国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于無(wú)網(wǎng)格方法的四葉草型催化劑體相溫度分布數(shù)值模擬

2016-04-11 06:21:26杜艷澤
石油煉制與化工 2016年10期
關(guān)鍵詞:圓柱型四葉草加氫裂化

王 闊,趙 波,秦 波,杜艷澤

(1.中國(guó)石化撫順石油化工研究院,遼寧 撫順 113001;2.遼寧石油化工大學(xué)理學(xué)院)

基于無(wú)網(wǎng)格方法的四葉草型催化劑體相溫度分布數(shù)值模擬

王 闊1,趙 波2,秦 波1,杜艷澤1

(1.中國(guó)石化撫順石油化工研究院,遼寧 撫順 113001;2.遼寧石油化工大學(xué)理學(xué)院)

以四葉草型及圓柱型加氫裂化催化劑三維體相環(huán)境為計(jì)算實(shí)體,以模擬工業(yè)運(yùn)行溫度的函數(shù)作為邊界條件,采用無(wú)網(wǎng)格數(shù)值方法求解傅里葉傳熱方程,并根據(jù)計(jì)算結(jié)果分析加氫裂化反應(yīng)過(guò)程中工況條件及催化劑尺寸對(duì)于催化劑內(nèi)部溫度分布的影響。結(jié)果表明:在加氫裂化反應(yīng)中,圓柱型及四葉草型催化劑顆粒內(nèi)部的最高溫度及平均溫度均隨反應(yīng)放熱量、空速、原料密度、催化劑半徑及催化劑長(zhǎng)度的增加而增大,其中反應(yīng)放熱量和催化劑半徑對(duì)催化劑內(nèi)部溫度的影響更顯著;即使在理想的宏觀等溫反應(yīng)條件下,兩種催化劑內(nèi)部仍然是非等溫區(qū)域;在工況條件及催化劑半徑和長(zhǎng)度均相同時(shí),四葉草型催化劑內(nèi)部的最高溫度、平均溫度均低于圓柱型催化劑,具有比圓柱型催化劑更均勻的溫度分布。

加氫裂化催化劑 傳熱 無(wú)網(wǎng)格法 數(shù)值模擬 溫度分布

油品的加氫裂化反應(yīng)整體上為強(qiáng)放熱反應(yīng),溫度和熱量是該類反應(yīng)最重要的影響因素。有關(guān)加氫裂化反應(yīng)體系的能量恒算以及節(jié)能研究的文獻(xiàn)眾多[1-2],但一般僅限于較大空間尺度或單純反應(yīng)熱層面[1-5]。對(duì)于小型實(shí)驗(yàn)裝置,整個(gè)反應(yīng)系統(tǒng)基本可以近似視為等溫反應(yīng)系統(tǒng);而工業(yè)裝置的反應(yīng)系統(tǒng)則可以視為一個(gè)近似的絕熱系統(tǒng)。在反應(yīng)過(guò)程中,反應(yīng)器內(nèi)部的溫度分布會(huì)影響催化劑床層不同位置的反應(yīng)速率,進(jìn)而影響該位置的熱量釋放,熱量的傳遞又會(huì)引起體系溫度分布的重新調(diào)整。這一溫度的正反饋過(guò)程在加氫裂化工業(yè)生產(chǎn)中十分重要。

