王麗萍,雷家川,郭咸希,宋金春
武漢大學(xué)人民醫(yī)院藥學(xué)部,武漢 430060
?
苯妥英的遺傳藥理學(xué)進(jìn)展
王麗萍,雷家川,郭咸希,宋金春
武漢大學(xué)人民醫(yī)院藥學(xué)部,武漢 430060
[摘要]目前研究認(rèn)為基因多態(tài)性是抗癲疒間藥物苯妥英個(gè)體差異的重要原因,基因多態(tài)性導(dǎo)致癲疒間患者個(gè)體出現(xiàn)不同的苯妥英藥理、毒理作用。隨著遺傳藥理學(xué)的不斷深入研究,研究者對(duì)苯妥英用藥有了新的認(rèn)識(shí)。本文介紹了苯妥英的遺傳藥理學(xué)研究進(jìn)展。
[關(guān)鍵詞]苯妥英;基因多態(tài)性;MDR1(ABCB1);CYP2C9;SCN1A;SCN2A;HLA-B;MTHFR
0引言
癲疒間是最常見的神經(jīng)系統(tǒng)疾病,發(fā)病率為0.5%~1.0%,嚴(yán)重影響人類健康[1]。抗癲疒間藥物可以有效控制癲疒間的發(fā)作,然而仍有20%~30%的頑固性癲疒間患者應(yīng)用抗癲疒間藥物不能達(dá)到有效的治療效果[2-3]。隨著生理學(xué)、藥理學(xué)、基因組學(xué)和遺傳學(xué)等迅速發(fā)展,形成的交叉學(xué)科—遺傳藥理學(xué)逐漸應(yīng)用在癲疒間治療中,遺傳藥理學(xué)可以降低40%~50%癲疒間患者因使用抗癲疒間藥物所致的不良反應(yīng)或癲疒間控制不良,對(duì)治療癲疒間的用藥選擇和用藥劑量具有重要意義,現(xiàn)以一線癲疒間用藥苯妥英為例進(jìn)行闡述[4-5]。
1苯妥英的化學(xué)結(jié)構(gòu)、藥物代謝動(dòng)力學(xué)
苯妥英(PHT)又稱大侖丁,化學(xué)名稱5,5-二苯基乙內(nèi)酰脲,是抗癲疒間的一線用藥,主要用于全身強(qiáng)直性痙攣性發(fā)作和部分性發(fā)作[6],通過結(jié)合到電壓依賴性鈉離子通道的α-亞基調(diào)控離子通道而發(fā)揮抗癲疒間的作用[7]??诜酵子ⅲ谛∧c被P-gp轉(zhuǎn)運(yùn)吸收入血,在血中與白蛋白和α1酸性糖蛋白結(jié)合分布于血液中,隨血進(jìn)入肝臟中,主要通過CYP450羥基化代謝為芳烴氧化物5-(4’-羥基)-5-苯基-乙內(nèi)酰脲(HPPT),2%~5%原型經(jīng)過腎臟排泄至體外。CYP450的90%由CYP2C9代謝,剩下的10%由CYP2C19代謝[8-9]。
2與苯妥英相關(guān)的基因多態(tài)性
苯妥英的治療窗狹窄,僅為10~20 μg/mL,藥物劑量與其藥物代謝動(dòng)力學(xué)成非線性關(guān)系,PHT血藥濃度小于最低有效劑量10 μg/mL時(shí),按照一級(jí)動(dòng)力學(xué)代謝,當(dāng)血藥濃度超過10 μg/mL后,則按照零級(jí)動(dòng)力學(xué)代謝,當(dāng)個(gè)體差異大,體內(nèi)若不能及時(shí)羥基化會(huì)發(fā)生苯妥英中毒,這可能與代謝功能的遺傳缺失有關(guān)[10-11]。
2.1轉(zhuǎn)運(yùn)體PHT在體內(nèi)主要通過P-gp轉(zhuǎn)運(yùn),P-gp影響PHT的吸收、分布,進(jìn)而影響PHT的口服生物利用度和藥效。P-gp蛋白由位于染色體7q21.1上的基因ABCB1/MDR1編碼,主要分布在多藥耐藥腫瘤細(xì)胞、分泌臟器以及各種屏障中,如腸粘膜細(xì)胞的頂膜、肝臟中的膽小管、腎近曲小管刷狀緣側(cè)、血-腦屏障和血-組織屏障的毛細(xì)血管內(nèi)皮細(xì)胞的腔表面等,用于轉(zhuǎn)出疏水性物質(zhì),如PHT等[12-13]。MDR1的突變影響P-gp的表達(dá)量和功能,目前研究較多的突變位點(diǎn)是1236C>T、2677G>T、3435C>T。