郭 萍,李紅娜,李 峰(中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所清潔流域團(tuán)隊(duì),北京100081)
?
MST與水環(huán)境生物源污染定量化溯源
郭萍,李紅娜,李峰
(中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所清潔流域團(tuán)隊(duì),北京100081)
摘要:微生物溯源技術(shù)(Microbial source tracking,MST)通過(guò)靶標(biāo)生物標(biāo)記定位污染來(lái)源,為難以確定污染來(lái)源的非點(diǎn)源生物源污染監(jiān)測(cè)提供了技術(shù)手段?;谖⑸锼菰醇夹g(shù)從定性到定量化的發(fā)展歷程,介紹了MST技術(shù)的產(chǎn)生、發(fā)展與特點(diǎn)以及MST在水環(huán)境污染監(jiān)測(cè)與管理中的應(yīng)用;重點(diǎn)論述了擬桿菌(Bacteroides spp.)基因標(biāo)記水環(huán)境定量化溯源的研究進(jìn)展,集中分析了溫度、光照、鹽度等環(huán)境因子對(duì)擬桿菌基因標(biāo)記環(huán)境衰變的影響以及環(huán)境因子與定量化溯源結(jié)果準(zhǔn)確性的相關(guān)關(guān)系,并據(jù)此判定環(huán)境生物因子可能對(duì)基因標(biāo)記環(huán)境衰變結(jié)果存在一定的影響。依據(jù)目前定量溯源研究與應(yīng)用現(xiàn)狀,提出了提高擬桿菌定量溯源準(zhǔn)確性和廣泛性的研究重點(diǎn)和應(yīng)用前景。
關(guān)鍵詞:微生物溯源技術(shù);生物源污染;定量化溯源
郭萍,李紅娜,李峰. MST與水環(huán)境生物源污染定量化溯源[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2016, 35(2):205-211.
生物源污染包括養(yǎng)殖場(chǎng)廢水和生活污水,由于這類廢水中的糞尿污染物攜帶大量的腸道微生物,具備了微生物溯源的可行性。由于眾多的生物污染源具有非點(diǎn)源排放的特性,通過(guò)目標(biāo)污染環(huán)境其他非生物成分很難準(zhǔn)確定位污染源,給污染管理和治理工作造成了一定的難度。微生物溯源技術(shù)(MST)以其無(wú)需對(duì)污染物人為標(biāo)識(shí)、污染源分類定位快速而引起研究者極大的興趣,21世紀(jì)以來(lái),美國(guó)、加拿大、澳大利亞、日本及歐盟部分發(fā)達(dá)國(guó)家紛紛開展了利用微生物溯源技術(shù)監(jiān)測(cè)水體生物源污染的研究和應(yīng)用工作,并逐漸提高污染檢測(cè)的定量化水平,為水環(huán)境污染管理和疾病防治提供了科學(xué)依據(jù)[1-8]。我國(guó)近幾年也開始了相關(guān)的研究工作,并在方法的適宜性研究與應(yīng)用方面取得了一定的進(jìn)展。
本文梳理了微生物溯源技術(shù)從起源、定性到定量化的發(fā)展,重點(diǎn)論述了定量化溯源指示微生物擬桿菌及其水環(huán)境定量化溯源的研究進(jìn)展。擬桿菌作為主要的腸道微生物菌群,以其環(huán)境的不可繁殖性和較強(qiáng)的宿主鑒別能力成為定量化溯源的研究重點(diǎn)。針對(duì)目前擬桿菌定量化溯源的研究結(jié)果與進(jìn)展,提出深入全面研究其他污染指標(biāo)、環(huán)境因子與定量化檢測(cè)結(jié)果的相關(guān)關(guān)系,提高定量化檢測(cè)與溯源結(jié)果的準(zhǔn)確性,將有助于微生物溯源技術(shù)在環(huán)境尤其是水環(huán)境定量化溯源中更廣泛的應(yīng)用。
1.1 MST技術(shù)起源
MST技術(shù)最早產(chǎn)生于水體糞便污染樣品的診斷。20世紀(jì)60年代末70年代初有學(xué)者提出以糞大腸菌群(Fecal coliform,F(xiàn)C)和糞鏈球菌(Fecal streptococ cus,F(xiàn)S)的比例區(qū)分人類和其他動(dòng)物源糞便污染,兩者比例大于4(FC/FS>4)確定為人源的污染,小于0.7 (FC/FS<0.7)確認(rèn)為其他動(dòng)物源的污染[9-10]。90年代研究細(xì)化了其他動(dòng)物源污染,提出當(dāng)FC/FS>4時(shí)可以認(rèn)為是人源糞便污染,0.1<FC/FS<0.6是畜禽養(yǎng)殖排泄物造成的污染,而當(dāng)FC/FS<0.1時(shí)則認(rèn)為是野生動(dòng)物糞便污染[11]。但也有研究發(fā)現(xiàn)這種方法得到的結(jié)果并不能完全準(zhǔn)確診斷污染源,因?yàn)榧S大腸桿菌和糞鏈球菌的生長(zhǎng)速率和生存能力不同,兩者的比率會(huì)隨著體外存續(xù)時(shí)間的延長(zhǎng)而發(fā)生變化[12-13]。因此,美國(guó)公共健康協(xié)會(huì)(American Public Health Association,APHA)便不再推薦以FC/FS的比率來(lái)區(qū)分人類和動(dòng)物來(lái)源的糞便污染。如何篩選到有效的生物標(biāo)記并建立生物源污染診斷的適宜方法再次激發(fā)了人們的研究興趣。
1.2 MST技術(shù)發(fā)展
