貝毅樺,肖俊杰
(上海大學生命科學學院再生與衰老實驗室,上海200444)
運動誘導心臟再生:治療心血管疾病的新途徑
貝毅樺,肖俊杰
(上海大學生命科學學院再生與衰老實驗室,上海200444)
雖然成年哺乳動物的心臟具備有限的再生能力,但在心肌損傷后無法彌補丟失的心肌細胞.運動誘導心臟再生,不僅能促進心肌細胞的肥大和自我更新、抑制凋亡,而且能影響血管內(nèi)皮細胞和成纖維細胞的功能.IGF-1/PI3K/Akt信號通路、C/EBPβ/CITED4轉(zhuǎn)錄因子、一氧化氮是運動促進心臟再生的重要分子機制.微小RNA作為生物學標記物,在運動誘導的心臟再生中的作用日益受到關(guān)注.更重要的是,運動誘導的心臟再生對心肌梗死、心肌缺血再灌注損傷、代謝型心肌病、衰老相關(guān)的心肌損傷具有保護效應(yīng).基于運動誘導的心臟再生將成為治療心血管疾病的新途徑.
心臟再生;運動;心肌細胞;干細胞
心血管疾病在全球范圍都是導致死亡的重要原因.盡管人們在處理和應(yīng)對急性心血管事件如心肌梗死等疾病中已經(jīng)取得了巨大的進展,許多患者仍不可避免地發(fā)展為心力衰竭,甚至死亡[1].據(jù)美國疾病預(yù)防和控制中心統(tǒng)計,全美約有600萬人患有心力衰竭,其中約有50%的患者會在5年內(nèi)死亡,心力衰竭是目前65歲以上人群最常見的出院診斷[2].《中國心血管病報告2014》的數(shù)據(jù)顯示,我國約有2.9億心血管病患者,其中心力衰竭患者450萬,慢性心力衰竭住院患者的30 d死亡率高達5.4%,心力衰竭已經(jīng)成為危害人類健康、加重社會和家庭經(jīng)濟負擔的重要病因.
傳統(tǒng)觀點認為,成年心臟不具備心肌形成的能力,心肌細胞長久以來被認為是終末分化的細胞[3].然而,越來越多的動物和人類研究發(fā)現(xiàn),成年哺乳動物心臟在正常老化和疾病過程中,確實具備一定內(nèi)在的再生能力[4-5].這些新形成的心肌細胞可以來自原有的心肌細胞[6-7],也可以來自心臟干細胞或前體細胞[5,8].盡管這兩種來源的心肌細胞對于心臟再生的貢獻程度至今仍未界定,心臟也無法通過自身有限的再生能力有效彌補心肌損傷后心肌細胞的丟失,然而人們對于“成年心臟具有再生能力”這一認識無疑將為心肌損傷和心力衰竭提供新的治療方向.
運動可以有效防治多種心血管疾病的發(fā)生和發(fā)展[9].適度的運動不僅有助于降低罹患心血管疾病的風險,而且可以通過一系列細胞和分子的調(diào)控機制促進心臟再生[10].這種基于運動誘導的心臟再生主要表現(xiàn)為心肌細胞體積的增加,同時伴隨一定程度的心肌細胞數(shù)目的增多[11].本綜述將分別闡述運動誘導心臟再生的細胞、分子機制及運動相關(guān)的微小RNA調(diào)控,并且提出基于運動誘導心臟再生對治療心血管疾病的啟示.
1.1運動誘導心肌細胞肥大
心肌細胞是心臟的主要工作肌細胞,在機械應(yīng)激、細胞因子、生長因子、兒茶酚胺、血管活性肽、激素等作用下,心肌細胞會發(fā)生體積增大、形態(tài)改變、蛋白合成水平增加以及心肌病理性重構(gòu)標志基因如心鈉肽(atrial natriuretic peptide,ANP)、B型腦鈉肽(brain natriuretic peptide,BNP)、sk-α-肌動蛋白(sk-α-actin)、β-肌球蛋白重鏈(β-myosin heavy chain,β-MHC)表達水平上調(diào),同時伴隨心肌細胞的凋亡和壞死[12].持久的心肌肥厚會造成心肌收縮和/或舒張功能的下降、心室擴張、室壁增厚,最終可以發(fā)展為心力衰竭[13].