Kerb等[14]證實(shí),攜帶有3435位突變的健康人服用低劑量PHT后,其P-gp的蛋白表達(dá)量顯著升高,Simon等[15]也發(fā)現(xiàn),2677位突變的健康人服用低劑量的PHT,其P-gp的蛋白表達(dá)量顯著升高。P-gp的表達(dá)量和功能與PHT在小腸內(nèi)的吸收和腦內(nèi)靶點(diǎn)的血藥濃度有關(guān),當(dāng)P-pg在小腸和血腦屏障中呈高表達(dá)時(shí),即使給予高劑量的PHT,其血藥濃度仍然低于最低有效濃度,發(fā)生癲疒間耐藥性。3435CC野生型純合子患者的P-gp表達(dá)量在十二指腸的表達(dá)量比TT基因型攜帶者高2倍;而藥物的吸收與P-gp的表達(dá)呈負(fù)相關(guān)[16];Simon等[15]發(fā)現(xiàn),2677TT和3435TT基因型與野生型純合子相比,降低了小腸部位P-gp蛋白的表達(dá)量,相應(yīng)的PHT血藥濃度較高,若癲疒間患者攜帶突變型等位基因可降低給藥劑量。由于健康人中P-gp在腦毛細(xì)血管內(nèi)皮細(xì)胞中有表達(dá),限制PHT由血液進(jìn)入腦組織或?qū)⒁堰M(jìn)入腦內(nèi)的PHT排出到血液,保護(hù)腦組織不受外源性物質(zhì)入侵,PHT只有透過血腦屏障達(dá)到一定濃度才能發(fā)揮預(yù)期療效,因此,P-gp的活性和表達(dá)量決定了患者對(duì)PHT是否耐受。有研究表明,難治性患者腦內(nèi)的MDR1 mRNA表達(dá)量是正常人的10倍,P-gp過度表達(dá)造成PHT血藥濃度降低,影響PHT藥效發(fā)揮,導(dǎo)致耐藥性發(fā)生[17-19]。3435CT和TT攜帶者的MDR1在腦的內(nèi)皮細(xì)胞過量表達(dá),可將PHT由內(nèi)皮細(xì)胞轉(zhuǎn)運(yùn)至血液中,導(dǎo)致PHT在腦內(nèi)的濃度下降,癲疒間得不到有效控制,而被P-gp轉(zhuǎn)運(yùn)至血的PHT導(dǎo)致PHT血藥濃度升高;而CC攜帶者的P-gp表達(dá)量比TT攜帶者低,PHT進(jìn)入腦內(nèi)的量更多,PHT血藥濃度降低[20-21]。MDR1的1236C>T、2677G>T、3435C>T 3個(gè)突變位點(diǎn)存在連鎖不平衡,TTT單倍體攜帶者服用PHT發(fā)生耐藥性高,當(dāng)CGC單倍體純合子攜帶者服用抗癲疒間藥物發(fā)生耐藥性的可能較低[20,22-23]。目前,MDR1突變與抗癲疒間藥物耐藥性有爭(zhēng)議,與很多因素相關(guān),如研究本身僅關(guān)注一個(gè)突變位點(diǎn)而不是多個(gè)突變位點(diǎn)組成的單倍體;種族差異;另外,細(xì)胞毒素、熱沖擊、輻射、遺傳毒性、細(xì)胞因子、炎癥、生長因子等均可影響P-gp的表達(dá)量[24]。
2.2酶PHT的主要代謝酶CYP2C9由位于染色體10q24.2的基因CYP2C9編碼,占CYP450酶總量的20%,主要在肝微粒體表達(dá),可代謝多種不同物質(zhì)。關(guān)于CYP2C9的遺傳多態(tài)性研究較多,漢族人群中主要的兩個(gè)突變位點(diǎn)430C>T(Arg144/Cys)、1075A>C(Ile359/Leu)分別構(gòu)成等位基因*2、*3,與野生型(*1)相比,這兩個(gè)突變位點(diǎn)可降低CYP2C9的代謝活性,且*1、*2、*3代謝能力依次降低,Ramasamy等[25]發(fā)現(xiàn),*2、*3純合子基因型患者發(fā)生嚴(yán)重PHT毒性反應(yīng)的比率為83%;只有在CYP2C9野生型攜帶者中PHT劑量/體重給藥與毒性的發(fā)生呈正相關(guān),而在CYP2C9*2或*3等位基因攜帶者中PHT按劑量/體重計(jì)算給藥劑量與未發(fā)生毒性反應(yīng)的患者劑量無明顯差異,但其PHT血藥濃度水平和毒性發(fā)生率明顯升高;Weide等[26]發(fā)現(xiàn),攜帶至少1個(gè)等位基因的癲疒間患者服用PHT的劑量比野生型癲疒間患者降低37%即可達(dá)到治療量的血藥濃度,提示CYP2C9*2、*3在血藥濃度和毒性等PHT相關(guān)代謝中的重要作用。