国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

熱處理降低哈密瓜果實(shí)活性氧代謝減輕冷害

2016-03-21 12:38:23茅林春李學(xué)文張明明鞠國(guó)棟浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院浙江省農(nóng)產(chǎn)品加工技術(shù)研究重點(diǎn)試驗(yàn)室杭州310058新疆農(nóng)業(yè)大學(xué)食品科學(xué)與藥學(xué)學(xué)院烏魯木齊830000
關(guān)鍵詞:哈密瓜活性氧冷藏

王 靜,茅林春,李學(xué)文,張 輝,張明明,鞠國(guó)棟(1. 浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,浙江省農(nóng)產(chǎn)品加工技術(shù)研究重點(diǎn)試驗(yàn)室,杭州 310058;. 新疆農(nóng)業(yè)大學(xué)食品科學(xué)與藥學(xué)學(xué)院,烏魯木齊 830000)

?

熱處理降低哈密瓜果實(shí)活性氧代謝減輕冷害

王靜1,2,茅林春1※,李學(xué)文2,張輝2,張明明2,鞠國(guó)棟2
(1. 浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,浙江省農(nóng)產(chǎn)品加工技術(shù)研究重點(diǎn)試驗(yàn)室,杭州 310058;2. 新疆農(nóng)業(yè)大學(xué)食品科學(xué)與藥學(xué)學(xué)院,烏魯木齊 830000)

摘要:為探討熱處理能否激發(fā)哈密瓜果實(shí)抗冷性,減輕冷害。該文以“西州密25號(hào)”哈密瓜為原料,在已有研究的基礎(chǔ)上,將哈密瓜在55℃熱水中浸泡3 min,以室溫(22±2)℃清水浸泡3 min為對(duì)照,待其表面水分完全晾干以后,放置于3~5℃機(jī)械冷庫(kù)中貯藏,測(cè)定貯藏期間哈密瓜品質(zhì)及生理指標(biāo)。結(jié)果表明,與對(duì)照相比,熱處理誘導(dǎo)哈密瓜果肉過(guò)氧化氫H2O2和超氧陰離子O2-含量短暫增加,但明顯減少貯藏中后期(14~35 d)H2O2,O2-的積累(P<0.05),提高活性氧清除酶過(guò)氧化物酶和超氧化物歧化酶的活性(P<0.05),抑制細(xì)胞膜相對(duì)滲透率和丙二醛含量上升,降低貯藏后期的冷害發(fā)生率(P<0.05),緩解果實(shí)可溶性固形物和抗壞血酸含量下降(P<0.05),保持果實(shí)較好的品質(zhì)。熱處理主要通過(guò)誘導(dǎo)活性氧信號(hào)分子,提高活性氧清除酶活性、減少膜脂過(guò)氧化作用,從而減輕果實(shí)的冷害。研究結(jié)果為哈密瓜采后貯藏技術(shù)提供理論參考。

關(guān)鍵詞:熱處理;水果;冷藏;哈密瓜;冷害;活性氧

王靜,茅林春,李學(xué)文,張輝,張明明,鞠國(guó)棟. 熱處理降低哈密瓜果實(shí)活性氧代謝減輕冷害[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):280-286.doi:10.11975/j.issn.1002-6819.2016.02.040http://www.tcsae.org

Wang Jing, Mao Linchun, Li Xunwen, Zhang Hui, Zhang Mingming, Ju Guodong. Reduction of active oxygen metabolism and mitigation of chilling injury in Hami melon fruit as influenced by postharvest hot water treatment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 280-286. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.02.040http://www.tcsae.org

0 引 言

新疆哈密瓜資源豐富、品質(zhì)優(yōu)良、味美香甜、營(yíng)養(yǎng)豐富,深受消費(fèi)者青睞。由于哈密瓜屬于冷敏性果實(shí),在低溫下貯藏容易發(fā)生冷害,導(dǎo)致表皮組織下陷,最終發(fā)展成不規(guī)則的下陷斑塊,嚴(yán)重影響其貯藏壽命和貨架期[1]。因此急需探求可減輕哈密瓜冷害,提高果實(shí)冷藏品質(zhì)的處理方法。熱處理技術(shù)作為果蔬采后處理的一種簡(jiǎn)單物理方法,可以減輕長(zhǎng)時(shí)間低溫冷藏造成的傷害、改善品質(zhì)、延長(zhǎng)貯藏期[2]。有研究表明,熱處理能提高無(wú)花果[3]、柑橘[4]、西紅柿[5]、獼猴桃[6]等果蔬的抗冷性,誘導(dǎo)番木瓜[7]、枇杷[8]、番茄[9]等果蔬抗氧化酶體系升高,有效提高冷藏茄子[10]、黃皮果實(shí)[11],黃花梨[12]活性氧清除能力,減輕冷害發(fā)生。熱處理對(duì)哈密瓜采后貯藏保鮮方面已有一些研究,王會(huì)松等[13]研究發(fā)現(xiàn),45℃熱處理對(duì)哈密瓜具有較高的蔗糖和乳酸通量;耿新麗等[14]研究發(fā)現(xiàn)55℃熱水處理能提高哈密瓜的貯藏品質(zhì),延長(zhǎng)貯藏時(shí)間;程俊嘉等[15]研究發(fā)現(xiàn)復(fù)合熱處理可以顯著提高哈密瓜果實(shí)防御酶活性等。但是熱處理對(duì)哈密瓜采后冷害及活性氧代謝影響的研究尚未見報(bào)道。本試驗(yàn)是在前期研究的基礎(chǔ)上[16]發(fā)現(xiàn)55℃熱水處理3 min可以降低哈密瓜的冷害率,因此本文重點(diǎn)研究55℃熱水處理3 min對(duì)哈密瓜活性氧代謝及冷害的影響,旨在為熱處理技術(shù)在哈密瓜果實(shí)保鮮中的應(yīng)用提供理論依據(jù)。

