施肥區(qū)可進(jìn)行4次往復(fù)施肥作業(yè)。

5.2.2施肥均勻性測(cè)定

施肥試驗(yàn)時(shí),插秧機(jī)穩(wěn)定行駛速度為1 m/s,預(yù)置施肥量為300 kg/hm2,插秧機(jī)在施肥小區(qū)域往復(fù)施肥4次進(jìn)行1次肥料稱質(zhì)量并計(jì)算當(dāng)前施肥區(qū)施肥量,統(tǒng)計(jì)結(jié)果如表3所示,并按式(6)進(jìn)行施肥量偏差計(jì)算。

式中γs為施肥量偏差,%;Wq為試驗(yàn)前肥箱內(nèi)化肥質(zhì)量,kg;Wh為試驗(yàn)后肥箱內(nèi)剩余的化肥質(zhì)量,kg;S為施肥作業(yè)面積,m2;F為預(yù)置施肥量,kg/hm2。

從表3可以看到,施肥裝置施肥量總體比較穩(wěn)定,當(dāng)預(yù)置施肥量為300 kg/hm2時(shí),車輛行駛速度為1 m/s時(shí),施肥量偏差控制在5.82%以內(nèi)。

表3 田間施肥統(tǒng)計(jì)結(jié)果Table 3 Statistical results of field application

6 結(jié) 論

1)針對(duì)寒地水稻側(cè)深施肥生產(chǎn)需要,設(shè)計(jì)了風(fēng)送式水稻側(cè)深精準(zhǔn)施肥裝置,并開發(fā)了一套適合該裝置的精準(zhǔn)施肥作業(yè)控制系統(tǒng)。該裝置與插秧機(jī)配套使用時(shí),在設(shè)定目標(biāo)施肥量的情況下,能夠根據(jù)插秧機(jī)行駛速度實(shí)時(shí)調(diào)整施肥量,能實(shí)現(xiàn)連續(xù)帶狀側(cè)深精準(zhǔn)施肥作業(yè),提高施肥均勻性和肥料利用率。

2)田間作業(yè)試驗(yàn)表明,施肥裝置能穩(wěn)定完成施肥作業(yè),當(dāng)車體行進(jìn)速度為1 m/s,預(yù)置施肥量為300 kg/hm2時(shí),目標(biāo)施肥量與實(shí)際施肥量相對(duì)誤差控制在5.82%以內(nèi),施肥作業(yè)精度達(dá)到了設(shè)計(jì)目標(biāo)。下一步需要進(jìn)行更多的田間試驗(yàn),進(jìn)一步測(cè)試系統(tǒng)的穩(wěn)定性和可靠性。

[參考文獻(xiàn)]

[1] 曾希柏,李菊梅. 中國(guó)不同地區(qū)化肥施用及其對(duì)糧食生產(chǎn)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2004,37(3):387-392. Zeng Xibai, Li Jumei. Fertilizer application and its effect on grain production in different counties of China[J]. Scientia Agricultura Sinica, 2004, 37(3): 387-392. (in Chinese with English abstract)

[2] 夏艷濤,吳亞晶. 寒地水稻側(cè)深施肥技術(shù)研究[J]. 北方水稻,2014(1):30-32. Xia Yantao, Wu Yajing. Study on side deep fertilizing of rice in cold area[J]. North Rice, 2014(1): 30-32. (in Chinese with English abstract)

[3] 白雪,鄭桂萍,王宏宇,等. 寒地水稻側(cè)深施肥效果的研究[J]. 黑龍江農(nóng)業(yè)科學(xué),2014(6):40-43. Bai Xue, Zheng Guiping, Wang Hongyu, et al. Research on the effect of side and deep fertilizing for rice in cold reign[J]. Heilongjiang Agricultural Sciences, 2014(6): 40-43. (in Chinese with English abstract)

[4] Miyoko W,Tomoko Y,Kazuyoshi S, et al. Distribution of anammox bacteria in a free-water-surface constructed wetland with wild rice (Zizania latifolia)[J]. Ecological Engineering, 2015, 81: 165-172.