而在這兩種等位基因中,CYP2C9*3等位基因?qū)HT的代謝、血藥濃度和臨床療效影響最大,由于CYP2C9*3等位基因可降低93%~95%的CYP2C9氧化活性,CYP2C9*2僅降低29%,CYP2C9*3攜帶者發(fā)生PHT毒性反應(yīng)的幾率比CYP2C9*2攜帶者高3~4倍[26-28],CYP2C9*3與PHT的皮膚、神經(jīng)系統(tǒng)不良反應(yīng)發(fā)生也具有強(qiáng)烈的相關(guān)性,CYP2C9和2C19的雜合子基因型患者發(fā)生PHT毒性更高(OR=21.6)[27,29]。不同等位基因的代謝能力不同,在臨床抗癲疒間藥物劑量上與經(jīng)驗(yàn)給藥模式有所不同,應(yīng)將CYP2C的遺傳代謝納入考慮因素。Goto等[30]研究發(fā)現(xiàn),CYP2C9*1/*3基因型癲疒間患者的PHT清除率比CYP2C9*1/*1癲疒間患者減少48%;Ninomiya等[31]研究發(fā)現(xiàn),CYP2C9*1*3和CYP2C19*1*3基因型攜帶者口服187.5 mg/d PHT,其PHT血藥濃度為32.6 μg/mL,遠(yuǎn)超過PHT有效最高劑量20 μg/mL;Hung等[32]研究證實(shí),CYP2C9*1/*3和CYP2C19*1/*1基因型攜帶者,為避免PHT體內(nèi)蓄積發(fā)生毒性反應(yīng),應(yīng)給予(4.1±0.9)mg/(kg·d)。遺傳藥理學(xué)上根據(jù)CYP2C9的等位基因不同,可分為不同代謝型:野生型純合子(*1/*1)為快代謝型,*1/*2和*1/*3為代謝型,*2/*2、*2/*3和*3/*3為慢代謝型。這種由代謝酶的基因多態(tài)性導(dǎo)致不同個(gè)體間存在酶代謝活性不同而出現(xiàn)快代謝型和慢代謝型直接影響PHT的藥代動(dòng)力學(xué)??齑x型患者即使給予足夠劑量的藥物,其血藥濃度仍然不能達(dá)到有效治療濃度,而慢代謝型患者則出現(xiàn)血藥濃度過高超出PHT治療窗而發(fā)生毒性反應(yīng),加之PHT治療窗狹窄,易發(fā)生不良反應(yīng)。給予PHT前,應(yīng)事先對(duì)癲疒間患者進(jìn)行基因多態(tài)性檢測(cè),確定患者的代謝型,選擇適宜的用藥劑量,保證恰當(dāng)?shù)姆€(wěn)態(tài)血藥濃度,避免PHT不良反應(yīng)的發(fā)生。建議當(dāng)患者為中間代謝型時(shí),其起始維持劑量應(yīng)降低25%,后續(xù)的維持劑量根據(jù)血藥濃度檢測(cè)和藥效進(jìn)行調(diào)整;而慢代謝型患者起始維持劑量應(yīng)降低50%,后續(xù)的維持劑量根據(jù)血藥濃度檢測(cè)和藥效進(jìn)行調(diào)整。由于*3降低代謝能力比*2高得多,因此,建議起始劑量低于建議劑量[26,32-34]。此外,CYP2C9仍有其他等位基因,如CYP2C9*5、*6、*8、*11均可降低CYP2C9酶活性,但在我國人群中很少見[35],本文不做介紹。
2.3離子通道電壓依賴性鈉離子通道主要功能是保持神經(jīng)元的興奮性,是抗癲疒間藥物的作用靶點(diǎn)。電壓依賴性鈉離子通道主要由α-亞基和β-亞基組成,研究發(fā)現(xiàn),SCN1A的基因多態(tài)性與癲疒間的易感性和癲疒間治療效果相關(guān)。α-亞基由4種亞型組成,分別為由基因SCN1A、2A、3A、8A編碼的Nav1.1、1.2、1.3和1.6組成,目前研究最多的是SCN1A基因多態(tài)性與PHT的關(guān)系[7,36-37]。