1 材料與方法

1.1材料與處理

本試驗(yàn)以“西州密25號(hào)”哈密瓜(屬厚皮甜瓜亞種Cucumis melo var. reticulatus Naud.)為原料,于2014年7 月15日摘自吐魯番鄯善瓜商品瓜基地,單個(gè)平均質(zhì)量為2.73 kg,瓜中心平均糖度17%,瓜皮呈青色,布滿灰色網(wǎng)紋,瓜瓤泛橙色,香味濃郁。采后立即運(yùn)至試驗(yàn)室,選擇成熟度為九成,大小適中、無(wú)任何機(jī)械損傷的果實(shí)作為試驗(yàn)材料。

哈密瓜稱量后,在55℃熱水中浸泡3 min進(jìn)行熱水處理,該條件為前期試驗(yàn)篩選得到[16],對(duì)照處理采用室溫(22±2)℃清水浸泡3 min。每個(gè)處理各136個(gè)瓜(每次處理4個(gè)瓜,共計(jì)34次),自然晾干后裝箱,貯藏于機(jī)械冷庫(kù)內(nèi)(3~5℃)(依據(jù)劉同業(yè)等[17]研究結(jié)論,西州密25號(hào)哈密瓜受冷害的溫度為3℃),平均每隔6 d取一次樣,共取6次。生理指標(biāo)的測(cè)定每個(gè)處理取3個(gè)瓜,3個(gè)重復(fù),共計(jì)9個(gè)瓜,分別在瓜的前中后3個(gè)部位取果肉組織,同時(shí)除去瓜肉的最上層組織,混勻后用液氮冷凍并在?80℃冰箱中放置,每個(gè)指標(biāo)重復(fù)3次。

1.2測(cè)定方法

冷害率測(cè)定方法:將果實(shí)從貯藏冷庫(kù)轉(zhuǎn)移到室溫(25℃)下1天后,統(tǒng)計(jì)冷害情況,每個(gè)處理每次分別取9個(gè)瓜,共計(jì)3個(gè)重復(fù),用來(lái)觀察冷害。冷害率=冷害的果實(shí)數(shù)量/調(diào)查總果數(shù)×100%。

失重率測(cè)定方法:采用稱重法,失重率=(貯前質(zhì)量?貯后質(zhì)量)/貯前質(zhì)量×100%。每個(gè)處理分別取9個(gè)瓜(瓜樣固定)用來(lái)測(cè)定失重率。

可溶性固形物測(cè)定方法:參照曹健康[18]的方法,采用手持式折光儀測(cè)定,分別在哈密瓜的前中后3個(gè)部位取瓜肉組織(同時(shí)去除瓜肉的最上部組織),大約5.0 g (9個(gè)瓜),研缽磨碎后,用滴管吸取樣品液,滴加在檢測(cè)鏡上,合上蓋板。讀取刻度尺讀數(shù),即為樣品液中可溶性固形物的質(zhì)量分?jǐn)?shù),以%表示,重復(fù)測(cè)定3次。

抗壞血酸含量測(cè)定方法:參照曹健康[18]的方法,分別在哈密瓜的前中后3個(gè)部位取瓜肉組織(同時(shí)去除瓜肉的最上部組織)10 g(9個(gè)瓜),以100 g質(zhì)量樣品中含有的抗壞血酸的毫克數(shù)表示,即mg/(100 g)。

可滴定酸測(cè)定方法:參照中華人民共和國(guó)行業(yè)標(biāo)準(zhǔn)GB/T 12456-1990檢測(cè),分別在哈密瓜的前中后3個(gè)部位取瓜肉組織(同時(shí)去除瓜肉的最上部組織)30 g(9個(gè)瓜),結(jié)果以g/L表示。

細(xì)胞膜透性測(cè)定方法:采用電導(dǎo)率儀測(cè)定(DDS-11A,上海雷韻試驗(yàn)儀器制造有限公司),參照曹健康[18]的方法。分別在哈密瓜的前中后3個(gè)部位用打孔器取出柱形果肉,直徑1 cm,切成厚度為5 mm的圓片,每個(gè)部位取4片,每個(gè)處理3個(gè)果實(shí),3個(gè)重復(fù),結(jié)果以%表示。

丙二醛(MDA, malondialdehyde)含量測(cè)定方法:參照曹健康[18]的方法,稱取混勻的哈密瓜果肉凍樣組織1.0 g(分別在9個(gè)哈密瓜的前中后3個(gè)部位取樣),結(jié)果以nmol/g表示每克哈密瓜鮮質(zhì)量樣品中MDA的含量。

過(guò)氧化物酶(POD, peroxidase)測(cè)定方法:參照曹健康[12]的方法,取混勻后的凍樣果肉3.0 g置于研缽中,在反應(yīng)15 s時(shí)開始記錄反應(yīng)體系在波長(zhǎng)470 nm處吸光度值作為初始值,然后每隔20 s記錄一次,連續(xù)測(cè)定6個(gè)點(diǎn)的讀數(shù),重復(fù)3次,以每克鮮質(zhì)量果蔬組織蛋白樣品每分鐘吸光度變化值增加1所需的酶量為1個(gè)酶活力單位。結(jié)果以U/mg表示。

過(guò)氧化氫酶(CAT, catalase)測(cè)定方法:參照曹健康[18]的方法,稍作修改,取混勻后的果肉組織凍樣5.0 g,以每克鮮質(zhì)量組織蛋白樣品每分鐘吸光度變化值增加0.01 為1個(gè)過(guò)氧化物酶活性單位(U),則U=0.01?OD240/(min·g),結(jié)果以U/mg表示。

超氧化物歧化酶(SOD, superoxide dismutase)測(cè)定方法:參照曹健康[18]的方法,稍作修改,取混勻后的果肉凍樣3.0 g后置于研缽中,加入3.0 mL提取緩沖液,在冰浴條件下研磨成勻漿。以每分鐘每克鮮質(zhì)量組織蛋白樣品的反應(yīng)體系對(duì)氮藍(lán)四唑(NBT)光化還原的抑制為50%時(shí)為一個(gè)SOD活性單位(U)表示,結(jié)果以U/mg表示。