[5] Sheng Z,Sho S,Shohei R, et al. Effect of infiltration rate on nitrogen dynamics in paddy soil after high-load nitrogen application containing 15N tracer[J]. Ecological Engineering, 2011, 37(5): 685-692.

[6] Kaoru A,Yasuo O. Wastewater treatment by using kenaf in paddy soil and effect of dissolved oxygen concentration on efficiency[J]. Ecological Engineering, 2007, 29(2): 125-132.

[7] 中村奈,中川善清,清水孝式. 施肥機(jī)[P]. 中國(guó)專利:103583126, 2014-02-19.

[8] 大前健介,椿本彰史. 施肥裝置[P]. 中國(guó)專利:103858576,2014-06-18.

[9] 位國(guó)建,薦世春,姜偉,等. 1GF-200旋耕施肥機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2014(9):190-192. Wei Guojian, Jian Shichun, Jiang Wei, et al. Design and experiment of 1GF-200 rotary tiller with fertilizing[J]. Journal of Agricultural Mechanization Research, 2014(9): 190-192. (in Chinese with English abstract)

[10] 位國(guó)建,薦世春,付乾坤,等. 水稻插秧施肥聯(lián)合作業(yè)機(jī)的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2015(11):104-107,112. Wei Guojian, Jian Shichun, Fu Qiankun, et al. The design of rotary transplanting with fertilizing combine machine[J]. Journal of Agricultural Mechanization Research, 2015(11): 104-107, 112. (in Chinese with English abstract)

[11] 朱松,張瑞宏,張劍峰,等. 水田旋耕施肥復(fù)式作業(yè)機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2015(7):147-150. Zhu Song, Zhang Ruihong, Zhang Jianfeng, et al. Design and test of teamwork machine rototilling and fertilizing in paddy field[J]. Journal of Agricultural Mechanization Research, 2015(7): 147-150. (in Chinese with English abstract)

[12] 陳長(zhǎng)海,許春林,畢春輝,等. 水稻插秧機(jī)側(cè)深施肥技術(shù)及裝置的研究[J]. 黑龍江八一農(nóng)墾大學(xué)學(xué)報(bào),2012,24(6):10-12,25. Chen Changhai, Xu Chunlin, Bi Chunhui, et al. Researching of rice transplanter deep side fertilizing technology and device[J]. Journal of Heilongjiang Bayi Agricultural University, 2012, 24(6): 10-12, 25. (in Chinese with English abstract)

[13] 陳雄飛,羅錫文,王在滿,等. 水稻穴播同步側(cè)位深施肥技術(shù)試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(16):1-7. Chen Xiongfei, Luo Xiwen, Wang Zaiman, et al. Experiment of synchronous side deep fertilizing technique with rice hill-drop drilling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 1-7. (in Chinese with English abstract)

[14] 曾山,湯海濤,羅錫文,等. 同步開溝起壟施肥水稻精量旱穴直播機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(20):12-19. Zeng Shan, Tang Haitao, Luo Xiwen, et al. Design and experiment of precision rice hill-drop drilling machine for dry land with synchronous fertilizing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 12-19. (in Chinese with English abstract)

[15] 趙軍,于潔,王熙,等. 機(jī)械驅(qū)動(dòng)式精密變量施肥播種機(jī)的研制[J]. 黑龍江八一農(nóng)墾大學(xué)學(xué)報(bào),2006,18(2):49-52. Zhao Jun, Yu Jie, Wang Xi, et al. Research on a combined seed and fertilizer drill of precision variable rate control drived by engine[J]. Journal of Heilongjiang August First Land Reclamation University, 2006, 18(2): 49-52. (in Chinese with English abstract)