篩選MST微生物宿主特異性生物標(biāo)記的廣泛研究始于20世紀(jì)80年代[14-16],Scott等[17]提出理想指示微生物應(yīng)該具備能夠反映水體污染情況、不是致病菌、能夠快速檢出、容易計(jì)數(shù)、和致病菌存在較密切聯(lián)系、非目標(biāo)環(huán)境土著微生物等特點(diǎn),并據(jù)此建立了指示微生物的篩選標(biāo)準(zhǔn)。篩選出的微生物包括大腸菌群(Total coliforms)、糞大腸菌群(Fecal coliforms)、大腸桿菌(E. coli)和腸球菌(Enterococci)這類溫血?jiǎng)游锬c道及糞便中普遍存在的細(xì)菌,研究與應(yīng)用最多的當(dāng)屬大腸桿菌和腸球菌,這類細(xì)菌的監(jiān)測(cè)結(jié)果可以作為環(huán)境樣品是否受到生物源污染的判別依據(jù)。
研究結(jié)果認(rèn)為定量化溯源指示微生物應(yīng)符合以下條件:(1)只存在于靶標(biāo)污染源中,即宿主特異性標(biāo)準(zhǔn);(2)靶標(biāo)污染源中的濃度或者含量要足夠多,即檢測(cè)靈敏度標(biāo)準(zhǔn);(3)已知不同污染源生物標(biāo)記的環(huán)境存續(xù)性和增殖能力,即定量分析的可比性標(biāo)準(zhǔn)[2]。
擬桿菌(Bacteroides spp.)在眾多的候選指示菌中受到了更多的關(guān)注,并成為定量化溯源研究的主要指示微生物。擬桿菌作為腸道中的主要厭氧菌群,具有數(shù)量眾多,在環(huán)境中不可繁殖,同時(shí)具有較高分類水平的宿主特異性基因標(biāo)記,因此以擬桿菌特異性生物標(biāo)記為基礎(chǔ)的定性與定量溯源技術(shù)得到了快速發(fā)展[36-37]。Bernhard和Field[3]最先在MST技術(shù)中利用了擬桿菌特異性生物標(biāo)記。目前針對(duì)人、雞、狗、加拿大雁、馬、反芻動(dòng)物和豬糞便的溯源方法已經(jīng)先后建立并應(yīng)用到實(shí)際的水環(huán)境監(jiān)測(cè)中[38-47]。王顯貴等[48]建立了qPCR定量檢測(cè)模擬水體中豬源擬桿菌特異性生物標(biāo)記的方法,以宿主特異性引物定量識(shí)別檢測(cè)水體中豬源擬桿菌16S rRNA基因拷貝數(shù),從而確定豬源擬桿菌污染量,以進(jìn)一步明確水體受豬場(chǎng)廢水污染的程度。該方法以混合污水進(jìn)行試驗(yàn)時(shí),表現(xiàn)出了很好的特異性,能夠排除其他寄主來(lái)源擬桿菌的干擾。
當(dāng)然,即使不依賴培養(yǎng)建庫(kù)的生物標(biāo)記也具有一定的時(shí)空差異[49],所以更好地了解基因標(biāo)記的環(huán)境持續(xù)性、時(shí)空變異性、基因標(biāo)記與其他污染指標(biāo)的定量關(guān)系顯得尤為重要,這也成為近幾年和今后的研究重點(diǎn)。
絕大多數(shù)水體對(duì)生物源污染非常敏感,因?yàn)樯镌次廴静粌H能通過(guò)娛樂(lè)水體和飲用水引起人類疾病,而且能破壞水體生態(tài)環(huán)境產(chǎn)生富營(yíng)養(yǎng)化、引起水生生物毒害。目前,重金屬和抗生素也成為我國(guó)生物源污染的威脅。因此利用MST明確水體生物源污染來(lái)源和污染貢獻(xiàn)率對(duì)于水環(huán)境污染治理和病害防治方法的建立非常關(guān)鍵。
2.1 MST與其他污染指標(biāo)的相關(guān)性
MST在國(guó)外主要用于娛樂(lè)水質(zhì)監(jiān)測(cè)、健康和最大污染負(fù)荷管理,主要針對(duì)水環(huán)境中與人類健康相關(guān)的致病微生物[1,50-52],研究熱點(diǎn)集中在一些與致病微生物或某些病癥關(guān)系相對(duì)比較清楚的指示微生物,例如大腸桿菌和腸球菌等。但是隨著對(duì)病原菌與指示微生物關(guān)系的深入研究,也出現(xiàn)了不同程度的分歧,大部分結(jié)果認(rèn)為它們之間存在相關(guān)性[53],但也有研究者認(rèn)為它們之間不存在相關(guān)性或相關(guān)性很低[6,38,54]。研究結(jié)果的差異與所選擇的指示微生物生物標(biāo)記和環(huán)境條件都有一定的關(guān)系,為提高結(jié)果的可靠性和準(zhǔn)確率,在實(shí)際應(yīng)用中應(yīng)結(jié)合環(huán)境條件進(jìn)行多標(biāo)記印證。
盡管生物源污染緊密伴隨著富營(yíng)養(yǎng)化和水生生物毒害,但是目前生物標(biāo)記與生物源污染相關(guān)的氮、磷、重金屬和抗生素等的相關(guān)性研究和應(yīng)用仍然比較少。Weidhaas等[55]以短桿菌(Brevibacterium sp.)LA35基因?yàn)榧仪菁S便生物標(biāo)記,通過(guò)qPCR技術(shù)確定了該生物標(biāo)記與家禽糞便、徑流、地表水和地下水中糞便指示微生物和重金屬的相關(guān)性,并且發(fā)現(xiàn)該生物標(biāo)記拷貝數(shù)與大腸桿菌、腸球菌、砷、銅、磷和鋅的濃度有共變關(guān)系,因?yàn)橹灰谀軌驒z出該生物標(biāo)記的徑流樣品中,指示微生物和砷、銅、磷、鋅的濃度也較沒(méi)有檢出生物標(biāo)記的樣品中高。目前國(guó)內(nèi)未見利用微生物對(duì)水體中相關(guān)指標(biāo)進(jìn)行溯源的研究報(bào)道。盡管氮磷是生物源污染的主要成分,但尚未見應(yīng)用微生物溯源技術(shù)對(duì)水體中氮磷富營(yíng)養(yǎng)化物質(zhì)進(jìn)行溯源的報(bào)道。
無(wú)論如何,要明確水環(huán)境生物源其他監(jiān)測(cè)指標(biāo)與指示微生物生物標(biāo)記的相關(guān)性,生物標(biāo)記在環(huán)境因子影響下定量檢出的準(zhǔn)確性是進(jìn)一步研究的關(guān)鍵。