蛋白質(zhì)含量測(cè)定:按照Bradford[19]考馬斯亮藍(lán)染色法測(cè)定,以牛血清蛋白作標(biāo)準(zhǔn)曲線。Y=220.88X?2.2742,R2=0.9982。

過(guò)氧化氫含量(H2O2)測(cè)定方法:參照曹健康[18]的方法,取混勻后的果肉凍樣5.0 g,計(jì)算每克鮮質(zhì)量果蔬組織中過(guò)氧化氫的含量,表示為μmol/g。

超氧陰離子含量(O2·?)測(cè)定方法:參照曹健康[18]的方法,取3.0 g果肉凍樣組織,以每分鐘每克鮮質(zhì)量果蔬組織產(chǎn)生的超氧陰離子的納摩爾數(shù)作為超氧陰離子的產(chǎn)生速率,表示為nmol/(min·g)。

1.3數(shù)據(jù)統(tǒng)計(jì)

應(yīng)用Spass16.0軟件對(duì)數(shù)據(jù)進(jìn)行方差分析,并利用鄧肯式多重比較進(jìn)行差異顯著性分析,P<0.05表示差異顯著。作圖采用Origin 8.0軟件。

2 結(jié)果與分析

2.1熱處理對(duì)可溶性固形物、抗壞血酸和可滴定酸含量的影響

可溶性固形物(TSS, soluble solid)含量的高低是果實(shí)各種貯藏物質(zhì)變化的綜合表現(xiàn),也是衡量貯藏品質(zhì)的重要指標(biāo)。哈密瓜果實(shí)內(nèi)的TSS主要是糖類物質(zhì)。如圖1 a所示,在冷藏期間2個(gè)處理的果實(shí)TSS先升高后降低,且熱處理的哈密瓜果實(shí)TSS含量始終高于對(duì)照,除第28 天外差異均顯著(P<0.05),是因?yàn)闊崽幚硪种品纸獯蠓肿犹妓衔锏南嚓P(guān)酶活性,使得熱處理果實(shí)保持較高的TSS含量[20]。

抗壞血酸不僅是評(píng)價(jià)果實(shí)貯藏品質(zhì)的重要指標(biāo)之一,同時(shí)也是果實(shí)體內(nèi)清除活性氧的重要抗氧化物質(zhì)[11]。如圖1 b所示,隨著冷藏時(shí)間的延長(zhǎng),抗壞血酸含量總體上呈不斷下降趨勢(shì),但是熱處理果實(shí)抗壞血酸含量明顯高于對(duì)照(P<0.05),貯藏第14天其質(zhì)量分?jǐn)?shù)達(dá)到最高值為68.74 mg/(100 g)。由于熱處理抑制抗壞血酸降解,發(fā)揮非酶促因子的抗氧化作用,有效清除自由基對(duì)哈密瓜的傷害,更好地保護(hù)膜的穩(wěn)定性,減少果實(shí)冷害的發(fā)生。14 d后抗壞血酸含量開始下降到貯藏結(jié)束,對(duì)照組明顯低于熱處理(P<0.05)。

可滴定酸含量如圖1 c所示,在冷藏整個(gè)過(guò)程中,熱處理組可滴定酸含量較對(duì)照低,除第28天外,差異均顯著(P<0.05),是由于熱處理引起的呼吸等能量代謝強(qiáng)度暫時(shí)小幅度上升,使一些有機(jī)酸被作為底物參加反應(yīng)而消耗,為了更好避免哈密瓜果實(shí)發(fā)生冷害,從而出現(xiàn)含量下降[21]。

以上結(jié)果表明,熱處理延緩可溶性固形物和抗壞血酸含量降低,卻促進(jìn)可滴定酸含量下降,對(duì)保持冷藏哈密瓜品質(zhì)具有一定作用。

圖1 熱處理對(duì)哈密瓜采后可溶性固形物、抗壞血酸和可滴定酸含量的影響Fig.1 Effects of heat treatment on TSS, ASA and titratable acid of postharvest Hami melon

2.2熱處理對(duì)細(xì)胞膜相對(duì)滲透率和丙二醛含量的影響

采后果蔬的細(xì)胞膜透性常用細(xì)胞膜相對(duì)滲透率來(lái)表示,它反映了細(xì)胞膜的完整性和衰老的程度。由圖2 a得知,哈密瓜果肉細(xì)胞膜透性在貯藏期間逐步增加。除第21 天外,對(duì)照果實(shí)的細(xì)胞膜相對(duì)滲透率均明顯高于熱處理(P<0.05),表明熱處理可有效阻止果實(shí)細(xì)胞內(nèi)容物流失,一定程度提高果實(shí)抗冷性。

圖2 熱處理對(duì)哈密瓜采后細(xì)胞膜相對(duì)滲透率和丙二醛含量的影響Fig.2 Effects of heat treatment on cell membrane relative leakage and MDA content of postharvest Hami melon

丙二醛是膜脂過(guò)氧化作用的主要產(chǎn)物之一,常被作為衡量膜脂過(guò)氧化程度的指標(biāo)。由圖2 b可知,哈密瓜果肉MDA含量隨貯藏時(shí)間的延長(zhǎng)而逐漸升高。冷藏7~21 d,對(duì)照和熱處理果實(shí)的MDA含量比較接近,冷藏21~28 d對(duì)照果實(shí)MDA含量急速上升,后又急速下降,且明顯高于熱處理(P<0.05),表明熱處理可減少哈密瓜膜脂過(guò)氧化作用,減輕低溫對(duì)細(xì)胞膜造成的傷害。

上述結(jié)果表明,熱處理可以降低細(xì)胞膜相對(duì)滲透率和MDA含量,對(duì)減輕果實(shí)冷害具有一定作用。

2.3 熱處理對(duì)過(guò)氧化氫(H2O2)含量和超氧陰離子()生成速率的影響

熱處理對(duì)過(guò)氧化氫(H2O2)的影響如圖3 a所示,冷藏0~14 d,熱處理組H2O2高于對(duì)照組,且第14天其積累量達(dá)到最大,表明熱處理能夠誘導(dǎo)果蔬中的活性氧含量短暫而迅速積累,之后迅速下降且明顯低于對(duì)照組至貯藏結(jié)束(P<0.05),表明熱處理在貯藏中后期(14~35 d)明顯抑制哈密瓜果實(shí)體內(nèi)H2O2含量上升。