[16] 張書慧,馬成林,杜巧玲,等. 精確農(nóng)業(yè)自動(dòng)變量施肥機(jī)控制系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(1):113-116. Zhang Shuhui, Ma Chenglin, Du Qiaoling, et al. Design of control system of variable rate f ertilizer applicator in precision agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(1): 113-116. (in Chinese with English abstract)

[17] 張書慧,馬成林,吳才聰,等. 一種精確農(nóng)業(yè)自動(dòng)變量施肥技術(shù)及其實(shí)施[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(1):129-131. Zhang Shuhui, Ma Chenglin, Wu Caicong, et al. Development and application of a variable rate f ertilizer applicator for precision agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(1): 129-131. (in Chinese with English abstract)

[18] 王秀,趙春江,孟志軍,等. 精準(zhǔn)變量施肥機(jī)的研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(5):114-117. Wang Xiu, Zhao Chunjiang, Meng Zhijun, et al. Design and experiment of variable rate fertilizer applicator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(5): 114-117. (in Chinese with English abstract)

[19] 耿向宇,李彥明,苗玉彬,等. 基于GPRS的變量施肥機(jī)系統(tǒng)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(11):164-167. Geng Xiangyu, Li Yanming, Miao Yubin, et al. Development of variable rate fertilizer applicator based on GPRS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(11): 164-167. (in Chinese with English abstract)

[20] 王太柱. 氣流輸送裝置設(shè)計(jì)計(jì)算[J]. 農(nóng)業(yè)機(jī)械,2008(22):64-65. Wang Taizhu. Design and calculation of air transport device[J]. Chinese Agricutural Mechanization, Agricultural Machinery, 2008(22): 64-65. (in Chinese with English abstract)

[21] 王太柱. 氣流輸送機(jī)構(gòu)的參數(shù)確定[J]. 中國(guó)農(nóng)機(jī)化,2008(4):74-78. Wang Taizhu. The confirming of the argument on air flow transportation mechanism[J]. Chinese Agricutural Mechanization, 2008(4): 74-78. (in Chinese with English abstract)

[22] 李加念,洪添勝,馮瑞玨,等. 基于脈寬調(diào)制的文丘里變量施肥裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(8):105-110. Li Jianian, Hong Tiansheng, Feng Ruijue, et al. Design and experiment of venturi variable fertilizer apparatus based on pulse width modulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(8): 105-110. (in Chinese with English abstract)

[23] 王淼,黃興法,李光永. 文丘里施肥器性能數(shù)值模擬研究[J].農(nóng)業(yè)工程學(xué)報(bào),2006,22(7):27-31. Wang Miao, Huang Xingfa, Li Guangyong. Numerical simulation of characteristics of venturi injector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(7): 27-31. ( in Chinese with English abstract )

[24] 韓啟彪,黃興法,劉洪祿,等. 6種文丘里施肥器吸肥性能比較分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(4):113-117,136. Han Qibiao, Huang Xingfa, Liu Honglu, et al. Comparative analysis on fertilization performance of six venturi injectors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4): 113-117, 136. (in Chinese with English abstract)

[25] 馬征,李耀明,徐立章. 農(nóng)業(yè)工程領(lǐng)域顆粒運(yùn)動(dòng)研究綜述[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(2):22-29. Ma Zheng, Li Yaoming, Xu Lizhang. Summarize of particle movements research in agricultural engineering realm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 22-29. (in Chinese with English abstract)

[26] 胡克吉. 氣力輸送系統(tǒng)文丘里供料器的研究[D]. 青島:青島科技大學(xué),2013. Hu Keji. The Research on Venturi Feeder in Pneumatic Conceying System[D]. Qingdao: Qingdao University of Science & Technology, 2013. (in Chinese with English abstract)

[27] 佟飛虎. 文丘里管、文丘里噴嘴流量計(jì)的參數(shù)化設(shè)計(jì)[D].沈陽:東北大學(xué),2007. Tong Feihu.The Parametric Design of Venturi Tube and Venturi Nozzle Flowmeter[D]. Shenyang: Northeastern University, 2007. (in Chinese with English abstract)