綜上,分析兩罪犯罪構(gòu)成要件的不同之處,我們很容易將二者區(qū)分,并清晰探知嫖宿幼女罪在刑法分則中所處位置的意義,它與強(qiáng)奸罪有重合部分,但又各司其職,屬于特別法與一般法的關(guān)系。
2.2擬桿菌與水環(huán)境污染定量化溯源
擬桿菌是水環(huán)境定量化溯源研究與應(yīng)用相對(duì)集中的指示菌,目前應(yīng)用研究的關(guān)注點(diǎn)主要集中在擬桿菌環(huán)境存續(xù)性和衰變方面。盡管目前建立了許多人類和動(dòng)物糞便的基因特異性標(biāo)記,但由于基因標(biāo)記的環(huán)境持續(xù)性差異,雖然在定性層面上的研究結(jié)果相對(duì)比較一致,但是不同地理區(qū)域的定量溯源結(jié)果差異相對(duì)比較大。即使同一地區(qū),如果對(duì)于擬桿菌基因標(biāo)記水環(huán)境衰變機(jī)制不十分清楚,也可影響擬桿菌基因標(biāo)記定量溯源技術(shù)在實(shí)際水環(huán)境的應(yīng)用效果[56-58]。由于擬桿菌在環(huán)境中的不可繁殖性,其基因標(biāo)記環(huán)境持續(xù)性的本質(zhì)就是擬桿菌基因標(biāo)記在水環(huán)境中的衰退,尤其是在生物因子和非生物因子交互作用影響下的衰退。目前相關(guān)性的研究報(bào)道主要集中在水環(huán)境非生物因子對(duì)指示菌和特異性基因標(biāo)記衰變速率的影響方面[7,37,49,59-61],且研究結(jié)果也不盡相同,有的甚至截然相反。
有研究認(rèn)為不同寄主來(lái)源的擬桿菌基因標(biāo)記的環(huán)境行為趨勢(shì)一致,其中以溫度與基因標(biāo)記環(huán)境存續(xù)量的負(fù)相關(guān)關(guān)系最為一致[48,62-64],盡管不同的研究結(jié)果在二者的相關(guān)程度上有差異,但并不影響相關(guān)結(jié)論的一致性。而與基因標(biāo)記環(huán)境存續(xù)量相關(guān)的其他環(huán)境因子的研究結(jié)果卻不盡相同,有的甚至完全相反,比如鹽度、光照對(duì)擬桿菌基因標(biāo)記持續(xù)性的影響、擬桿菌基因標(biāo)記與活菌細(xì)胞和可培養(yǎng)菌群的相對(duì)衰變速率等。
Marti等[42]認(rèn)為水中的溶解氧和溫度都對(duì)豬源宿主特異性擬桿菌生物標(biāo)記的穩(wěn)定性影響較大。Okabe 等[7]研究結(jié)果表明寄主特異性基因標(biāo)記在不同鹽度水體中的行為特征沒(méi)有差異,只與溫度相關(guān)。Okabe以可培養(yǎng)脆弱擬桿菌作為擬桿菌參照,研究了擬桿菌人源特異性基因標(biāo)記Human-Bac1、豬源特異性基因標(biāo)記Pig-Bac2、牛源特異性基因標(biāo)記Cow-Bac2等在不同的溫度和鹽度水環(huán)境條件下的衰變行為,在低溫(4℃)高鹽(海水)的環(huán)境中存續(xù)時(shí)間較高溫(30℃)低鹽(淡水)下的持續(xù)時(shí)間長(zhǎng),同時(shí)基因標(biāo)記與活菌的衰變速率無(wú)差異,明顯低于可培養(yǎng)大腸菌群和脆弱擬桿菌的衰變速率。Bae等[63,65-66]利用加入PMA(疊氮溴化丙錠,Propidium monoazide)和不加入PMA提取DNA,研究了擬桿菌活細(xì)胞與基因標(biāo)記的衰變,結(jié)果表明基因標(biāo)記的持續(xù)時(shí)間(177 h)遠(yuǎn)高于活細(xì)胞(28 h),并且在海水中的衰變速率要快于淡水。Okabe與Bae關(guān)于基因標(biāo)記與活菌衰變速率研究結(jié)果的差異來(lái)源于二者選用的方法和參照活菌體系不同,Bae以與基因標(biāo)記相同的活菌作為比較對(duì)象,加入非活菌DNA檢出抑制劑PMA,研究結(jié)果較以可培養(yǎng)活菌作參照更接近實(shí)際情況。
Walters等[67]分別以DNA和cDNA為模板的qPCR (quantitative PCR)和RTPCR(real-time PCR)方法檢測(cè)了擬桿菌基因標(biāo)記和擬桿菌細(xì)胞的持續(xù)性,認(rèn)為基因標(biāo)記的衰變快于活菌細(xì)胞,兩者均快于大腸桿菌和腸球菌等指示菌,與Okabe和Bae的研究結(jié)果都不相同,可能與所選擇的基因標(biāo)記和檢測(cè)方法不同有關(guān),但基因標(biāo)記的衰變快于或者高于活細(xì)胞的結(jié)論有待進(jìn)一步的研究印證。同時(shí)Walters等的研究結(jié)果認(rèn)為光照對(duì)基因標(biāo)記沒(méi)有影響,而高溫(30℃)環(huán)境下的衰變速率遠(yuǎn)高于低溫(4℃)環(huán)境,進(jìn)一步為基因標(biāo)記與溫度負(fù)相關(guān)的研究結(jié)論提供了支撐。Dick等[59]以污水構(gòu)建擬桿菌通用基因標(biāo)記AIIBac、人基因標(biāo)記BacH、HF183及大腸桿菌的環(huán)境衰退速率研究體系,認(rèn)為在恒定的溫度(15℃)下,不同光照、底泥等環(huán)境因子的處理效果沒(méi)有顯著差異,但基因標(biāo)記都會(huì)出現(xiàn)比較快速的衰變,明顯高于大腸桿菌,與Walters等的研究結(jié)果相一致。Tambalo等[68]采用0.45 μm微孔濾膜過(guò)濾水樣提取DNA研究了基因標(biāo)記的環(huán)境衰變,結(jié)果表明人擬桿菌基因標(biāo)記BacH、反芻動(dòng)物基因標(biāo)記BacR、牛特異性基因標(biāo)記CowM2等在自然水環(huán)境中衰減99%的時(shí)間少于8 d,明顯快于大腸桿菌15 d以上的衰減期,同樣得出了基因標(biāo)記衰變速率快于大腸桿菌等指示菌的結(jié)論。這一結(jié)果與大腸桿菌的環(huán)境可繁殖性不無(wú)關(guān)系。