區(qū)別于病理性心肌肥厚,運動誘導的生理性心肌肥大不會導致心肌細胞的丟失(凋亡和壞死)、心肌纖維化以及心功能下降[10,14].更重要的是,基于運動的心臟再生已經(jīng)被越來越多的動物及臨床試驗證實,對于病理性的心肌損傷具有重要的保護效應(yīng)[15].心肌細胞體積的增大以往一直被認為是心臟再生的主要機制.就心臟而言,持久的耐力訓練(如跑步、游泳)可使心臟發(fā)生向心性肥大,而持久的力量訓練(如舉重、摔跤)可使心臟發(fā)生遠心性肥大[16].進一步從心肌細胞的微觀結(jié)構(gòu)來看,運動可以使心肌細胞的面積增加17%~32%[17].
1.2運動誘導心肌細胞自我更新
2009年,Bergmann等[18]指出,在人的一生中接近50%的心肌細胞會被替換為新的心肌細胞[18].心肌細胞具有自我更新的能力,這成為除心肌細胞肥大之外,運動誘導心臟再生的又一重要的細胞機制.已有研究證實,游泳訓練不僅可以促使小鼠的心肌細胞發(fā)生體積增大,而且可以促進心肌細胞的數(shù)量增多[19].轉(zhuǎn)錄因子CCAAT/enhancer binding protein β(C/EBPβ)下調(diào)繼發(fā)性激活carboxy-terminal domain 4(CITED4)是運動誘導心臟再生的重要分子機制;同時,C/EBPβ敲除的基因工程小鼠可以抵抗高血壓所致的心肌肥厚和心力衰竭.已有研究指出,運動誘導的微小RNA-222表達水平升高同樣可以促使心肌細胞發(fā)生肥大和增殖,并且對于心肌缺血再灌注損傷后的心室重構(gòu)和心力衰竭具有保護效應(yīng)[20].
運動誘導心肌細胞的自我更新,不僅取決于已有心肌細胞的增殖,而且還依賴于心臟干細胞/前體細胞的分化[21].成年心臟中存在干細胞/祖細胞群,包括c-kit,Sca-1或Islet-1陽性細胞及側(cè)群(side population)細胞,它們具有分化為心肌細胞的能力[22-23].Ellison等[21]的研究證實,運動誘導的心臟再生可促使心臟干細胞向心肌細胞分化.同樣,Kolwicz等[24]報道了運動對高血壓大鼠的心功能具有保護效應(yīng),這不僅與運動所致的心肌細胞的增殖有關(guān),而且伴隨著c-kit陽性干細胞數(shù)量的增多.在另一項研究中,Xiao等[25]發(fā)現(xiàn)運動誘導的c-kit陽性干細胞的激活和分化分別受到胰島素樣生長因子-1(insulinlike-growth factor-1,IGF-1)、神經(jīng)調(diào)節(jié)素-1(neuregulin-1,NRG-1)、骨形態(tài)形成蛋白-10(bone morphogenetic protein-10,BMP-10)和轉(zhuǎn)化型生長因子-β1(transforming growth factor-β1,TGF-β1)的調(diào)控[25].
值得注意的是,盡管運動被認為可以促進心肌細胞的增殖和心臟干細胞/祖細胞群的活化、移行、駐留和分化,然而這種促進作用對于運動保護心肌損傷的貢獻程度仍需進一步探討和評估.
1.3運動抑制心肌細胞凋亡
運動誘導的生理性心肌肥大不伴隨有心肌細胞的凋亡和壞死,這是區(qū)別于病理性心肌肥大的重要特征之一[10,14].事實上,運動可以通過有效抑制心肌損傷后出現(xiàn)的心肌細胞凋亡,從而實現(xiàn)對心臟的保護作用.動物實驗研究發(fā)現(xiàn),3周游泳訓練可以有效降低小鼠急性心肌梗死24 h后的梗死面積,減少心肌細胞的凋亡,改善心肌的能量代謝[26].另一項研究報道指出,15周跑步訓練可以顯著改善糖尿病db/db小鼠的心功能,抑制心肌細胞的凋亡和心肌纖維化[27].可見,運動抑制心肌細胞的凋亡是運動保護心肌損傷的又一重要機制.