[28] 劉剴,陸海峰,郭曉鐳,等. 文丘里管結(jié)構(gòu)對(duì)高濃度煤粉流動(dòng)特征及壓差特性的影響[J]. 化工學(xué)報(bào),2015(5):1656-1666. Liu Kai, Lu Haifeng, Guo Xiaolei, et al. Influence of venturi structures on flow characteristic and pressure drop of gas-coal mixture[J]. Journal of Chemical Industry and Engineering, 2015(5): 1656-1666. (in Chinese with English abstract)

[29] 于英杰,張書慧,齊江濤,等. 基于傳感器的變量施肥機(jī)定位方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(10):165-168. Yu Yingjie, Zhang Shuhui, Qi Jiangtao, et al.Positioning method of variable rate fertilizer applicator based on sensors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(10): 165-168. (in Chinese with English abstract)

[30] 孟志軍,趙春江,劉卉,等. 基于處方圖的變量施肥作業(yè)系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J]. 江蘇大學(xué)學(xué)報(bào):自然科學(xué)版,2009,30(4):338-342. Meng Zhijun, Zhao Chunjiang, Liu Hui, et al. Development and performance assessment of map-based variable rate granule application system[J].Journal of Jiangsu University: Natural Science Edition, 2009, 30(4): 338-342. (in Chinese with English abstract)

[31] 陳立平,黃文倩,孟志軍,等. 基于CAN總線的變量施肥控制器設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(8):101-104,185. Chen Liping, Huang Wenqian, Meng Zhijun, et al. Design of variable rate fertilization controller based on CAN bus[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 29(8): 101-104, 185. (in Chinese with English abstract)

Design and experiment on air-blast rice side deep precision fertilization device

Zuo Xingjian1,2,3,4, Wu Guangwei2,3,4, Fu Weiqiang2,3,4, Li Liwei2,3,4, Wei Xueli2,3,4, Zhao Chunjiang1,3※
(1. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; 2. National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China; 3. Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100097, China; 4. Beijing Key Laboratory of Intelligent Equipment Technology for Agriculture, Beijing 100097, China)

Abstract:Rice is the most important crop in China, which has the largest plant area, the highest per unit area yield and the most total output. Fertilization is an important process of rice production, which directly affects the yield of crops, and reasonable and effective use of chemical fertilizer can improve the yield of crops. At present, the mechanization level of rice fertilization is very low in China, and the artificial fertilization with a large amount of fertilizer causes the uneven distribution of fertilizer. The side deep fertilization for rice is an ideal way of fertilization. The fertilization device will apply fertilizer (basal and tiller fertilizer) quantitatively and with one-time positioning based on the agronomic requirements, and it can carry out a uniform fertilization to the rice’s side position with a certain depth, which can reduce nitrogen fertilizer amount of 20%-30% compared with the traditional fertilization operation. It is a cultivation technique with high output, stable yield and low cost. In view of the low-level mechanization of rice fertilization in China, the large amount of fertilizer application and the low fertilizer utilization in the traditional manual fertilization, combined with the agronomic characteristics of side deep fertilization, we analyzed the fertilization method of wind delivering and developed the air-blast rice side deep precision fertilization device. This device adopted the modularization design and was combined with riding type rice transplanter for use. In the process of operation, the fertilizer granules fell into the deep trench with a certain amount under the effect of gravity and wind; the trench with 5 cm depth was dug by fertilizer exports at the position 3 cm away from seedling side, and the fertilizers would be covered in the mud by covering plate. The device used the rated voltage of 12 V and the power of 72 W; the blower was used to transport fertilizer based on the Venturi effect, and the inner diameter of fertilizer conveying pipe was 25 mm and the velocity was 21 m/s; the global position system (GPS) was used to measure transplanter speed. The speed of the vehicle was proportional to the speed of the motor by using the precision fertilization control method, which could match the vehicle speed and drive motor speed in real time. The speed measurement closed-loop control was used as the control system. Motor drive used the AQMD2410NS direct current motor drive, and motor hold a stable speed by using the internal drive integration of the proportion-integration-differentiation (PID). The vehicle control terminal was designed under the embedded Visual C++ integrated development environment in the XP Windows operating system, the interface could display the current operating data, and meanwhile, the user could set the working parameters according to the actual operating requirements. When presetting fertilization amount to 300 kg/hm2, the motor rotation speed was 10, 20, 30 and 40 r/min, respectively. The fertilizer difference test with 6 fertilizer discharging ports was carried out, and the coefficients of variation of fertilizer application amount were 2.3%, 2.1%, 2.2% and 1.8%, respectively. The experiments were conducted on Heilongjiang Seven-star Farm, and the result showed, planting and fertilization could be done completely and independently in one time when fertilization device and riding type rice transplanter operated. When the preset rate of fertilization was 300 kg/hm2and the vehicle speed was 1 m/s, the fertilization device could realize the precision fertilization, and the deviation of fertilization application amount was within 5.82%, which could meet the requirement of the actual production. The research provides reference for the development of the rice variable fertilization control technology and the research and development of the rice side deep fertilization device.