上述結(jié)果表明,熱處理能夠誘導(dǎo)果蔬中的活性氧含量短暫而迅速積累,并且這種活性氧信號(hào)在增強(qiáng)果蔬抗冷性中起到了關(guān)鍵作用,降低貯藏中后期H2O2含量和生成速率,減少膜脂過(guò)氧化作用,提高哈密瓜的抗冷性。

2.4熱處理對(duì)過(guò)氧化物酶、過(guò)氧化氫酶和超氧化物歧化酶活性的影響

POD是活性較高的適應(yīng)性酶,能夠反映植物生長(zhǎng)發(fā)育的特性、體內(nèi)代謝狀況以及對(duì)外界環(huán)境的適應(yīng)性,同時(shí)也是植物體內(nèi)抗氧化酶系統(tǒng)的重要組成部分[22]。如圖4 a所示,哈密瓜果肉POD活性隨貯藏時(shí)間的延長(zhǎng)而逐漸升高。熱處理果實(shí)POD活性明顯高于對(duì)照(P<0.05),在貯藏后期(21~35 d)表現(xiàn)尤為顯著(P<0.01)。表明熱處理對(duì)提高果實(shí)POD活性具有一定的作用。

CAT是生物演化過(guò)程中建立起來(lái)的生物防御系統(tǒng)的關(guān)鍵酶之一。果實(shí)在低溫貯藏期間CAT活性變化如圖4b所示,2個(gè)處理的CAT活性變化起伏較大。至貯藏結(jié)束對(duì)照果實(shí)的CAT活性高于貯藏初始,而熱處理果實(shí)則低于貯藏初始,除第28天外,熱處理果實(shí)的CAT活性低于對(duì)照,且差異顯著(P<0.05)。分析其原因是因?yàn)橘A藏至第28天,對(duì)照果實(shí)CAT活性升高,說(shuō)明抗氧化酶系統(tǒng)清除活性氧的能力增強(qiáng),但是這種作用比較短暫,貯藏至第35天又低于對(duì)照。表明熱處理對(duì)提高哈密瓜果實(shí)CAT活性作用不明顯。

熱處理能夠提高果實(shí)POD和SOD活性,有效清除貯藏中后期(14~21 d)H2O2和對(duì)細(xì)胞膜的傷害,對(duì)降低細(xì)胞活性氧代謝,延緩膜脂氧化,提高抗冷性具有積極作用。

2.5熱處理對(duì)冷害率的影響

由表1可知,哈密瓜果實(shí)貯藏至第21天開始出現(xiàn)冷害,且冷害率快速上升;21~28 d對(duì)照的冷害率明顯低于熱處理,因?yàn)榍捌跓崽幚碚T導(dǎo)哈密瓜果肉H2O2和含量出現(xiàn)短暫增加(圖3),其過(guò)氧化氫酶(CAT)活性卻明顯低于對(duì)照(圖4b),超氧化物歧化酶(SOD)活性與對(duì)照相差無(wú)幾(圖4c),不能有效減少膜脂過(guò)氧化產(chǎn)物的積累。但是冷藏至第35天,熱處理果實(shí)的冷害率明顯低于對(duì)照(P<0.05),因?yàn)闊崽幚盹@著提高過(guò)氧化物酶POD的活性(P<0.01)(圖4a),減少貯藏中后期H2O2(圖3a),O2·?的積累(圖3b),降低膜脂過(guò)氧化產(chǎn)物MDA含量。表明熱處理提高果實(shí)抗冷性在貯藏后期才較明顯表現(xiàn)出來(lái),同時(shí)也發(fā)現(xiàn)對(duì)照發(fā)生冷害的果實(shí)數(shù)量高于(P<0.05)熱處理,且水漬斑面積較大(圖5)。

表1 熱處理對(duì)哈密瓜采后冷害率的影響Table 1 Effects of heat treatment on chilling rate of postharvest Hami melon

圖3 熱處理對(duì)哈密瓜采后H2O2含量、生成速率的影響Fig.3 Effects of heat treatment on content of H2O2and rate ofof postharvest Hami melon

2.6熱處理對(duì)失重率的影響

失重率結(jié)果如表2所示,對(duì)照與熱處理果實(shí)在貯藏期間失重率均呈逐漸上升趨勢(shì),且7~28 d,熱處理果實(shí)的失重率高于對(duì)照,是因?yàn)樵诖似陂g熱處理果實(shí)的冷害率較對(duì)照高(表1),完整的果皮細(xì)胞結(jié)構(gòu)遭到破壞,加速細(xì)胞失水造成的[23],其中在7~14 d差異顯著(P<0.05),冷藏至第35天,熱處理的失重率卻明顯低于對(duì)照(P<0.05),是因?yàn)榇藭r(shí)熱處理降低果實(shí)冷害率作用才表現(xiàn)出來(lái)(表1),膜脂過(guò)氧化程度明顯低于對(duì)照(圖2b),抑制果實(shí)細(xì)胞膜滲透性增加(圖2a),阻止胞內(nèi)溶質(zhì)流到胞外,減小胞內(nèi)外因滲透壓發(fā)生變化而引起的細(xì)胞缺水,從而更好地保持了細(xì)胞的水分[21]。

圖4 熱處理對(duì)哈密瓜采后POD、CAT、SOD 活性的影響Fig.4 Effects of heat treatment on POD, CAT and SOD activities of postharvest Hami melon

圖5 冷藏35 d的哈密瓜冷害癥狀圖片F(xiàn)ig.5  Chilling injury of Hami melon after 35 days storage at 3℃

表2 熱處理對(duì)哈密瓜采后失重率影響Table 2 Effects of heat treatment on weightlessness rate of postharvest Hami melon