SCN1A3184A>G的點(diǎn)突變與癲疒間的發(fā)生具有相關(guān)性,這是由于SCN1A A3184G突變電壓依賴性鈉離子通道的保守序列的蘇氨酸轉(zhuǎn)為丙氨酸,影響了鈉離子通道的失活功能,去極化時(shí)間延長,引發(fā)癲疒間[38];SCN1AIVS5-91G>A點(diǎn)突變與PHT的最大維持劑量相關(guān),AA和AG基因型攜帶者的最大維持劑量為10~15 mg/L,而GG基因型攜帶者的最大維持劑量?jī)H為5~10 mg/L,這是由于位于5’端的內(nèi)含子序列的突變影響了外顯子保守序列的剪接,進(jìn)而影響SCN1A轉(zhuǎn)錄,最終改變抗癲疒間藥物的藥效發(fā)揮[37-41]。當(dāng)SCN1AIVS5-91G>A點(diǎn)突變聯(lián)合CYP2C9突變時(shí),Sarah等[39]發(fā)現(xiàn),CYP2C9*3/*3/GG、CYP2C9*1/*3/AG、CYP2C9*1/*31/AA攜帶者的最大PHT給予劑量分別為250、297、377 mg,可見SCN1AIVS5-91G仍需作為重要PHT給藥劑量考量因素。研究發(fā)現(xiàn),基因SCN2A與抗癲疒間藥物療效相關(guān)。抗癲疒間藥物通過降低神經(jīng)遞質(zhì)釋放阻止動(dòng)作電位的激發(fā),從而遏制癲疒間的發(fā)生,SCN2Ac.56G>A突變將精氨酸轉(zhuǎn)為賴氨酸,影響了抗癲疒間藥物對(duì)生物膜穩(wěn)定性的作用,從而發(fā)生耐藥,Ram等[38]發(fā)現(xiàn),PHT耐藥性患者的SCN2A56G>A點(diǎn)突變發(fā)生頻率明顯高于PHT有效患者(OR 1.62,P<0.05)。
2.4人類白細(xì)胞抗原B(HLA-B)HLA-B是位于6號(hào)染色體上的人類主要的組織相容性復(fù)合物的基因簇的一部分。HLA-B編碼的是細(xì)胞表面蛋白,可使免疫系統(tǒng)對(duì)自身蛋白與外源性蛋白進(jìn)行區(qū)分。HLA-B與PHT誘發(fā)的皮膚不良反應(yīng)—Stevens-Johnson綜合征(SJS)和中毒性表皮壞死溶解癥(TEN)相關(guān)。研究發(fā)現(xiàn),HLA-B*15:02與PHT誘發(fā)的SJS或TEN的OR值為4.26(P<0.05),建議若癲疒間患者攜帶有HLA-B*15:02基因型,需避免服用PHT[34]。
2.5特殊人群使用
2.5.1孕婦癲疒間患者PHT雖然是強(qiáng)直性痙攣的首選藥,但在人體和動(dòng)物實(shí)驗(yàn)中均證實(shí)PHT具有致癌性、致畸性,因而被列為D級(jí)使用藥物,孕婦在妊娠期間為控制癲疒間而服用PHT,其胎兒畸形率為30%,更為嚴(yán)重的是,5%~10%的胎兒可能患有胎兒乙內(nèi)酰脲綜合征(FHS),因此,孕婦需權(quán)衡PHT藥效和發(fā)生不良反應(yīng)的風(fēng)險(xiǎn)。目前發(fā)現(xiàn),EPHX1的基因型與胎兒畸形有相關(guān)性。EPHX1是微粒體環(huán)氧化物水解酶,母體EPHX1的Y113H和H139R基因突變與孩子患顱面骨畸形具有高度相關(guān)性,與野生型相比,EPHX1 113H、EPHX1 139R和EPHX1 Y113/H139的OR值分別為2.43、2.33和0.29(P<0.05),建議孕婦采用PHT控制癲疒間時(shí),盡量進(jìn)行EPHX1的基因檢測(cè),避免胎兒畸形[42]。
四氫葉酸還原酶(MTHFR)是合成葉酸的關(guān)鍵酶,MTHFRC677T點(diǎn)突變可使酶活性降低、耐熱性變低、神經(jīng)發(fā)育遲緩,出現(xiàn)高同型半胱氨酸血癥[43];Dean等[44]發(fā)現(xiàn),母體MTHFR677TT純合子基因型攜帶者若服用PHT,其胎兒發(fā)生抗癲疒間藥物綜合征的可能性高,OR值為3.3,若孕婦在妊娠期服用PHT,建議增加葉酸的服用劑量。