2.1IGF-1/PI3K/Akt信號通路
IGF-1/PI3K/Akt信號通路是運動誘導生理性心肌肥大的經(jīng)典分子機制[28].IGF-1轉(zhuǎn)基因小鼠在出生后10周可出現(xiàn)生理性心肌肥大[29].心臟特異性敲除PI3K的p85亞單位可以阻止運動誘導的生理性心肌肥大的發(fā)生[30].Akt作為一種絲氨酸/蘇氨酸激酶,是PI3K主要的下游效應(yīng)分子[28].Akt1敲除小鼠沒有發(fā)生運動后的生理性心肌肥大,同時在壓力過負荷刺激下可出現(xiàn)嚴重的病理性心肌肥大[31].上述研究結(jié)果表明,IGF-1/PI3K/Akt信號通路的激活是運動誘導生理性心肌肥大所必需的,同時也是運動保護病理性心肌肥大的重要分子機制.
2.2C/EBPβ和CITED4核轉(zhuǎn)錄因子
C/EBPβ是一類具有抗增殖活性的轉(zhuǎn)錄因子[32].已有研究發(fā)現(xiàn),C/EBPβ表達在運動誘導的心臟再生中顯著下調(diào),C/EBPβ表達下降可在體外促進心肌細胞的肥大和增殖[20].值得注意的是,C/EBPβ敲除小鼠表現(xiàn)出更強的運動能力,同時可以抵抗壓力過負荷所致的病理性心肌肥大[19].一方面,C/EBPβ下調(diào)可以促使心肌肥大的相關(guān)基因Gata4,Tbx5,Nkx2.5,TnI及TnT被激活;另一方面,運動誘導的C/EBPβ下調(diào)可以通過與血清反應(yīng)因子(serum response factor,SRF)的互作進一步激活Gata4,同時也可以使轉(zhuǎn)錄因子CITED4被激活.而在已有報道中,Gata4和CITED4與心肌細胞的增殖相關(guān)[7,19].有趣的是,C/EBPβ還是神經(jīng)調(diào)節(jié)素-1(neuregulin-1,NRG-1)的重要效應(yīng)分子,而NRG-1過表達可以誘導心肌細胞增殖,促進心肌再生,從而保護心肌梗死后的心功能[6].另有研究指出,敲除C/EBPβ可以在體外抑制苯腎上腺素誘導的心肌細胞的病理性肥大,提示運動相關(guān)的分子機制可以被用于保護病理性心肌肥大[33].
2.3一氧化氮信號通路
在心血管系統(tǒng)中,一氧化氮(nitricoxide,NO)主要在內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)的作用下于血管內(nèi)皮細胞和心肌細胞內(nèi)合成.運動可以增加血管壁的剪切應(yīng)力,升高循環(huán)血兒茶酚胺的濃度,從而誘導eNOS的表達和活性,提高NO的合成和生物利用度[34].運動誘導心臟再生的同時,也需要新生血管的形成[11].動物實驗和人類研究發(fā)現(xiàn),持久的運動訓練不僅可以增加冠狀動脈的血流量,而且還伴隨著小動脈和毛細血管密度的增加[35-36].運動可以誘導血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)的表達,進一步促使Akt磷酸化和eNOS激活[37].這種與運動相關(guān)的eNOS激活被認為是運動過程中動員骨髓來源的內(nèi)皮祖細胞(endothelial progenitor cells,EPCs)的重要機制,而eNOS敲除的運動小鼠由于無法募集到足夠的EPCs,從而導致心臟新生血管的減少[38-39].此外,運動可以激活β3-腎上腺素受體和NO信號通路,增加心臟內(nèi)亞硝酸鹽(nitrite)和亞硝基硫醇類(nitrosothiols)的含量,從而有效減輕心臟的缺血再灌注損傷[40-41].