3 討 論

哈密瓜果實(shí)冷害的發(fā)生與癥狀比較復(fù)雜,主要受品種、栽培條件、成熟度、貯藏溫度、濕度、氣體環(huán)境及時(shí)間等多方面因素影響,冷害發(fā)生的癥狀大多表現(xiàn)為:初期為不規(guī)則的小斑點(diǎn),隨著低溫貯藏時(shí)間的延長(zhǎng),斑點(diǎn)相連,發(fā)展成不規(guī)則的下陷斑塊,同時(shí)果實(shí)失水皺縮,常溫放置后出現(xiàn)水浸狀[24-25]。本試驗(yàn)研究結(jié)果與上述報(bào)道基本一致。但是臨近貯藏結(jié)束熱處理誘導(dǎo)果實(shí)抗冷作用才能較明顯表現(xiàn),該現(xiàn)象可能與活性氧作為信號(hào)分子參與后期果實(shí)耐冷誘導(dǎo)有關(guān)[26]。

研究發(fā)現(xiàn),H2O2可作為一種逆境反應(yīng)中的信號(hào)分子,在信號(hào)轉(zhuǎn)導(dǎo)中調(diào)控下游信號(hào)流,從而激活和調(diào)控植物體內(nèi)這種脅迫相關(guān)基因的表達(dá)[27]。本試驗(yàn)中,哈密瓜果實(shí)冷藏前經(jīng)熱激處理后,發(fā)生了H2O2含量短暫升高的現(xiàn)象,與Tetsuya等[28]利用熱激處理誘導(dǎo)青花菜貯藏前期H2O2含量升高一致;哈密瓜果實(shí)H2O2含量短暫升高接著下降并低于對(duì)照至貯藏結(jié)束,該現(xiàn)象與番茄[29]、青椒[30]果實(shí)的試驗(yàn)結(jié)論相似。另有研究表明,熱處理誘導(dǎo)果蔬中的活性氧含量短暫而迅速地積累,并且這種活性氧信號(hào)在增強(qiáng)果蔬抗冷性中起到了關(guān)鍵作用,主要是通過(guò)提高果蔬抗氧化酶體系的活性,增強(qiáng)機(jī)體清除活性氧的能力[26]。本試驗(yàn)中,哈密瓜果實(shí)經(jīng)熱處理后發(fā)生“氧化迸發(fā)”,在活性氧信號(hào)分子誘發(fā)下,清除酶POD和SOD活性得以激發(fā)升高,尤其后期POD活性出現(xiàn)大幅度升高,從而有效促進(jìn)H2O2和O2·?發(fā)生降解,使得第35天熱處理冷害率比對(duì)照低27%,同時(shí)熱處理抑制抗壞血酸和可溶性固形物含量下降,較好保持果實(shí)品質(zhì),與在番茄[31]、櫻桃[32]上的結(jié)果相似;熱處理降低MDA含量和細(xì)胞膜透性,減輕果實(shí)冷害癥狀,該結(jié)論與熱激減輕柿子及楊梅冷害的研究結(jié)果類似[33-34],與熱空氣和熱水在柑橘和葡萄果實(shí)上的研究結(jié)果一致[35-36]。表明熱處理可能通過(guò)影響果蔬相關(guān)膜蛋白的活性而改變細(xì)胞膜透性,提高膜的耐冷性和穩(wěn)定性,抑制膜滲透率的增加,從而減少M(fèi)DA的積累[38]。相反對(duì)照哈密瓜果實(shí)在冷藏期間POD和SOD活性低于熱處理,使貯藏中后期H2O2和的含量上升明顯,導(dǎo)致活性氧積累,加劇細(xì)胞膜脂的過(guò)氧化進(jìn)程,使細(xì)胞膜區(qū)域化遭到破壞,細(xì)胞膜透性上升,膜脂過(guò)氧化產(chǎn)物MDA大量積累,最終導(dǎo)致冷藏至第35 天冷害癥狀發(fā)生比較嚴(yán)重。

4 結(jié) 論

哈密瓜經(jīng)55℃熱水處理3 min在低溫冷藏過(guò)程中,與對(duì)照相比,誘導(dǎo)前期活性氧信號(hào)分子迸發(fā),激發(fā)過(guò)氧化物酶(POD)和超氧化物歧化酶(SOD)活性升高(P<0.05),在貯藏后期(21~35 d)過(guò)氧化物酶(POD)活性升高更加顯著(P<0.01),降低貯藏中后期(14~35 d)H2O2和的積累(P<0.05),抑制細(xì)胞膜相對(duì)滲透率(除第21天)和丙二醛(MDA)含量上升(21~35 d)(P<0.05),降低果實(shí)的冷害率(第35天)(P<0.05),緩解果實(shí)可溶性固形物(除第28天)和抗壞血酸含量下降(P<0.05),較好保持果實(shí)品質(zhì)。對(duì)照果實(shí)貯藏至35天時(shí),果實(shí)出現(xiàn)較為嚴(yán)重的失水皺縮,失重率為6.61%,移至常溫后,出現(xiàn)水浸斑,冷害率較熱處理高出27%。表明熱處理可以通過(guò)調(diào)節(jié)抗氧化酶體系的活性來(lái)維持活性氧代謝平衡,延緩膜脂過(guò)氧化進(jìn)程,從而減輕果實(shí)的冷害。

[參考文獻(xiàn)]

[1] 許玲,張維一,田允溫. 低溫冷害對(duì)哈密瓜外部形態(tài)和細(xì)胞結(jié)構(gòu)的影響[J]. 植物學(xué)報(bào),1990,32(10):772-776. Xu Ling, Zhang Weiyi, Tian Yongwen. Effects of chilling injury in Hami melon external form and the cellular structure[J]. Acta botanica sinica, 1990, 32(10): 772-776. (in Chinese with English abstract)

[2] Perotti V E, Del Vecchio H A, Sansevich A, et al. Proteomic,metabalomic, and biochemical analysis of heat treated Valencia oranges during storage[J]. Postharvest Biology and Technology, 2011, 62(2): 97-114.