Ekaterina等[69]利用0.2 μm濾膜過(guò)濾水體提取DNA,研究了人基因標(biāo)記BacH和反芻動(dòng)物基因標(biāo)記BacR在水環(huán)境中遷移和衰變特征,認(rèn)為各基因標(biāo)記之間無(wú)差異,溫度是影響衰變的關(guān)鍵因子,基因標(biāo)記的衰退速率與溫度成正比,但不受光照的影響,并且基因標(biāo)記相對(duì)于總大腸菌群和腸球菌的衰變沒(méi)有顯著差異。其他的研究結(jié)果既有支持光照不會(huì)影響基因標(biāo)記衰變的觀點(diǎn)[59,63,67,70],也有支持基因標(biāo)記在光照條件下較黑暗條件下衰退更快的觀點(diǎn)[61-62]。光照影響擬桿菌基因標(biāo)記和擬桿菌衰變的不同結(jié)論,以及擬桿菌活菌和基因標(biāo)記衰減相對(duì)快慢的不同結(jié)論差異,可能與研究體系中的其他生物因子相關(guān),而關(guān)于其他生物因子如何在不同環(huán)境條件下影響了基因標(biāo)記衰變的研究相對(duì)較少。
目前關(guān)于生物因子對(duì)擬桿菌和擬桿菌基因標(biāo)記衰變和持續(xù)性的影響也有一些初步的研究報(bào)道。Kreader[71]認(rèn)為溫度是影響擬桿菌基因標(biāo)記環(huán)境持續(xù)性的關(guān)鍵因子,并提出原生生物捕食也是重要的影響因素,證據(jù)就是當(dāng)?shù)乇硭梅啪€菌酮-真核生物抑制劑和0.45 μm濾膜過(guò)濾處理后,其中擬桿菌基因標(biāo)記的持續(xù)周期會(huì)明顯延長(zhǎng),由此推斷擬桿菌基因衰變可能與真核生物的捕食相關(guān)。Kobayashi等[72]以18S rRNA監(jiān)測(cè)水體中各種原生動(dòng)物也得到了同樣的結(jié)果。有些研究也在擬桿菌基因標(biāo)記衰變與其他生物捕食相關(guān)方面給出了一些推斷性結(jié)論[8,61,70]。盡管以上的研究結(jié)果為生物因子和非生物因子對(duì)基因標(biāo)記環(huán)境持續(xù)性或者衰退的影響提供了一些證據(jù),但生物因子對(duì)基因標(biāo)記衰變的影響仍然有待深入,尤其是生物因子與非生物因子的互作機(jī)制,及其對(duì)基因標(biāo)記環(huán)境衰變的影響機(jī)制都還是未知數(shù)。
國(guó)內(nèi)在水環(huán)境微生物溯源監(jiān)測(cè)方法和應(yīng)用方面也做了初步探索研究,馮廣達(dá)[73-74]和張曦[75]等應(yīng)用大腸桿菌和擬桿菌的相關(guān)基因標(biāo)記分析了水源和飲用水的污染路徑,并證明了水源周邊的養(yǎng)豬場(chǎng)是造成水源和飲用水污染的重要污染源;馮雯雯[76]應(yīng)用腸球菌的抗生素抗性對(duì)近海岸水域的污染源進(jìn)行了比對(duì)分析,明確了在不同污染源分類水平下溯源結(jié)果的準(zhǔn)確率。
2.3 MST技術(shù)發(fā)展前景
微生物溯源技術(shù)作為一種新興的環(huán)境監(jiān)測(cè)手段以其環(huán)境友好性、監(jiān)測(cè)源廣泛、靈敏度高、樣品需求量少等優(yōu)點(diǎn)展示了很好的發(fā)展前景。在實(shí)際應(yīng)用中要考慮以下幾點(diǎn):
(1)適宜技術(shù)的選擇:利用微生物進(jìn)行溯源時(shí)要結(jié)合自己的目的和所具備的條件、實(shí)驗(yàn)要求等多方面因素選擇合適的溯源技術(shù)。此外多種溯源技術(shù)結(jié)合使用,相互驗(yàn)證能夠提高實(shí)驗(yàn)結(jié)果的可信度。
(2)環(huán)境參數(shù)的綜合考慮:因?yàn)槟壳暗难芯拷Y(jié)果還難以給出明確的環(huán)境應(yīng)用參數(shù),所以要建立應(yīng)用范圍廣、結(jié)果準(zhǔn)確可信、成本低、省時(shí)省力的環(huán)境應(yīng)用溯源技術(shù)還需進(jìn)一步深入研究基因標(biāo)記與環(huán)境參數(shù)的相關(guān)性,不斷完善檢測(cè)的靈敏度和準(zhǔn)確性,提高診斷結(jié)果的準(zhǔn)確性。
(3)提高定量化水平:微生物溯源技術(shù)雖然被廣泛應(yīng)用到水環(huán)境監(jiān)測(cè)中,所反映的信息仍然在“水體是否被污染與被什么污染”這個(gè)層面上,而“不同污染源的貢獻(xiàn)率”信息很少,所以定量化的MST技術(shù)有待進(jìn)一步的發(fā)展和應(yīng)用。
(4)提高M(jìn)ST的信息量:目前的微生物溯源技術(shù)主要是針對(duì)水體中致病微生物的監(jiān)測(cè),對(duì)水體中的有毒有害物質(zhì)和氮磷有機(jī)物等溯源監(jiān)測(cè)的研究幾乎沒(méi)有開展,因此開展利用生物溯源技術(shù)對(duì)水體中的有毒有害物質(zhì)和氮磷有機(jī)物等監(jiān)測(cè)溯源的研究具有很大的發(fā)展空間。