加氫裂化反應(yīng)過(guò)程的熱量集中于催化劑顆粒,每個(gè)催化劑顆粒都相當(dāng)于反應(yīng)體系的一個(gè)“微熱源”。這些微熱源的溫度分布情況直接或間接影響反應(yīng)體系的質(zhì)量傳遞、熱量傳遞、反應(yīng)進(jìn)程以及產(chǎn)品分布。同時(shí),催化劑體相內(nèi)部的溫度分布對(duì)催化劑壽命也有極大的影響。因此,對(duì)催化劑體相內(nèi)部的溫度分布進(jìn)行研究十分重要。傳統(tǒng)的煉化工業(yè)一般采用熱電偶測(cè)定溫度,但只能得到反應(yīng)器內(nèi)部宏觀點(diǎn)的溫度近似值,無(wú)法對(duì)反應(yīng)過(guò)程的實(shí)時(shí)微觀熱效應(yīng)進(jìn)行分析。近年來(lái),雖然 “非接觸式”的紅外測(cè)溫技術(shù)得到廣泛發(fā)展[6],但由于催化劑內(nèi)部微小而復(fù)雜的形態(tài)結(jié)構(gòu),目前沒有任何溫度測(cè)量設(shè)備能夠?qū)ζ鋬?nèi)部溫度進(jìn)行測(cè)量;同時(shí),由于催化劑外觀幾何形態(tài)以及反應(yīng)條件的復(fù)雜性,導(dǎo)致常規(guī)導(dǎo)熱模型體系的經(jīng)驗(yàn)公式難于適用。本課題基于傅里葉傳熱定律的數(shù)值模擬方法來(lái)解決這一類問題,以四葉草型和圓柱型加氫裂化催化劑三維體相環(huán)境為計(jì)算實(shí)體,以模擬工業(yè)運(yùn)行溫度的函數(shù)作為邊界條件,采用無(wú)網(wǎng)格數(shù)值方法求解傅里葉傳熱方程,并根據(jù)計(jì)算結(jié)果分析加氫裂化反應(yīng)過(guò)程中工況條件及催化劑尺寸對(duì)催化劑內(nèi)部溫度分布的影響。

1 模型建立與求解過(guò)程

1.1 傅里葉傳熱方程

對(duì)一般傳熱過(guò)程,當(dāng)存在穩(wěn)定熱源時(shí),體系溫度對(duì)于空間的分布形態(tài)可由一個(gè)穩(wěn)態(tài)傅里葉傳熱方程確立。對(duì)于一個(gè)三維體系,一般的數(shù)學(xué)形式如式(1)所示。

(1)

式中:F(x,y,z)表示體系內(nèi)溫度對(duì)于空間的函數(shù),當(dāng)空間點(diǎn)處于體相內(nèi)部(v)時(shí),整個(gè)體系由一個(gè)偏微分方程描述,其中qv(x,y,z)是體系的熱源函數(shù),該函數(shù)表示當(dāng)體系存在熱源或熱匯時(shí)該熱源或熱匯對(duì)空間的分布形式;λ表示計(jì)算體系的導(dǎo)熱系數(shù),由該體系組成材料的物化性質(zhì)決定。當(dāng)溫度點(diǎn)處于體相表面(σ)時(shí),溫度可以用第一型迪里克萊邊界條件描述,可將表面溫度分布表達(dá)為函數(shù)G(x,y,z)。對(duì)極少數(shù)具有比較簡(jiǎn)單的熱源或熱匯函數(shù)形式及比較規(guī)則的幾何外觀形態(tài)和邊界條件的導(dǎo)熱體系而言,函數(shù)F(x,y,z)存在解析形式。由于拉普拉斯型方程的初值問題的解是不穩(wěn)定的[7],對(duì)于絕大多數(shù)復(fù)雜實(shí)際工程的傳熱體系,對(duì)模型方程體系的適定性問題討論極為復(fù)雜,式(1)只能由數(shù)值方法求解。

1.2 加氫反應(yīng)過(guò)程熱量衡算及相關(guān)方程參數(shù)的確立

整個(gè)加氫裂化過(guò)程的精確反應(yīng)熱計(jì)算比較困難,根據(jù)已有經(jīng)驗(yàn)及文獻(xiàn),加氫裂化反應(yīng)的放熱量一般為200~500 kJkg,原料密度一般為0.85~1.05 kgL,反應(yīng)過(guò)程的體積空速一般為0.9~1.5 h-1。通過(guò)以上數(shù)據(jù)可對(duì)反應(yīng)體系進(jìn)行熱量衡算及方程參數(shù)估計(jì)。

取極端原料性質(zhì)及操作條件進(jìn)行方程參數(shù)估計(jì)。假定加氫裂化反應(yīng)放熱量Qm=500 kJkg,油品密度ρ=1.05 kg/L,則每加工1 L油品的放熱量q=Qm×ρ=500 kJ/kg×1.05 kg/L=525 kJ/L。假定體積空速LHSV=1.5 h-1,則每升催化劑每小時(shí)的放熱量Qv=q×LHSV=525×1.5=787.5 kJ/(L·h),也即單位體積熱功率P=787.5 kJ/(L·h)=218.75 W/L=2.187 5×10-4W/mm3。根據(jù)文獻(xiàn)[8],一般催化劑的導(dǎo)熱系數(shù)為0.25~0.32 W/(m·K),因此計(jì)算中導(dǎo)熱系數(shù)λ取2.58×10-4W/(mm·K),式(1)中相關(guān)熱功率與導(dǎo)熱系數(shù)的比值qv(x,y,z)/λ=(2.187 5×10-4W/mm3)/[2.58×10-4W/(mm·K)]=0.85 K/mm2。