[3] Shadmania N, Ahmada S H, Saarib N, et al. Chilling injury incidence and antioxidant enzyme activities of Carica papaya L. ‘Frangi’ as influenced by postharvest hot water treatment and storage temperature[J]. Postharvest Biology and Technology, 2015, 99(1): 114-119.

[4] Bassala M, El-Hamahmy M. Hot water dip and preconditioning treatments to reduce chilling injury and maintain postharvest quality of Navel and Valencia oranges during cold quarantine[J]. Postharvest Biology and Technology, 2011, 60(3): 186-191.

[5] Luengwilai1 K, Beckles D M, Saltveit M E. Chilling-injury of harvested tomato (Solanum lycopersicum L.) cv. Micro-Tom fruit is reduced by temperature pre-treatments[J]. Postharvest Biology and Technology, 2012, 63(1): 123-128.

[6] Maa Q Suoa J, Huberb D J, Dong Xiao qing, et al. Effect of hot water treatments on chilling injury and expression of a new C-repeat binding factor (CBF) in ‘Hongyang’ kiwifruit during low temperature storage[J]. Postharvest Biology and Technology, 2014, 97(11): 102-110.

[7] Shadmani N, Ahmad S H, Saari N, et al. Chilling injury incidence and antioxidant enzyme activities of Carica papaya L. ‘Frangi’ as influenced by postharvest hot water treatment and storage temperature[J]. Postharvest Biology and Technology, 2015, 99(1): 114-119.

[8] Shao X, Tu K. Hot air treatment improved the chilling resistance of loquat fruit under cold storage[J]. Journal of Food Processing and Preservation, 2014, 38(2): 694-703.

[9] Zhang X, Shen L, Li F, et al. Arginase induction by heat treatment contributes to amelioration of chilling injury and activation of antioxidant enzymes in tomato fruit[J]. Postharvest Biology and Technology, 2013, 79(5): 1-8.

[10] 趙云峰,顧佳宇,尹學(xué)杰,等. 熱處理對(duì)采后茄子果實(shí)冷害和活性氧代謝的影響[J]. 揚(yáng)州大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2011,32(3):78-82. Zhao Yunfeng, Gu Jiaoyu, Yin Xuejie, et al Effects of heat treatment on chilling injury and active oxygen metabolism of postharvest eggplant fruit[J]. Journal of Yangzhou University (Agricultural and Lile Science Edition), 2011, 32(3): 78-82. (in Chinese with English abstract)

[11] 周開兵,羅軼旗,黃燕,等. 熱處理對(duì)黃皮果實(shí)貯藏效果和活性氧代謝的影響[J]. 山地農(nóng)業(yè)生物學(xué)報(bào),2010,29(1):28-34. Zhou Kaibing, Luo Yiqi, Huang Yan. et al. Effects of heat treatment on storage and active oxygen metabolism of postharvest wampee fruit[J]. Journal of mountain agricultureand biology, 2010, 29(1): 28-34. (in Chinese with English abstract)

[12] 千春錄,何志平,林菊,等. 熱處理對(duì)黃花梨冷藏品質(zhì)和活性氧代謝的影響[J]. 食品科學(xué),2013,34(2):303-306. Qian Chunlu, He Zhiping,Lin Ju, et al. Effects of heat treatment on quality and active oxygen metabolism of postharvest yellow pear fruit[J]. Food Science, 2013, 34(2): 303-306. (in Chinese with English abstract)

[13] 王會(huì)松,王子昊,龐廣昌. 熱處理對(duì)哈密瓜蔗糖和乳酸通量的影響[J]. 食品科學(xué),2015,36(18):21-26. Wang Huisong, Wang Zihao, Pang Guangchang. Effects of heat treatment on sugar and lactic acid flux in hami melon[J]. Food Science, 2015, 36(18): 21-26. (in Chinese with English abstract)

[14] 耿新麗,張翠環(huán),姚軍,等. 熱處理對(duì)哈密瓜‘西州密25號(hào)’采后貯藏特性的影響[J]. 新疆農(nóng)業(yè)科學(xué),2015,28(5):34-36. Geng Xinli, Zhang Cuihuan, Yao Jun, et al. Effect of heat treatment on melon ‘Xizhoumi No.25’ postharvest storage characteristics[J]. Xinjiang Agricultural Science, 2015, 28(5): 34-36. (in Chinese with English abstract)

[15] 程俊嘉,袁鋒,李學(xué)文,等. 殼聚糖、熱處理結(jié)合咪鮮胺對(duì)哈密瓜采后生化代謝的影響[J]. 食品科技,2015,40(9):349-354. Cheng Junjia, Yuan Feng, Li Xuewen, et al. Effect of prochloraz with chitosan and heat treatment on the Hami melon biochemical metabolism during preservation[J]. Food science and technology, 2015, 40(9): 349-354. (in Chinese with English abstract)

[16] 祁巖龍,李學(xué)文,廖新福,等. 響應(yīng)曲面法研究熱處理對(duì)哈密瓜采后品質(zhì)的影響[J]. 新疆農(nóng)業(yè)科學(xué),2010,48(8):1451-1457. Qin Yanlong, Li Xuewen, Liao Xingfu, et al. The study of the effect of heat treatment on postharvest Hami melon quality with response surface method[J]. Xinjiang agricultural science, 2010, 48(8): 1451-1457. (in Chinese with English abstract)

[17] 劉同業(yè),張婷,車?guó)P斌,等. 不同貯藏溫度下西州密25號(hào)哈密瓜果實(shí)冷害生理的研究[J]. 新疆農(nóng)業(yè)科學(xué),2015,52(1):26-32. Liu Tongye, Zhang Ting, Che Fengbin, et al. Studies on chilling injury physiology of Xizhoumi No.25 HamiMelon fruits at different storage temperatures[J]. Xinjiang Agricultural Science, 2015, 52(1): 26-32. (in Chinese with English abstract)

[18] 曹健康,姜微波,趙玉梅. 果蔬采后生理生化試驗(yàn)指導(dǎo)[M].北京,中國(guó)農(nóng)業(yè)大學(xué),2007. Cao Jiankang, Jiang weibo, Zhao Yumei. Fruits and vegetables postharvest physiological and biochemical experiment guidance[M]. Beijing, China agricultural university, 2007.