總體來(lái)說(shuō),我國(guó)微生物溯源研究和應(yīng)用工作開展較晚,技術(shù)相對(duì)落后,大多處于定性化水平,加強(qiáng)微生物溯源有關(guān)的研究和應(yīng)用工作,可加快微生物溯源技術(shù)在我國(guó)水體污染定位中的應(yīng)用,豐富我國(guó)水污染監(jiān)測(cè)手段,提高水污染管理效率。
參考文獻(xiàn):
[1] Simpson J M, Santo Domingo J W, Reasoner D J. Microbial source tracking:State of the science[J]. Environ Sci Technol, 2002, 36(24):5279-5288.
[2] Hagedorn C, Harwood V J, Blanch A R. Microbial source tracking:Methods, applications, and case studies[M]. New York:Springer, 2011:642.
[3] Bernhard A E, Field K G. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA[J]. Applied and Environmental Microbiology, 2000, 66(10):4571-4574.
[4] Meays C L, Broersma K, Nordin R, et al. Source tracking fecal bacteria in water:A critical review of current methods[J]. Journal of Environmental Management, 2004, 73(1):71-79.
[5] Prüss A. Review of epidemiological studies on health effects from exposure to recreational water[J]. International Journal of Epidemiology, 1998, 27(1):1-9.
[6] Converse R R, Blackwood A D, Kirs M, et al. Rapid qPCR-based assay for fecal Bacteroides spp. as a tool for assessing fecal contamination in recreational waters[J]. Water Research, 2009, 43(19):4828-4837.
[7] Okabe S, Shimazu Y. Persistence of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental waters:Effects of temperature and salinity[J]. Applied Microbiology and Biotechnology, 2007, 76(4):935-944.
[8] Solecki O, Jeanneau L, Jardé E, et al. Persistence of microbial and chemical pig manure markers as compared to faecal indicator bacteria survival in freshwater and seawater microcosms[J]. Water Research, 2011, 45(15):4623-4633.
[9] Geldreich E E, Litsky W. Fecal coliform and fecal streptococcus density relationships in waste discharges and receiving waters[J]. Critical Reviews in Environmental Science and Technology, 1976, 6(4):349-369.
[10] Geldreich E E, Kenner B A. Concepts of fecal streptococci in stream pollution[J]. Journal Water Pollution Control Federation, 1969, 41(8):336-352.
[11] Edwards D R, Coyne M S, Vendrell P F, et al. Fecal coliform and streptococcus concentrations in runoff from grazed pastures in Northwest Arkansas[J]. Jawra Journal of the American Water Resources Association, 1997, 33(2):413-422.
[12] Sinton L W, Finlay R K, Hannah D J. Distinguishing human from animal faecal contamination in water:A review[J]. New Zealand Journal of Marine and Freshwater Research, 1998, 32(2):323-348.
[13] Sinton L W, Donnison A M, Hastie C M. Faecal streptococci as faecal pollution indicators:A review. Part II:Sanitary significance, survival, and use[J]. New Zealand Journal of Marine and Freshwater Research, 1993, 27(1):117-137.