微小RNA(microRNAs,miRNAs)是一類單鏈長度為20~25個核苷酸序列的非編碼RNA,可以通過結(jié)合靶基因信使RNA(messenger RNAs,mRNAs)的3'端非翻譯區(qū),在轉(zhuǎn)錄后水平實現(xiàn)對靶基因的負調(diào)控[42-43].一個微小RNA可以調(diào)控多個靶基因,而同一個基因又可以被多個微小RNA所調(diào)控,因此微小RNA成為基因表達網(wǎng)絡(luò)中的重要調(diào)控者.微小RNA參與調(diào)控細胞肥大、凋亡、增殖、分化、移行等多種生物學行為,在心臟的生理及病理生理過程中發(fā)揮著重要的作用[9,44-45].
miR-1,miR-133a和miR-133b在心血管病理生理學中得到廣泛研究.運動訓練、Akt過表達、主動脈縮窄術(shù)均可使得miR-1,miR-133a和miR-133b在心臟中的表達下調(diào),說明這些微小RNA同時在生理性和病理性的心肌肥大中起作用[46].相反,另一些微小RNA如miR-34a,miR-210,miR-222在病理性心肌重構(gòu)和運動所致的生理性心肌肥大中具有不同的表達特征[47].據(jù)報道,miR-222在游泳和跑步訓練中被誘導表達,miR-222是一個介導生理性心肌肥大的關(guān)鍵微小RNA,可以在體外促進心肌細胞的增殖和肥大,P27,HIPK1/2以及Hmbox1是miR-222的靶基因.更為重要的是,心肌特異性過表達miR-222可以有效改善缺血再灌注損傷小鼠6周以后的心功能,降低心肌凋亡及心肌纖維化,促進新的心肌細胞形成,這提示運動誘導的miR-222過表達對缺血再灌注損傷所致的病理性心室重構(gòu)以及心功能下降具有顯著的保護效應(yīng)[20].此外,已有研究表明miR-214在運動后的心臟中表達下調(diào),SERCA2a是其作用于心肌細胞的一個靶基因[48].
除心肌細胞以外,運動所致的微小RNA調(diào)控還會影響成纖維細胞的功能.在接受游泳訓練的大鼠心臟中,miR-29c表達上調(diào),同時伴隨心室順應(yīng)性改善,心臟膠原纖維含量下降,ColⅠAⅠ和ColⅢAⅠ的表達下調(diào)[49].有趣的是,已有報道指出miR-29c下調(diào)可以在體外提高ColⅠAⅠ和ColⅢAⅠ基因在成纖維細胞的表達水平,而過表達miR-29c可以抑制成纖維細胞的膠原合成[50].這提示運動誘導的miR-29c表達上調(diào)可以通過抑制成纖維細胞的功能進而降低心肌纖維化,抑制心室重構(gòu)的過程.
微小RNA可以在循環(huán)血液中穩(wěn)定存在,循環(huán)血微小RNA作為生物學標記物,在診斷和治療心血管疾病中的價值受到越來越多的關(guān)注[51-52].同樣,運動可以使得循環(huán)血中的miR-34a,miR-146a,miR-30b,miR-21,miR-208a,miR-15的表達水平發(fā)生改變[53].此外,慢性心衰患者在接受急性心肺運動試驗后,血清中的miR-222,miR-21,miR-378和miR-940也會被誘導表達[20,54].重要的是,運動相關(guān)的循環(huán)血微小RNA的來源及其功能機制值得展開更深入的探索.
運動不僅有利于控制體重,而且在降血壓、降血糖、調(diào)節(jié)血脂等方面均表現(xiàn)出大量益處,適度持久的運動被心血管疾病專家視為極其重要的輔助治療手段[55].急性心肌梗死后的心肌細胞發(fā)生大量壞死和凋亡、心肌代償性肥厚、心肌纖維化,進而發(fā)生心室重構(gòu)甚至心力衰竭.而此時,心臟自身有限的再生能力無法彌補心肌細胞的丟失[56].值得關(guān)注的是,科學家通過動物實驗和人類研究發(fā)現(xiàn),運動可以有效降低心肌梗死后的炎性因子的表達水平,抑制心肌細胞的凋亡,降低梗死面積和心肌纖維化程度[26,57-58].