2.5.2小兒癲疒間患者小兒癲疒間患者的PHT用藥劑量與成人的區(qū)別主要在于肝臟中CYP2C9的表達(dá)量和活性。在胎兒的前3個(gè)月證實(shí)CYP2C9的活性僅為成人的1%~2%,隨著時(shí)間推移,娩出前CYP2C9活性達(dá)到成人的30%,出生后到新生兒的5個(gè)月內(nèi),其CYP2C9的活性個(gè)體差異大,從幼兒的5個(gè)月~2歲時(shí),CYP2C9的代謝活性可達(dá)到成人水平。當(dāng)然,小于6歲的兒童體內(nèi)清除PHT能力是成人的2倍。目前對(duì)癲疒間患兒PHT的遺傳代謝研究甚少,只有1例2歲患兒其CYP*2/*2,CYP2C19*1/*4,給予15 mg/kg PHT即發(fā)生PHT毒性反應(yīng),因此,癲疒間患兒的給藥需密切監(jiān)控[34,45]。
3結(jié)語
目前,臨床藥物治療模式多為傳統(tǒng)的“一劑一方”經(jīng)驗(yàn)給藥模式,或是按照體重給藥區(qū)分給藥模式,藥物反應(yīng)性的個(gè)體差異被忽視,隨著遺傳藥理學(xué)的不斷發(fā)展和完善,個(gè)體化醫(yī)學(xué)在臨床中不斷推廣和應(yīng)用,精準(zhǔn)醫(yī)學(xué)將成為臨床常態(tài)的醫(yī)療模式。本文僅以苯妥英為例,介紹了與苯妥英相關(guān)的遺傳藥理學(xué)進(jìn)展,對(duì)今后苯妥英的給藥劑量有一定的借鑒意義。
參考文獻(xiàn):
[1]Sherifa AH.Atherosclerosis in epilepsy:Its causes and implications[J].Epilepsy & Behavior,2014,41:290-296.
[2]Deepa D,Vikas A,Rupa J.Effect of reduction of antiepileptic drugs in patients with drug-refractory epilepsy[J].Seizure,2015,27:25-29.
[3]Sandeep G,Kiran B,Sangeeta S.Absence of a general associatio n between ABCB1 genetic variants and response to antiepileptic drugs in epilepsy patients[J].Biochimie,2010,92:1207-1212.
[4]Cassandra EIS,Mark N,Julie MW,et al.Update on pharmacogenetics in epilepsy:a brief review[J].Lancet Neurol,2006,5:189-196.
[5]Kwan P,Brodie MJ. Early identification of refractory epilepsy[J].N Engl J Med,2000,342:314-319.
[6]McCorry D,Chadwick D,Marson A.Current drug treatment of epilepsy in adults[J].Lancet Neurol,2004,3:729-735.
[7]Qiao X,Sun G,Clare JJ,et al.Properties of human brain sodium channel α-subunits expressed in HEK293 cells and their modulation by carbamazepine,phenytoin and lamotrigine[J].Br J Pharmcol,2014,171(4):1054-1067.
[8]Twardowschy CA,Werneck LC,Scola RH,et al.The role of CYP2C9 polymorphisms in phenytoin-related cerebellar atrophy[J].Seizure,2013,22(3):194-197.