[14] Mara D D, Oragui J I. Sorbitol-fermenting bifidobacteria as specific indicators of human faecal pollution[J]. Journal of Applied Bacteriology, 1983, 55(2):349-357.
[15] Mara D D, Oragui J I. Occurrence of Rhodococcus coprophilus and associated actinomycetes in feces, sewage, and freshwater[J]. Applied & Environmental Microbiology, 1981, 42(6):1037-1042.
[16] Osawa S, Furuse K, Watanabe I. Distribution of ribonucleic acid coliphages in animals[J]. Applied & Environmental Microbiology, 1981, 41 (1):164-168.
[17] Scott T M, Rose J B, Jenkins T M, et al. Microbial source tracking:Current methodology and future directions[J]. Applied and Environmental Microbiology, 2002, 68(12):5796-5803.
[18] Farber J M. An introduction to the hows and whys of molecular typing [J]. Journal of Food ProtectionR, 1996, 59(10):1091-1101.
[19] Blanch A R, Belanche-Mu?oz L, Bonjoch X, et al. Integrated analysis of established and novel microbial and chemical methods for microbial source tracking[J]. Applied and Environmental Microbiology, 2006, 72 (9):5915-5926.
[20] Bonjoch X, Balleste E, Blanch A R. Enumeration of bifidobacterial populations with selective media to determine the source of waterborne fecal pollution[J]. Water Research, 2005, 39(8):1621-1627.
[21] Stewart J R, Vinjé J, Oudejans S J G, et al. Sequence variation among group III F-specific RNA coliphages from water samples and swine lagoons[J]. Applied and Environmental Microbiology, 2006, 72(2):1226-1230.
[22] Cole D, Long S C, Sobsey M D. Evaluation of F+ RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters[J]. Applied and Environmental Microbiology, 2003, 69(11):6507-6514.
[23] Wiggins B A, Cash P W, Creamer W S, et al. Use of antibiotic resistance analysis for representativeness testing of multiwatershed libraries [J]. Applied and Environmental Microbiology, 2003, 69(6):3399-3405.
[24] Whitlock J E, Jones D T, Harwood V J. Identification of the sources of faecal coliforms in an urban watershed using antibiotic resistance analysis[J]. Water Research, 2002, 36(17):4273-4282.
[25] Hagedorn C, Crozier J B, Mentz K A, et al. Carbon source utilization profiles as a method to identify sources of faecal pollution in water[J]. Journal of Applied Microbiology, 2003, 94(5):792-799.
[26] Duran M, Haznedarogˇlu B Z, Zitomer D H. Microbial source tracking using host specific FAME profiles of fecal coliforms[J]. Water Research, 2006, 40(1):67-74.
[27] Carson C A, Shear B L, Ellersieck M R, et al. Identification of fecal Escherichia coli from humans and animals by ribotyping[J]. Applied & Environmental Microbiology, 2001, 67(4):1503-1507.
[28] Carson C A, Shear B L, Ellersieck M R, et al. Comparison of ribotyping and repetitive extragenic palindromic-PCR for identification of fecal Escherichiacoli from humans and animals[J]. Applied & Environmental Microbiology, 2003, 69(3):1836-1839.
[29] Hahm B K, Maldonado Y, Schreiber E, et al. Subtyping of foodborne and environmental isolates of Escherichia coli by multiplex-PCR rep-PCR PFGE ribotyping and AFLP[J]. Journal of Microbiological Methods, 2003, 53(3):387-399.
[30] Khatib L, Tsai Y, Olson B. A biomarker for the identification of cattle fecal pollution in water using the LTIIa toxin gene from enterotoxigenic Escherichia coli[J]. Applied Microbiology and Biotechnology, 2002, 59 (1):97-104.
[31] Khatib L A, Tsai Y L, Olson B H. A biomarker for the identification of swine fecal pollution in water, using the STII toxin gene from enterotoxigenic Escherichia coli[J]. Applied Microbiology and Biotechnology, 2003, 63(2):231-238.
[32] Hamilton M J, Yan T, Sadowsky M J. Development of goose-and duckspecific DNA markers to determine sources of Escherichia coli in waterways[J]. Applied and Environmental Microbiology, 2006, 72(6):4012-4019.
[33] Clermont O, Lescat M, O'Brien C L, et al. Evidence for a human-specific Escherichia coli clone[J]. Environmental Microbiology, 2008, 10 (4):1000-1006.
[34] Whitman R L, Katarzyna P K, Shively D A, et al. Incidence of the enterococcal surface protein(esp)gene in human and animal fecal sources [J]. Environmental Science Technology, 2007, 41(17):6090-6095.
[35] Myoda S P, Carson C A, Fuhrmann J J, et al. Comparison of genotypicbased microbial source tracking methods requiring a host origin database[J]. Journal of Water & Health, 2003, 1(4):167-180.
[36] Layton A, McKay L, Williams D, et al. Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water[J]. Applied and Environmental Microbiology, 2006, 72(6):4214-4224.
[37] Bell A, Layton A C, McKay L, et al. Factors influencing the persistence of fecal in stream water[J]. Journal of Environmental Quality, 2009, 38(3):1224-1232.
[38] Korajkic A, Brownell M J, Harwood V J. Investigation of human sewage pollution and pathogen analysis at Florida Gulf coast beaches[J]. Journal of Applied Microbiology, 2011, 110(1):174-183.
[39] Carson C A, Christiansen J M, Yampara-Iquise H, et al. Specificity of a Bacteroides thetaiotaomicron marker for human feces[J]. Applied and Environmental Microbiology, 2005, 71(8):4945-4949.