1.3 無(wú)網(wǎng)格方法及計(jì)算過(guò)程

目前主要采用數(shù)值方法對(duì)較為復(fù)雜的工程偏微分方程進(jìn)行求解,常規(guī)的數(shù)值方法包括有限差分方法(FDM)、有限元方法(FEM)。前者對(duì)于復(fù)雜邊界條件的適應(yīng)性很差,在現(xiàn)代工程計(jì)算應(yīng)用中受到了一定的限制;后者自20世紀(jì)50年代開始興起,堪稱數(shù)值方法領(lǐng)域的一個(gè)里程碑,然而它也存在缺點(diǎn)和局限性,例如該方法需要在計(jì)算前對(duì)計(jì)算體系進(jìn)行相關(guān)的網(wǎng)格劃分,而形成網(wǎng)格的計(jì)算成本較高,特別是對(duì)于復(fù)雜的三維體系,生成復(fù)雜的高質(zhì)量網(wǎng)格相當(dāng)困難[9]。產(chǎn)生這類問題的根源在于有限元計(jì)算過(guò)程中使用了生成網(wǎng)格單元的相關(guān)連接信息。因此,近年來(lái)無(wú)網(wǎng)格類計(jì)算方法應(yīng)運(yùn)而生。無(wú)網(wǎng)格方法的特點(diǎn)以及與其它計(jì)算方法結(jié)合使用的案例參見文獻(xiàn)[10-13]。

本課題使用無(wú)網(wǎng)格計(jì)算方法對(duì)三維傅里葉傳熱方程進(jìn)行數(shù)值求解,并對(duì)具有不同幾何形態(tài)的圓柱型及四葉草型催化劑的體相溫度空間分布形式進(jìn)行描述和分析,主要計(jì)算過(guò)程為:對(duì)指定采樣點(diǎn)確定相關(guān)的三維長(zhǎng)方體計(jì)算支持域,在支持域中選擇具有局域性質(zhì)的局域函數(shù),該局域函數(shù)以多項(xiàng)式函數(shù)為基本函數(shù);首先計(jì)算支持域內(nèi)的計(jì)算節(jié)點(diǎn)局域矩陣,并選擇三維長(zhǎng)方體計(jì)算支持域中的三次樣條權(quán)重函數(shù);然后在支持域內(nèi)構(gòu)造權(quán)重矩陣,依據(jù)已定義的局域矩陣以及權(quán)重矩陣產(chǎn)生對(duì)于無(wú)網(wǎng)格計(jì)算采樣點(diǎn)的形函數(shù)矩陣;將采樣點(diǎn)形函數(shù)以及形函數(shù)的導(dǎo)數(shù)依次代入式(1),構(gòu)造出以計(jì)算點(diǎn)溫度數(shù)值為未知向量的線性方程組,該線性方程組的系數(shù)矩陣及常數(shù)項(xiàng)矢量分別稱為力矩陣和載荷矩陣,在載荷矩陣中可根據(jù)具體控制方程及邊界條件加載相應(yīng)的數(shù)據(jù),根據(jù)計(jì)算需要,力矩陣的行數(shù)與列數(shù)(即采樣點(diǎn)個(gè)數(shù)與計(jì)算點(diǎn)個(gè)數(shù))可相同也可不同;最后用線性最小二乘法求解力矩陣對(duì)于載荷矩陣的未知向量,即得到計(jì)算節(jié)點(diǎn)溫度函數(shù)的近似數(shù)值,再用計(jì)算節(jié)點(diǎn)溫度函數(shù)的數(shù)值與生成的形函數(shù)矩陣重構(gòu)整個(gè)采樣節(jié)點(diǎn)溫度函數(shù)的數(shù)值,便可獲得原偏微分方程體系的近似數(shù)值解。