對于急性心肌梗死患者,能否及時有效地接受再灌注治療,包括對發(fā)病12 h內(nèi)的患者進行藥物溶栓治療,或者在入院后90 min內(nèi)行經(jīng)皮冠狀動脈介入治療,是影響急性心肌梗死預(yù)后的關(guān)鍵[59].然而,目前的再灌注治療不可避免地會引發(fā)心肌缺血再灌注損傷,這種因心肌缺血后重新恢復血流灌注而造成的嚴重損傷,包括心肌收縮功能降低、血管反應(yīng)性改變、冠脈血流量下降等,會導致心肌細胞死亡、心室重構(gòu)乃至心力衰竭[60].有趣的是,運動同樣可以減輕心肌的缺血再灌注損傷.動物實驗證實,持久規(guī)律的運動訓練可以增強心臟的抗氧化能力,減輕心肌缺血再灌注損傷后的氧化應(yīng)激過程[61].同時,運動可以誘導內(nèi)皮祖細胞促進新生血管的形成,進而促進心肌缺血再灌注損傷后的組織修復[62].運動還可以促進Akt和糖原合成激酶-3β(glycogen synthase kinase-3β,GSK-3β)的磷酸化,抑制心肌細胞凋亡,改善心功能[63-64].
此外,運動可以激活PGC-1α和Akt信號通路,改善代謝型心肌病,如糖尿病心肌病的心肌損傷、心肌纖維化和心功能下降,抑制心肌細胞凋亡,增強線粒體的生物合成[27].運動還可以有效降低衰老所致的心肌細胞的丟失、心肌纖維化,對衰老相關(guān)的心血管疾病和心力衰竭具有不容忽視的保護作用[65-66].
運動誘導的心臟再生不僅可以促進心肌細胞的肥大和自我更新,抑制心肌細胞的凋亡,而且可以影響血管內(nèi)皮細胞和成纖維細胞的功能.基于運動保護心肌損傷和心室重構(gòu)所涉及的具體的細胞類型和分子機制值得深入探索.運動相關(guān)的微小RNA調(diào)控及循環(huán)血微小RNA改變對于心臟的功能學研究和機制研究亟待進一步明確.基于運動誘導心臟再生促進心肌修復,將成為未來治療心血管疾病的新途徑.
[1]WHITE H D,CHEW D P.Acute myocardial infarction[J].Lancet,2008,372(9638):570-584.
[2]ROGER V L,GO A S,LLOYD-JONES D M,et al.Heart disease and stroke statistics—2012 update:a report from the American Heart Association[J].Circulation,2012,125(1):e2-e220.
[3]NARULA J,HAIDER N,VIRMANI R,et al.Apoptosis in myocytes in end-stage heart failure[J]. New England Journal of Medicine,1996,335(16):1182-1189.
[4]ALI S R,HIPPENMEYER S,SAADAT L V,et al.Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(24):8850-8855.
[5]BELTRAMI A P,BARLUCCHI L,TORELLA D,et al.Adult cardiac stem cells are multipotent and support myocardial regeneration[J].Cell,2003,114(6):763-776.
[6]BERSELL K,ARAB S,HARING B,et al.Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury[J].Cell,2009,138(2):257-270.
[7]KIKUCHI K,HOLDWAY J E,WERDICH A A,et al.Primary contribution to zebrafish heart regeneration by gata4(+)cardiomyocytes[J].Nature,2010,464(7288):601-605.
[8]HSIEH P C,SEGERS V F,DAVIS M E,et al.Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury[J].Nature Medicine,2007,13(8):970-974.
[9]TAO L,BEI Y,ZHANG H,et al.Exercise for the heart:signaling pathways[J].Oncotarget,2015,6(25):20773-20784.
[10]ELLISON G M,WARING C D,VICINANZA C,et al.Physiological cardiac remodelling in response to endurance exercise training:cellular and molecular mechanisms[J].Heart,2012,98(1):5-10.
[11]LERCHENMULLER C,ROSENZWEIG A.Mechanisms of exercise-induced cardiac growth[J].Drug Discovery Today,2014,19(7):1003-1009.
[12]TAKEFUJI M,WIRTH A,LUKASOVA M,et al.G(13)-mediated signaling pathway is required for pressure overload-induced cardiac remodeling and heart failure[J].Circulation,2012,126(16):1972-1982.