[9]Charles NS,Chavan R,Moon NJ,et al.Drug-induced gingival overgrowth:the genetic dimension[J].N Am J Med Sci,2014,6(9):478-480.
[10]Krasowski MD,Penrod LE.Clinical desision support of therapeutic drug monitoring of phenytoin:Measured versus adjusted phenytoin plasma concentrations[J].BMC Med Inform Decis Mak,2012,12:7.
[11]Akanksha NT,Shital RB,Santosh RT,et al.Association of CYP2C9polymorphisms with phenytoin toxicity in Indian patients[J].Neurol India,2012,60(6):577-580.
[12]Ichiro I.Functional significance of genetic polymorphisms in P-glycoprotein (MDR1,ABCB1) and breast cancer resistance protein (BCRP,ABCG2)[J].Drug Metab Pharmaokinet,2012,27(1):85-105.
[13]Wu DD,Zhang JX,Li J,et al.Lack of association of the MDR1 C3435T polymorphism with susceptibility to gastric cancer and peptic ulcer:a systemic review and meta-analysis[J].Asian Pac J Cancer Prev,2014,15(7):3021-3027.
[14]Kerb R,Aynacioglu AS,Brockmoller J,et al.The predictive value of MDR1,CYP2C9,and CYP2C19 polymorphisms for phenytoin plasma levels[J].Pharmacogenomics J,2001,1:204-210.
[15]Simon C,Stieger B,Kullak-Ublick GA,et al.Intestinal expression of cytochrome P450 enzymes and ABC transporters and carbamazepine and phenytoin disposition[J].Acta Neurol Scand,2007,115:232-242.
[16]Hoffmeyer S,Burk O,Von Richter O,et al.Functional polymorphisms of the human multidrug-resistance gene:multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo[J].Proc Natl Acad Sci USA,2000,97:3473-3478.
[17]Tishler DM,Weingerg KI,Hinton DR,et al.MDR1 gene expression in brain of patients with medically intractable epilepsy[J].Epilepsia,1995,36:1-6.
[18]Loscher W,Potschka H.Drug resistance in brain diseases and the role of drug efflux transporters[J].Nat Rev Neurosci,2005,6:591-602.
[19]Loscher W,Sills GJ.Drug resistance in epilepsy:why is a simple explanation not enough[J].Epilepsia,2007,48:2370-2372.
[20]Ebid AH,Ahmed MM,Mohammed SA. Therapeutic drug monitoring and clinical outcomes in epileptic Egyptian patients:a gene polymorphism perspective study[J].Ther Drug Monit,2007,29:305-312.
[21]Shivani P,Jaydip RC,Momin AJ,et al.Role of MDR1 C3435T and GABRG2 C588T gene polymorphisms in seizure occurrence and MDR1 effect on anti-epileptic drug (phenytoin) absorption[J].Gent Tes Mol Bio,2012,16(6):550-557.
[22]Takayuki S,Takateru I,Nao U,et al.ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients[J].Pharmacogenomics,2006,7(4):551-561.
[23]Zimprich F,Sunder-Plassmann R,Stogmann E,et al.Association of an ABCB1 gene haplotype with pharmacoresistance in temporal lobe epilepsy[J].Neurology,2004,63(6):1087-1089.
[24]Siddiqui A,Kerb R,Weale ME,et al.Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1[J].N Engl J Med,2003,348:1442-1448.
[25]Ramasamy K,Sunil KN,Chandrasekaran A.Influence of CYP2C9 and CYP2C19 genetic polymo rphisms on phenytoin-induced neurological toxicity in Indian epileptic patients[J].Eur J Clin Pharmacol,2010,66:689-696.
[26]Van der Weide J,Steijns LS,Van Weelden MJ,et al.The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement[J].Pharmacogenetics,2001,11,287-291.
[27]De Morais SM,Wilkinson GR,Blaisdell J,et al.The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans[J].J Biol Chem,1994,269:15419-15422.
[28]De Morais SM,Wilkinson GR,Blaisdell J,et al.Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese[J].Mol Pharmacol,1994,6:594-598.
[29]Lee AY,Kim MJ,Chey WY,et al.Genetic polymorphism of cytochrome P450 2C9 in diphenylhydan to induced cutaneous adverse drug reactions[J].Eur J Clin Pharmacol,2004,60(30):155-159.