[19] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding[J]. Analytical Biochemistry,1976, 72: 248-254.

[20] Apai W. Effects of fruit dipping in hydrochloric acid then rinsing in water on fruit decay and browning of longan fruit[J]. Crop Protection, 2010, 29(10): 1184-1189.

[21] 余芳,邵興鋒,許鳳,等. 果實(shí)低溫貯藏期間糖代謝變化研究進(jìn)展[J]. 果樹學(xué)報(bào),2014,31(1):125-131. Yu Fang, Shao Xingfeng, Xu Feng, et al. The research progress of changes in fruit sugar metabolic during low temperature storage[J]. Journal of Fruit Trees, 2014, 31(1): 125-131. (in Chinese with English abstract)

[22] Luo Zisheng, Chen Chun, Xie Jing. Effect of salicylic acid treatment on alleviating postharvest chilling injury of ‘Qingnai’ plum fruit[J]. Postharvest Biology and Technology,2011, 62(2): 115-120.

[23] Lurie S, Nussionovitch A. Compression characteristics firmness and texture perception of heat treated and unheated apples[J]. International Journal of Food Science and Technology, 1996, 31: 1-5.

[24] Bi Y, Liu S, Zhao H, et al. Effect of temperature on chilling injury,decay and quality of Hami melon during storage[J]. Postharvest Biology and Technology, 2003, 29(2): 229-232.

[25] Bramlage Du, Z W J. Peroxidative activity of apple peel in relation to development of poststorage disorders[J]. Hort Science, 1995, 30(4): 205-209.

[26] 王海波,張昭其,鄧?guó)欌彛? 熱處理提高采后果蔬抗冷性的機(jī)理分析[J]. 廣東農(nóng)業(yè)科學(xué),2015,15:57-64. Wand Haibo, Zhang Shaoqi, Deng Hongling, et al. Mechanism of chilling tolerance induced by heat treatment in fruits and vegetables[J]. Guangdong Agricultural Science,2015, 15: 57-64. (in Chinese with English abstract)

[27] Pletjushkina O Y, Fetisova E K, Lyamzave K G, et al. Hydrogen peroxide produced inside mitochondria takes part in cell-to-cell transmission of apoptotic signal[J]. Biochemistry, 2006, 71(1): 60-67.

[28] Tetsuya S, Naoki Y, Yoshio F, et al. Effects of heat treatment on an ascorbate-glutathione cycle in stored broccoli florets[J]. Postharvest Biology and Technology, 2005, 38(5): 152-159.

[29] 歐陽(yáng)麗喆,申林,陳海榮,等. H2O2參與冷激處理對(duì)番茄果實(shí)抗冷性及抗氧化酶活性的影響[J].食品科學(xué),2007,28(7):31-35. Ou Yanglizhe, Shen Lin, Chen Hairong, et al. Effects of H2O2on the cold resistance and antioxidant enzymes activity of tomato fruits[J]. Food Science, 2007, 28(7): 31-35. (in Chinese with English abstract)

[30] 王慧,張艷梅,王大鵬,等. 熱激處理對(duì)青椒耐冷性及抗氧化體系的影響[J]. 食品科學(xué),2013,34(2):312-316. Wang Hui, Zhang Yanmei, Wang Dapeng, et al. Effects of heat shock treatment on chilling injury and antioxidant enzyme systems in hot green peppers[J]. Food Science. 2013,34(2): 312-316. (in Chinese with English abstract)

[31] Zhao Danying, Shen Lin, Fan Bei, et al. Physiological and genetic properties of tomato fruits from cultivars differing in chilling tolerance at cold storage[J]. Food Science. 2009,74(5): 348-352.

[32] 張平,張鵬,劉輝,等. 不同低溫處理對(duì)櫻桃冷害發(fā)生的影響[J]. 食品科學(xué),2012,33(12):303-308.Zhang Ping, Zhang Peng, Liu Hui, et al. The influence of different cryogenic treatment on cherry chilling injury happened[J]. Food science, 2012, 33(12): 303-308. (in Chinese with English abstract)

[33] 羅自生,徐曉玲,蔡偵偵,等. 熱激減輕柿果冷害與活性氧代謝的關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(8):249-252. Luo Zisheng, Xu Xiaolin, Cai Zhenzhen, et al. The relationship between reducing the persimmon fruit chilling injury and active oxygen metabolism with heat shock treatment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007,23(8): 249-252. (in Chinese with English abstract)

[34] 汪開拓,鄭永華. 熱空氣處理對(duì)楊梅果實(shí)采后活性氧代謝和熱激蛋白合成的影響[J]. 食品科學(xué),2011,8(32):291-295. Wang Kaituo, Zheng Yonghua. The effects of hot air treatment on active oxygen metabolism and heat shock protein synthesis of postharvest waxberry fruit[J]. Food science, 2011, 8(32): 291-295. (in Chinese with English abstract)

[35] Sala J M, Lafuente M T. Catalase enzyme activity is related to tolerance of mandarin fruits to chilling[J]. Postharvest Biology and Technology, 2000, 20(1): 81-89.

[36] 寇莉萍,劉興華,黃彥博,等. 熱水處理對(duì)輕度加工葡萄粒保護(hù)酶活性和膜脂過(guò)氧化的影響[J]. 中國(guó)食品學(xué)報(bào),2006,6(4):111-115. Kou Liping, Liu Xinghua, Huang Yanbo, et al. The influence of hot water treatment on protective enzyme activity of mild processing grape grain and membrane lipid peroxide[J]. Journal of Chinese Food, 2006, 6(4): 111-115. (in Chinese with English abstract)

[37] Wang Kaituo, Jin Peng, Shang Haitao, et al. A combination of hot air treatment and nano-packing reduces fruit decay and maintains quality in postharvest Chinese bayberries[J]. Journal of the Science of Food and Agriculture, 2010, 90(14): 2427-2432.