[13]KOMAJDA M,LAM C S.Heart failure with preserved ejection fraction:a clinical dilemma[J]. European Heart Journal,2014,35(16):1022-1032.
[14]BURCHFIELD J S,XIE M,HILL J A.Pathological ventricular remodeling:mechanisms:part 1 of 2[J].Circulation,2013,128(4):388-400.
[15]ANDERSON L,OLDRIDGE N,THOMPSON D R,et al.Exercise-based cardiac rehabilitation for coronary heart disease:cochrane systematic review and Meta-analysis[J].Journal of the American College of Cardiology,2016,67(1):1-12.
[16]WEINER R B,BAGGISH A L.Exercise-induced cardiac remodeling[J].Progress in Cardiovascular Diseases,2012,54(5):380-386.
[17]KEMI O J,LOENNECHEN J P,WISLOFF U,et al.Intensity-controlled treadmill running in mice:cardiac and skeletal muscle hypertrophy[J].Journal of Applied Physiology(1985),2002,93(4):1301-1309.
[18]BERGMANN O,BHARDWAJ R D,BERNARD S,et al.Evidence for cardiomyocyte renewal in humans[J].Science,2009,324(5923):98-102.
[19]BOSTROM P,MANN N,WU J,et al.C/EBPbeta controls exercise-induced cardiac growth and protects against pathological cardiac remodeling[J].Cell,2010,143(7):1072-1083.
[20]LIU X,XIAO J,ZHU H,et al.miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling[J].Cell Metabolism,2015,21(4):584-595.
[21]FIGUEIREDO P A,APPELL C H J,DUARTE J A.Cardiac regeneration and cellular therapy:is there a benefit of exercise?[J].International Journal of Sports Medicine,2014,35(3):181-190.
[22]LERI A,KAJSTURA J,ANVERSA P.Cardiac stem cells and mechanisms of myocardial regeneration[J].Physiological Reviews,2005,85(4):1373-1416.
[23]HENNING R J.Stem cells in cardiac repair[J].Future Cardiology,2011,7(1):99-117.
[24]KOLWICZ S C,MACDONNELL S M,RENNA B F,et al.Left ventricular remodeling with exercise in hypertension[J].American Journal of Physiology:Heart and Circulatory Physiology,2009,297(4):H1361-H1368.
[25]XIAO J,XU T,LI J,et al.Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells[J].International Journal of Clinical and Experimental Pathology,2014,7(2):663-669.
[26]TAO L,BEI Y,LIN S,et al.Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis[J].Cellular Physiology and Biochemistry,2015,37(1):162-175.
[27]WANG H,BEI Y,LU Y,et al.Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1alpha and Akt activation[J].Cellular Physiology and Biochemistry,2015,35(6):2159-2168.
[28]KIM J,WENDE A R,SENA S,et al.Insulin-like growth factorⅠreceptor signaling is required for exercise-induced cardiac hypertrophy[J].Molecular Endocrinology,2008,22(11):2531-2543.
[29]DELAUGHTER M C,TAFFET G E,F(xiàn)IOROTTO M L,et al.Local insulin-like growth factorⅠexpression induces physiologic,then pathologic,cardiac hypertrophy in transgenic mice[J]. FASEB Journal,1999,13(14):1923-1929.
[30]LUO J,MCMULLEN J R,SOBKIW C L,et al.Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy[J].Molecular and Cellular Biology,2005,25(21):9491-9502.
[31]DEBOSCH B,TRESKOV I,LUPU T S,et al.Akt1 is required for physiological cardiac growth[J]. Circulation,2006,113(17):2097-2104.
[32]SEBASTIAN T,JOHNSON P F.Stop and go:anti-proliferative and mitogenic functions of the transcription factor C/EBPbeta[J].Cell Cycle,2006,5(9):953-957.
[33]ZOU J,LI H,CHEN X,et al.C/EBPbeta knockdown protects cardiomyocytes from hypertrophy via inhibition of p65-NFkappaB[J].Molecular and Cellular Endocrinology,2014,390(1/2):18-25.