1.4 計(jì)算參數(shù)及邊界條件的設(shè)定

相比于傳統(tǒng)圓柱型催化劑,四葉草型催化劑具有較大的宏觀外表面積以及在反應(yīng)過(guò)程中具有較小的系統(tǒng)壓降,因此得到了廣泛應(yīng)用。四葉草型催化劑的截面外觀如圖1所示。由圖1可知,四葉草型催化劑包含兩類半徑,即4個(gè)相切的小圓柱體的半徑r、與4個(gè)小圓柱體相切的外接大圓的半徑R。相比于傳統(tǒng)的半徑為R的圓柱型催化劑,四葉草型催化劑具有更小的體積和更大的外表面積。本課題對(duì)具有不同大圓半徑R及長(zhǎng)度的圓柱型催化劑和四葉草型催化劑內(nèi)部溫度場(chǎng)進(jìn)行計(jì)算和分析。

圖1 四葉草型催化劑的截面外觀

圓柱型催化劑采樣點(diǎn)的軸向及徑向分布如圖2所示。在整個(gè)計(jì)算過(guò)程中定義的權(quán)函數(shù)支持域尺寸為2。對(duì)于半徑為2 mm、長(zhǎng)度為10 mm的圓柱型催化劑的計(jì)算,分別在圓柱體的徑向取6個(gè)采樣點(diǎn)、平面角方向取20個(gè)采樣點(diǎn)、軸向取41個(gè)采樣點(diǎn)。

圖2 圓柱型催化劑的采樣點(diǎn)及計(jì)算點(diǎn)分布●—采樣點(diǎn); ●—計(jì)算點(diǎn)。 圖3同

四葉草型催化劑的截面外觀相對(duì)復(fù)雜,對(duì)稱性遠(yuǎn)較圓柱型催化劑差,在徑向平面上具有更為豐富的信息。四葉草型催化劑采樣點(diǎn)軸向及徑向分布如圖3所示。在整個(gè)計(jì)算過(guò)程中定義的權(quán)函數(shù)支持域尺寸為2。對(duì)于大圓半徑為2 mm、長(zhǎng)度為10 mm的四葉草型催化劑的計(jì)算,分別在徑向取6個(gè)采樣點(diǎn)、徑向平面角方向取40個(gè)采樣點(diǎn)、軸向取41個(gè)采樣點(diǎn)。

圖3 四葉草型催化劑的采樣點(diǎn)及計(jì)算點(diǎn)分布

整個(gè)計(jì)算過(guò)程以外界溫度370 ℃作為邊界條件,通過(guò)計(jì)算獲得熱點(diǎn)均勻分布[14]的不同形狀催化劑的溫度空間分布情況。

1.5 計(jì)算體系

采用分布式計(jì)算系統(tǒng)對(duì)模型進(jìn)行計(jì)算,整套設(shè)備包含常規(guī)處理器計(jì)算機(jī)5臺(tái),共160個(gè)核心。計(jì)算體系由24口交換機(jī)完成計(jì)算數(shù)據(jù)的傳輸和交互[15-16]。整個(gè)無(wú)網(wǎng)格計(jì)算過(guò)程在本質(zhì)上具有較好的并發(fā)性,采樣點(diǎn)對(duì)應(yīng)的形函數(shù)及其偏導(dǎo)數(shù)的計(jì)算以及力矩陣及載荷矩陣的計(jì)算組裝過(guò)程均采用多機(jī)并行方式實(shí)現(xiàn),由體系的160個(gè)核心并行參與。

2 結(jié)果與討論

采用上述模型對(duì)不同反應(yīng)工況及催化劑尺寸條件下熱點(diǎn)分布均勻的圓柱型及四葉草型催化劑在外表面溫度為370 ℃時(shí)的內(nèi)部溫度分布進(jìn)行計(jì)算,所得催化劑體系內(nèi)部的最高溫度、平均溫度以及溫度分布的標(biāo)準(zhǔn)差見表1。根據(jù)圓柱型催化劑在工況7下的三維溫度場(chǎng)分布繪制二維軸向及徑向截面圖,如圖4所示;根據(jù)四葉草型催化劑在工況15下的三維溫度場(chǎng)分布繪制二維軸向及徑向截面圖,如圖5所示。