Keywords:agricultural machinery; design; crops; air-assisted; precision fertilization; side deep fertilization

通信作者:※趙春江,男(漢族),河北定州,研究員,博士,博士生導(dǎo)師,主要從事農(nóng)業(yè)信息化、精準(zhǔn)農(nóng)業(yè)技術(shù)的研究.。楊凌 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,712100。Email:zhaocj@nercita.org.cn

作者簡(jiǎn)介:左興健,男(漢族),四川綿陽,主要從事精準(zhǔn)農(nóng)業(yè)智能裝備技術(shù)研究。楊凌 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,712100。

基金項(xiàng)目:863計(jì)劃糧食作物規(guī)?;a(chǎn)精準(zhǔn)作業(yè)技術(shù)與裝備(2012AA101901)

收稿日期:2015-08-15

修訂日期:2015-12-12

中圖分類號(hào):S224.21

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1002-6819(2016)-03-0014-08

doi:10.11975/j.issn.1002-6819.2016.03.003

猜你喜歡
農(nóng)業(yè)機(jī)械農(nóng)作物設(shè)計(jì)
土壤污染與農(nóng)作物
軍事文摘(2024年6期)2024-02-29 10:01:50
高溫干旱持續(xù) 農(nóng)作物亟須“防護(hù)傘”
俄發(fā)現(xiàn)保護(hù)農(nóng)作物新方法
夏季農(nóng)作物如何防熱害
宜賓市農(nóng)業(yè)機(jī)械研究所
瞞天過?!律O(shè)計(jì)萌到家
設(shè)計(jì)秀
海峽姐妹(2017年7期)2017-07-31 19:08:17
有種設(shè)計(jì)叫而專
Coco薇(2017年5期)2017-06-05 08:53:16
農(nóng)業(yè)機(jī)械自動(dòng)化在現(xiàn)代農(nóng)業(yè)中的應(yīng)用與發(fā)展趨勢(shì)
電子信息技術(shù)在農(nóng)業(yè)機(jī)械中的應(yīng)用
广饶县| 嵩明县| 祁东县| 景宁| 安西县| 饶平县| 巴彦县| 合水县| 平和县| 弥勒县| 和顺县| 北海市| 康乐县| 深泽县| 樟树市| 凌云县| 兴仁县| 淳化县| 天津市| 大港区| 怀来县| 连州市| 西平县| 桐柏县| 宣城市| 民和| 古交市| 沿河| 福泉市| 上高县| 清涧县| 禹城市| 鸡泽县| 长宁县| 朔州市| 万年县| 岳池县| 米林县| 酉阳| 塘沽区| 玉田县|