[40] Shanks O C, Kelty C A, Sivaganesan M, et al. Quantitative PCR for genetic markers of human fecal pollution[J]. Applied and Environmental Microbiology, 2009, 75(17):5507-5513.
[41] Lu J, Santo Domingo J, Shanks O C. Identification of chicken-specific fecal microbial sequences using a metagenomic approach[J]. Water Research, 2007, 41(16):3561-3574.
[42] Marti R, Mieszkin S, Solecki O, et al. Effect of oxygen and temperature on the dynamic of the dominant bacterial populations of pig manure and on the persistence of pig-associated genetic markers, assessed in river water microcosms[J]. Journal of Applied Microbiology, 2011, 111(5):1159-1175.
[43] Fremaux B, Boa T, Yost C K. Quantitative real-time PCR assays for sensitive detection of Canada goose-specific fecal pollution in water sources[J]. Applied and Environmental Microbiology, 2010, 76(14):4886-4889.
[44] Dick L K, Bernhard A E, Brodeur T J, et al. Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification[J]. Applied and Environmental Microbiology, 2005, 71(6):3184-3191.
[45] Shanks O C, Atikovic E, Blackwood A D, et al. Quantitative PCR for detection and enumeration of genetic markers of bovine fecal pollution [J]. Applied and Environmental Microbiology, 2008, 74(3):745-752.
[46] Mieszkin S, Yala J F, Joubrel R, et al. Phylogenetic analysis of Bacteroidales 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by real-time PCR[J]. Journal of Applied Microbiology, 2010, 108(3):974-984.
[47] Mieszkin S, Furet J P, Corthier G, et al. Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers[J]. Applied and Environmental Microbiology, 2009, 75(10):3045-3054.
[48]王顯貴,郭萍,田云龍,等.利用qPCR定量檢測(cè)水體中豬源擬桿菌特異性生物標(biāo)記的研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2013, 32(11):2302-2308. WANG Xian-gui, GUO Ping, TIAN Yun-long, et al. Quantification of swine-specific Bacteroidales in water using qPCR[J]. Journal of Agro-Environment Science, 2013, 32(11):2302-2308.
[49] Roslev P, Bukh A S. State of the art molecular markers for fecal pollution source tracking in water[J]. Applied Microbiology and Biotechnology, 2011, 89(5):1341-1355.
[50] Santo Domingo J W, Bambic D G, Edge T A, et al. Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution[J]. Water Research, 2007, 41(16):3539-3552.
[51] Savichtcheva O, Okayama N, Okabe S. Relationships between Bacteroides 16S rRNA genetic markers and presence of bacterial enteric pathogens and conventional fecal indicators[J]. Water Research, 2007, 41(16):3615-3628.
[52] Girones R, Ferrús M A, Alonso J L, et al. Molecular detection of pathogens in water: The pros and cons of molecular techniques[J]. Water Research, 2010, 44(15):4325-4339.
[53] Gourmelon M, Caprais M P, Mieszkin S, et al. Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France[J]. Water Research, 2010, 44(16):4812-4824.
[54] Sauer E P, VandeWalle J L, Bootsma M J, et al. Detection of the human specific Bacteroides genetic marker provides evidence of widespread sewage contamination of stormwater in the urban environment[J]. Water Research, 2011, 45(14):4081-4091.
[55] Weidhaas J L, Macbeth T W, Olsen R L, et al. Correlation of quantitative PCR for a poultry-specific Brevibacterium marker gene with bacterial and chemical indicators of water pollution in a watershed impacted by land application of poultry litter[J]. Applied and Environmental Microbiology, 2011, 77(6):2094-2102.
[56] Gawler A H, Beecher J E, Brandāo J, et al. Validation of host-specific Bacteroidales 16S rRNA genes as markers to determine the origin of faecal pollution in Atlantic Rim countries of the European Union[J]. Water Research, 2007, 41(16):3780-3784.
[57] Ahmed W, Goonetilleke A, Powell D, et al. Evaluation of multiple sewage -associated Bacteroides PCR markers for sewage pollution tracking[J]. Water Research, 2009, 43(19):4872-4877.
[58] Okabe S, Okayama N, Savichtcheva O, et al. Quantification of hostspecific Bacteroides-Prevotella 16S rRNA genetic markers for assessmentoffecalpollutioninfreshwater[J].Applied Microbiology&Biotechnology, 2007, 74(4):890-901.
[59] Dick L K, Stelzer E A, Bertke E E, et al. Relative decay of bacteroidales microbial source tracking markers and cultivated Escherichia coli in freshwater microcosms[J]. Applied & Environmental Microbiology, 2010, 76(10):3255-3262.
[60] Field KG, Samadpour M. Fecal source tracking, the indicator paradigm, and managing water quality[J]. Water Research, 2007, 41(16):3517-3538.
[61] Walters S P, Yamahara K M, Boehm A B. Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms:Implications for their use in assessing risk in recreational waters[J]. Water Research, 2009, 43(19):4929-4939.
[62] Bae S, Wuertz S. Survival of host-associated bacteroidales cells and their relationship with Enterococcus spp., Campylobacter jejuni, Salmonellaentericaserovar Typhimurium, and Adenovirus in freshwater microcosms as measured by propidium monoazide-quantitative PCR [J]. Applied & Environmental Microbiology, 2012, 78(4):922-932.
[63] Bae S, Wuertz S. Rapid decay of host-specific fecal Bacteroidales cells in seawater as measured by quantitative PCR with propidium monoazide[J]. Water Research, 2009, 43(19):4850-4859.