[34]AKITA Y,OTANI H,MATSUHISA S,et al.Exercise-induced activation of cardiac sympathetic nerve triggers cardioprotection via redox-sensitive activation of eNOS and upregulation of iNOS[J].American Journal of Physiology:Heart and Circulatory Physiology,2007,292(5):H2051-H2059.
[35]WHITE F C,BLOOR C M,MCKIRNAN M D,et al.Exercise training in swine promotes growth of arteriolar bed and capillary angiogenesis in heart[J].Journal of Applied Physiology(1985),1998,85(3):1160-1168.
[36]KOZAKOVA M,PATERNI M,BARTOLOMUCCI F,et al.Epicardial coronary artery size in hypertensive and physiologic left ventricular hypertrophy[J].American Journal of Hypertension,2007,20(3):279-284.
[37]DIMMELER S,F(xiàn)LEMING I,F(xiàn)ISSLTHALER B,et al.Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation[J].Nature,1999,399(6736):601-605.
[38]RIBEIRO F,RIBEIRO I P,ALVES A J,et al.Effects of exercise training on endothelial progenitor cells in cardiovascular disease:a systematic review[J].American Journal of Physical Medicine and Rehabilitation,2013,92(11):1020-1030.
[39]THIJSSEN D H,TORELLA D,HOPMAN M T,et al.The role of endothelial progenitor and cardiac stem cells in the cardiovascular adaptations to age and exercise[J].Frontiersin Bioscience-Landmark,2009,14:4685-4702.
[40]CALVERT J W,CONDIT M E,ARAGON J P,et al.Exercise protects against myocardial ischemiareperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling:role of nitrite and nitrosothiols[J].Circulation Research,2011,108(12):1448-1458.
[41]CALVERT J W,LEFER D J.Role of beta-adrenergic receptors and nitric oxide signaling in exercise-mediated cardioprotection[J].Physiology(Bethesda,Md.),2013,28(4):216-224.
[42]VAN ROOIJ E.The art of microRNA research[J].Circulation Research,2011,108(2):219-234.
[43]FARH K K,GRIMSON A,JAN C,et al.The widespread impact of mammalian microRNAs on mRNA repression and evolution[J].Science,2005,310(5755):1817-1821.
[44]VEGTER E L,VAN DER MEER P,DE WINDT L J,et al.MicroRNAs in heart failure:from biomarker to target for therapy[J].European Journal of Heart Failure,2016,18(5):457-468.
[45]PHILIPPEN L E,DIRKX E,DA COSTA-MARTINS P A,et al.Non-coding RNA in control of gene regulatory programs in cardiac development and disease[J].Journal of Molecular and Cellular Cardiology,2015,89(PtA):51-58.
[46]CARE A,CATALUCCI D,F(xiàn)ELICETTI F,et al.MicroRNA-133 controls cardiac hypertrophy[J]. Nature Medicine,2007,13(5):613-618.
[47]LIN R C,WEEKS K L,GAO X M,et al.PI3K(p110 alpha)protects against myocardial infarctioninduced heart failure:identification of PI3K-regulated miRNA and mRNA[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2010,30(4):724-732.
[48]MELO S F,BARAUNA V G,JUNIOR M A,et al.Resistance training regulates cardiac function through modulation of miRNA-214[J].International Journal of Molecular Sciences,2015,16(4):6855-6867.
[49]SOCI U P,F(xiàn)ERNANDES T,HASHIMOTO N Y,et al.MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats[J].Physiological Genomics,2011,43(11):665-673.
[50]VAN ROOIJ E,SUTHERLAND L B,THATCHER J E,et al.Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(35):13027-13032.
[51]XU J,ZHAO J,EVAN G,et al.Circulating microRNAs:novel biomarkers for cardiovascular diseases[J].Journal of Molecular Medicine,2012,90(8):865-875.
[52]MELMAN Y F,SHAH R,DANIELSON K,et al.Circulating microRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis:a translational pilot study[J].Circulation,2015,131(25):2202-2216.
[53]BAGGISH A L,HALE A,WEINER R B,et al.Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training[J].Journal of Physiology,2011,589(Pt16):3983-3994.