[30]Goto S,Seo T,Murata T,et al.Population estimation of the effects of cytochrome P450 2C9 and 2C19 polymorphisms on phenobarbital clearance in Japanese[J].Ther Drug Monit,2007,29:118-121.
[31]Ninomiya H,Mamiya K,Matsuo S,et al Genetic polymorphis m of the CYP2C subfamily and excessive serum phenytoin concentration with central nervous system intoxication[J].Ther Drug Monit,2000,22:230-232.
[32]Hung CC,Lin CJ,Chen CC,et al.Dosage recommendation of phenytoin for patients with epilepsy with different CYP2C9/CYP2C19 polymorphisms[J].Ther Drug Monit,2004,26:534-540.
[33]Hung CC,Huang HC,Gao YH.Effects of polymorphisms in six candidate genes on phenytoin maintenance therapy in Han Chinese patients[J].Pharmacogenomics,2012,13:1339-1349.
[34]Caudlel KE,Rettie AE,Whirl-Carrillo M,et al.Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing[J].Clin Pharm Ther,2014,96(5):542-548.
[35]Aurel CA,Jean-Luc G,Yves H.CYP2C9,CYP2C19,ABCB1 (MDR1) genetic polymorphisms and phenytoin metabolism in a Black Beninese population[J].Pharmacogenetics and Genomics,2005,15:779-786.
[36]Yang M,Kozminski DJ,Wold LA,et al.Therapeutic potential for phenytoin:targeting Nav1.5 sodium channels to reduce migration and invasion in metastatic breast cancer[J].Breast Cancer Res Treat,2012,134:603-615.
[37]Margie AR,Mohamad AM.Clinical utility of genetic testing in pediatric drug-resistant epilepsy:A pilot study[J].Epilepsy & Behavior,2014,(37):241-248.
[38]Ram L,Ritu K,Usha KM,et al.Differential role of sodium channels SCN1A and SCN2A gene polymorphisms with epilepsy and multiple drug resistance in the north India polulation[J].Br J Clin Pharm,2009,68(2):214-220.
[39]Sarah KT,Chantal D,Sanjay MS,et al.Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin[J].PNAS,2005,102(15):5507-5512.
[40]Sandeep G,Mandaville GD,Ruchi B.Genetic profie of patients with epilepsy on fist-line antiepileptic drugs and potential directions for personalized treatment[J].Pharmacogenomics,2010,11(7):927-941.
[41]Sarah KT,Rinki S,Chin-Chuan H,et al.A common polymorphism in the SC N1A gene associates with phenytoin serum levels at maintenance dose[J].Pharmacogenetics and Genomics,2006,16:721-726.
[42]Elizabeth MA,Renee AC,Sholom W,et al.Maternal EPHX1 polymorphisms and risk of phenytoin-induced congenital malformations[J].Pharmacogenetics and Genomics,2010,20:58-63.
[43]Jun-Hyun Y,Seung BH.A common mutation in the Methylenetetrahydrofolate reductase gene is a determinant of hyperhomocysteinemia in epileptic patients receiving anticonvulsants[J].Metabolism,1999,48(8):1047-1051.
[44]Dean JCS,Moore SJ,Osborne A,et al.Fetal anticonvulsant syndrome and mutation in the maternal MTHFR gene[J].Clin Genet,1999:56:216-220.
[45]Dorado P,López-Torres E,Peas-Lledó EM,et al.Neurological toxicity after phenytoin infusion in a pediatric patient with epilepsy:inflence of CYP2C9,CYP2C19 and ABCB1 genetic polymorphisms[J].Pharmacogenomics J,2013,13:359-361.
歡迎訂閱·歡迎投稿
Development of pharmacogentics on phenytoinWANG Li-ping,LEI Jia-chuan,GUO Xian-xi,SONG Jin-chun (Department of Pharmacy,Renmin Hospital of Wuhan University,Wuhan 430060,China)
[Abstract]Genetic polymorphisms has important meaning for individual differences of antiepileptic drug-phenytoin and play a vital role in pharmacological and toxicological effects on phenytoin. With the development of pharmacogentics,we have a wider view for phenytoin. This paper discusses the advances of pharmacogenetics about phenytoin.
Key words:Phenytoin;Genetic polymorphisms;MDR1(ABCB1);CYP2C9;SCN1A;SCN2A;HLA-B;MTHFR
DOI:10.14053/j.cnki.ppcr.201601027
收稿日期:2015-06-23