[64] Liang Z, He Z, Zhou X, et al. High diversity and differential persistence of fecal Bacteroidales population spiked into freshwater microcosm[J]. Water Research, 2011, 46(1):247-257
[65] Bae S, Wuertz S. Discrimination of viable and dead fecal Bacteroidales bacteria by quantitative PCR with propidium monoazide[J]. Applied & Environmental Microbiology, 2009, 75(9):2940-2944.
[66] Bae S, Wuertz S. Decay of host-associated Bacteroidales cells and DNA in continuous-flow freshwater and seawater microcosms of identical experimental design and temperature as measured by PMA-qPCR and qPCR[J]. Water Research, 2015, 70:205-213.
[67] Walters S P, Field K G. Survival and persistence of human and ruminant-specific faecal Bacteroidales in freshwater microcosms[J]. Environmental Microbiology, 2009, 11(6):1410-1421.
[68] Tambalo D D, Fremaux B, Boa T, et al. Persistence of host-associated Bacteroidales gene markers and their quantitative detection in an urban and agricultural mixed prairie watershed[J]. Water Research, 2012, 46 (9):2891-2904.
[69] Ekaterina S, Johan A, Pettersson T J R, et al. Decay of Bacteroidales genetic markers in relation to traditional fecal indicators for water quality modeling of drinking water sources[J]. Environmental Science & Technology, 2012, 46(2):892-900.
[70] Boehm A B, Yamahara K M, Love D C, et al. Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach[J]. Environmental Science & Technology, 2009, 43(21):8046-8052.
[71] Kreader C A. Persistence of PCR-detectable Bacteroides distasonis from human feces in river water[J]. Applied & Environmental Microbiology, 1998, 64(10):4103-4105.
[72] Kobayashi A, Sano D, Okabe S. Effects of temperature and predator on the persistence of host-specific Bacteroides-Prevotellagenetic markers in water[J]. Water Science & Technology, 2013, 67(4):838-845.
[73]馮廣達(dá),鄧名榮,郭俊,等.廣東某農(nóng)村塘壩飲用水污染的微生物溯源[J].中國(guó)環(huán)境科學(xué), 2011, 31(1):96-104. FENG Guang-da, DENG Ming-rong, GUO Jun, et al. Microbial source tracking of the pollution in pond-drinking water in a country of Guangdong [J]. China Environmental Science, 2011, 31(1):96-104.
[74]馮廣達(dá),鄧名榮,郭俊,等.利用PCR-DGGE溯源典型農(nóng)村塘壩飲用水中的污染[J].環(huán)境科學(xué)學(xué)報(bào), 2011, 31(3):468-475. FENG Guang-da, DENG Ming-rong, GUO Jun, et al. Microbial source tracking of pollution in typical rural pond-drinking water using PCRDGGE[J]. Acta Scientiae Circumstantiae, 2011, 31(3):468-475.
[75]張曦,朱昌雄,馮廣達(dá),等.基于擬桿菌特異性16S rRNA基因的塘壩型飲用水污染溯源研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2011, 30(9):1880-1887. ZHANG Xi, ZHU Chang-xiong, FENG Guang-da, et al. Potential use of Bacteroidales specific 16S rRNA in tracking the rural pond-drinking water pollution[J]. Journal of Agro-Environment Science, 2011, 30 (9):1880-1887.
[76]馮雯雯.大連近岸海域微生物源示蹤技術(shù)的應(yīng)用研究[D].大連:大連海事大學(xué), 2011. DOI:doi:10. 7666/d. y1895918. FENG Wen-wen. Application research on microbial source tracking technology in Dalian beach watershed[D]. Dalian:Dalian Maritime University, 2011. DOI:doi:10. 7666/d. y1895918.
GUO Ping, LI Hong-na, LI Feng. Microbial source tracking(MST)and quantitative tracking of biological fecal contamination in water environment[J]. Journal of Agro-Environment Science, 2016, 35(2): 205-211.
Microbial source tracking(MST)and quantitative tracking of biological fecal contamination in water environment
GUO Ping, LI Hong-na, LI Feng
(Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Beijing 100081, China)
Abstract:Microbial source tracking(MST)provides an accessible method for tracking the non-point contamination from biological sources, for it allows practitioners to discriminate among many possible sources of fecal contamination in the environmental waters by identifying the target biomarkers. In this paper, the origin, development process from qualitative to quantitative, characteristics and environmental applications of MST technology were briefly reviewed. The screening criteria of microbes as indicators were developed. Bacteroides spp. as one of the accepted indicators showed some advantages in quantitative MST because this microbe couldn't reproduce in vitro environment according to the criteria. The research on quantitative source tracking with Bacteroides spp. gene marker under different conditions has made a great progress. The research has been focused on the development of Bacteroides spp. gene-markers and their application to contamination source tracking at a quantitative level in water environment. The effects of environmental factors such as light, dark, temperature etc. on the decay of gene marks, and the correlation between gene-marker decay rate and different environmental factors were analyzed. The reported literatures showed that biological factors in the vitro environment greatly impact the MST technique. Improvements of accuracy and application scope of MST in the water environment were proposed.
Keywords:microbial source tracking(MST); biological-source contamination; quantitative source tracking
作者簡(jiǎn)介:郭萍(1967—),博士,研究員,主要從事環(huán)境污染與修復(fù)方面的研究工作。E-mail:pingguo120@hotmail.com
基金項(xiàng)目:國(guó)家科技重大專項(xiàng)“水體污染控制與治理”(2008ZX07425-002)
收稿日期:2015-08-07
中圖分類號(hào):X52
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-2043(2016)02-0205-07
doi:10.11654/jaes.2016.02.001