[54]XU T,ZHOU Q,CHE L,et al.Circulating miR-21,miR-378,and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients[J].Oncotarget,2016,7(11):12414-12425.
[55]BEI Y,ZHOU Q,SUN Q,et al.Exercise as a platform for pharmacotherapy development in cardiac diseases[J].Curr Pharm Des,2015,21(30):4409-4416.
[56]TIAN X F,CUI M X,YANG S W,et al.Cell death,dysglycemia and myocardial infarction[J]. Biomedical Reports,2013,1(3):341-346.
[57]RODRIGUES B,LIRA F S,CONSOLIM-COLOMBO F M,et al.Role of exercise training on autonomic changes and inflammatory profile induced by myocardial infarction[J].Mediators of Inflammation,2014,2014:702473.
[58]GOLDHAMMER E,TANCHILEVITCH A,MAOR I,et al.Exercise training modulates cytokines activity in coronary heart disease patients[J].International Journal of Cardiology,2005,100(1):93-99.
[59]Task Force On The Management of Stseamiotesoc,STEG P G,JAMES S K,et al.ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation[J].European Heart Journal,2012,33(20):2569-2619.
[60]MURPHY E,STEENBERGEN C.Mechanisms underlying acute protection from cardiac ischemiareperfusion injury[J].Physiological Reviews,2008,88(2):581-609.
[61]GOMES E C,SILVA A N,DE OLIVEIRA M R.Oxidants,antioxidants,and the beneficial roles of exercise-induced production of reactive species[J].Oxidative Medicine and Cellular Longevity,2012,2012:756132.
[62]LI J,ZHANG H,ZHANG C.Role of inflammation in the regulation of coronary blood flow in ischemia and reperfusion:mechanisms and therapeutic implications[J].Journal of Molecular and Cellular Cardiology,2012,52(4):865-872.
[63]LOPEZ-NEBLINA F,TOLEDO A H,TOLEDO-PEREYRA L H.Molecular biology of apoptosis in ischemia and reperfusion[J].Journal of Investigative Surgery,2005,18(6):335-350.
[64]ZHANG K R,LIU H T,ZHANG H F,et al.Long-term aerobic exercise protects the heart against ischemia/reperfusion injury via PI3 kinase-dependent and Akt-mediated mechanism[J].Apoptosis,2007,12(9):1579-1588.
[65]KWAK H B,KIM J H,JOSHI K,et al.Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart[J].FASEB Journal,2011,25(3):1106-1117.
[66]KWAK H B.Effects of aging and exercise training on apoptosis in the heart[J].Journal of Exercise Rehabilitation,2013,9(2):212-219.
Exercise-induced cardiac regeneration:new therapeutic strategy for cardiovascular diseases
BEI Yihua,XIAO Junjie
(Regeneration and Ageing Laboratory,School of Life Sciences,Shanghai University,Shanghai 200444,China)
Adult mammalian heart has limited regenerative capacity,obviously insufficient to recover cardiomyocyte loss after injury.Exercise can induce cardiac regeneration,not only through promoting cardiomyocyte hypertrophy and renewal while reducing apoptosis,but also through modulating the functions of endothelial cells and fibroblasts. IGF-1/PI3K/Akt signaling,C/EBPβ/CITED4 transcription factors and nitric oxide are essential molecular mechanisms mediating exercise-induced cardiac regeneration.In addition increasing interests are focused on the roles of microRNAs,considered as important biomarkers,in exercise-induced cardiac regeneration.More importantly,exercise-induced cardiac regeneration protects against myocardial infarction,ischemia-reperfusion injury,metabolic cardiomyopathy,and aging-related myocardial injury.Exercise-induced cardiac regeneration may be a potential therapeutic strategy for cardiovascular diseases.
cardiac regeneration;exercise;cardiomyocyte;stem cell
R 541
A
1007-2861(2016)03-0293-09
10.3969/j.issn.1007-2861.2016.03.018
2016-04-20
國家自然科學基金資助項目(81570362);國家自然科學青年基金資助項目(81400647)
肖俊杰(1983—),男,副教授,博士,研究方向為運動誘導的生理性心肌肥大.
E-mail:junjiexiao@shu.edu.cn