Reduction of active oxygen metabolism and mitigation of chilling injury in Hami melon fruit as influenced by postharvest hot water treatment

Wang Jing1,2, Mao Linchun1※, Li Xunwen2, Zhang Hui2, Zhang Mingming2, Ju Guodong2
(1. College of Biologicɑl Systems Engineering ɑnd Food Science, Zhejiɑng University, Zhejiɑng Agriculturɑl Products Processing Technology Reseɑrch Key Lɑborɑtory, Hɑngzhou 310058, Chinɑ;2. College of Food Science ɑnd Phɑrmɑcy, Xinjiɑng Agriculturɑl University, Urumqi 830000, Chinɑ)

Abstract:In the present study, we examined the effect of heat-treatment on chilling injury and active oxygen metabolism in Hami melon. Hami melon “Xizhoumi 25” was used in this experiment. The fruits were immersed fully in hot water of 55 ℃ or normal water at (22±2)℃ for 3 min, and then stored at (3-5)℃ for 35 d. Quality and physiological changes in fruits were measured during the storage period. The results showed that the contents of H2O2andin heat-treated fruits were higher than the control fruits within the first 14 d, which indicated that a prompt increase in H2O2andwas induced after the treatment, and the accumulation achieved the maximum on the 14thday (P<0.05), but the treatment reduced the H2O2andaccumulations at the middle and later period of storage (from the 14thto the 35th) (P<0.05). The active oxygen signal played a key role in cold resistance of fruit. Through improving the activities of peroxidase (POD) (P<0.05) and superoxide dismutase (SOD) (P<0.05), a higher scavenging capacity of reactive oxygen free radical was maintained, and the increase of cell membrane relative permeability except for the 21stday (P<0.05) and malondialdehyde (MDA) (P<0.05) from the 21stto the 35thday were inhibited effectively. So the heat-treatment reduced the chilling injury, prevented the loss of total soluble solids and ascorbic acid contents, and it could better maintain the quality of Hami melon. But the activities of POD and SOD of control fruits were lower than the heat-treatment fruits during the cold storage, and H2O2andcontent increased obviously at the middle and later periods of the storage, which led to the accumulation of reactive oxygen species, promoted the membrane lipid peroxide, and ruined the regionalization of the cell membrane; the cell membrane permeability and plasmalemma peroxide produced the MDA accumulation in great quantities, and eventually the serious chilling injury occurred on the 35thday. The control fruits showed the serious water loss shrinking and the weightlessness rate was 6.61% after moved to room temperature; the chilling injury rate of control fruits was 27% higher than that of the heat-treatment. Therefore, this method is effective to reduce the chilling injury of postharvest fruit storage and has a certain popularization value and application prospect. These results suggest that heat-treatment may induce active oxygen signal molecule, improve the active oxygen scavenging enzyme activities, delay membrane lipid peroxidation process, and thereby prevent the development of chilling injury in Hami melon fruit. The results provide a theoretical reference for Hami melon postharvest storage.

Keywords:heat treatment; fruits; cold storage; Hami melon; chilling injury; active oxygen

通信作者:※茅林春,男,浙江人,博士生導(dǎo)師。杭州浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,浙江省農(nóng)產(chǎn)品加工技術(shù)研究重點(diǎn)試驗(yàn)室,310058。Email:linchun@zju.edu.cn

作者簡(jiǎn)介:王靜,女,新疆伊犁人,博士生,研究方向:農(nóng)產(chǎn)品貯藏與加工。杭州浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,浙江省農(nóng)產(chǎn)品加工技術(shù)研究重點(diǎn)試驗(yàn)室,310058;烏魯木齊 新疆農(nóng)業(yè)大學(xué)食品科學(xué)與藥學(xué)學(xué)院,830000。Email:wxj770903@163.com

基金項(xiàng)目:“十二五”國(guó)家科技計(jì)劃項(xiàng)目“新疆瓜果現(xiàn)代貯運(yùn)關(guān)鍵技術(shù)研發(fā)與示范(2011BAD27B01);新疆維吾爾自治區(qū)科技廳科技支疆項(xiàng)目(編號(hào):201291144);新疆農(nóng)業(yè)大學(xué)校級(jí)大學(xué)生創(chuàng)新項(xiàng)目(jqztp72013117))

收稿日期:2015-06-18

修訂日期:2015-11-23

中圖分類號(hào):S6

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1002-6819(2016)-02-0280-07

doi:10.11975/j.issn.1002-6819.2016.02.040

猜你喜歡
哈密瓜活性氧冷藏
我最喜歡吃哈密瓜
食物冷藏不要超過(guò)多少天
哈密瓜:鄉(xiāng)間蜜罐
哪些應(yīng)該放冷藏?哪些應(yīng)該放冷凍?哪些不用放冰箱?
媽媽寶寶(2017年2期)2017-02-21 01:21:04
冷藏保溫車發(fā)展?jié)摿Ρ患ぐl(fā)
專用汽車(2016年5期)2016-03-01 04:14:39
再談冷藏保溫車:市場(chǎng)已升溫
專用汽車(2016年5期)2016-03-01 04:14:38
TLR3活化對(duì)正常人表皮黑素細(xì)胞內(nèi)活性氧簇表達(dá)的影響
硅酸鈉處理對(duì)杏果實(shí)活性氧和苯丙烷代謝的影響
O2聯(lián)合CO2氣調(diào)對(duì)西蘭花活性氧代謝及保鮮效果的影響
活性氧調(diào)節(jié)單核細(xì)胞增生李斯特菌菌膜形成
绵阳市| 镇原县| 时尚| 容城县| 盐山县| 长武县| 吴川市| 四子王旗| 毕节市| 肇源县| 梁河县| 富川| 普兰店市| 金阳县| 大洼县| 诸城市| 珠海市| 鹿泉市| 永安市| 南通市| 静安区| 建瓯市| 霍林郭勒市| 平顶山市| 岳阳县| 南昌市| 宁晋县| 衡阳县| 彰化市| 永顺县| 额尔古纳市| 酉阳| 江山市| 江川县| 郎溪县| 泸州市| 西青区| 壶关县| 巴楚县| 平凉市| 合作市|