2.1 圓柱型催化劑內(nèi)部溫度場(chǎng)分析

由表1可知:裂化反應(yīng)的放熱量、原料密度、反應(yīng)空速及催化劑半徑和長(zhǎng)度均影響圓柱型催化劑的內(nèi)部溫度分布;催化劑顆粒內(nèi)部最高溫度及平均溫度均隨反應(yīng)放熱量、原料密度、反應(yīng)空速以及催化劑半徑、催化劑軸向長(zhǎng)度的增加而增大;反應(yīng)放熱量及催化劑顆粒半徑對(duì)催化劑最高溫度及平均溫度的影響顯著大于催化劑長(zhǎng)度、反應(yīng)空速及原料密度。

對(duì)于熱點(diǎn)分布均勻的等溫反應(yīng)條件,雖然不同計(jì)算工況對(duì)應(yīng)的最高溫度及平均溫度數(shù)值有所不同,但溫度分布形式基本類似。由圖4可知,圓柱型催化劑內(nèi)部溫度分布的等勢(shì)面在徑向上是嚴(yán)格的圓型分布,在軸向剖面上近似橢圓分布,催化劑外表面溫度為370 ℃,由外到內(nèi)溫度逐漸增加,其徑向溫度梯度大于軸向溫度梯度,在圓柱型催化劑的幾何中心處溫度最高。因此,可以認(rèn)為雖然在理論上圓柱型催化劑內(nèi)部并非等溫環(huán)境,但其內(nèi)部的反應(yīng)環(huán)境與等溫環(huán)境類似。而當(dāng)催化劑半徑及長(zhǎng)度較大時(shí),催化劑圓柱體中心的最高溫度與表面溫度相差較大,其反應(yīng)環(huán)境相對(duì)于等溫反應(yīng)偏離較大。因此,僅從熱效應(yīng)上考慮,制備圓柱型催化劑時(shí),其半徑及長(zhǎng)度不宜過(guò)大。

表1 圓柱型及四葉草型催化劑的內(nèi)部溫度分布

圖4 圓柱型催化劑在工況7下的內(nèi)部溫度分布截面圖

圖5 四葉草型催化劑在工況15下的內(nèi)部溫度分布截面圖

2.2 四葉草型催化劑內(nèi)部溫度場(chǎng)分析

由表1可知:與圓柱型催化劑相似,裂化反應(yīng)的放熱量、原料密度、反應(yīng)空速以及催化劑半徑均影響四葉草型催化劑內(nèi)部的溫度分布;催化劑顆粒內(nèi)部的最高溫度及平均溫度均隨反應(yīng)放熱量、原料密度、反應(yīng)空速、催化劑外接大圓半徑以及催化劑長(zhǎng)度的增加而增大;反應(yīng)放熱量及催化劑顆粒外接大圓半徑對(duì)催化劑最高溫度及平均溫度的影響顯著大于催化劑長(zhǎng)度、反應(yīng)空速及原料密度。

通過(guò)對(duì)比圓柱型和四葉草型催化劑的內(nèi)部溫度分布數(shù)據(jù)可知,在所有工況條件及催化劑半徑和長(zhǎng)度均相同時(shí),四葉草型催化劑內(nèi)部的最高溫度及平均溫度均低于圓柱型催化劑,兩者溫度一般相差0.1~0.9 ℃,且四葉草型催化劑內(nèi)部溫度的波動(dòng)范圍小于相應(yīng)的圓柱型催化劑。

不同工況下四葉草型催化劑內(nèi)部的溫度分布比較相似。在熱點(diǎn)分布均勻的等溫反應(yīng)條件下,四葉草型催化劑的截面較圓柱型催化劑復(fù)雜,其內(nèi)部的溫度分布形式也與圓柱型催化劑相差較大,尤其體現(xiàn)出了較為復(fù)雜的截面溫度分布信息。由圖5可知,四葉草型催化劑溫度分布的等勢(shì)面在截面每個(gè)葉上的徑向方向近似呈貝殼型分布,沿催化劑對(duì)應(yīng)的大圓圓心與小圓圓心連線方向的溫度梯度變化最小,沿大圓圓心與小圓公切點(diǎn)方向的溫度梯度變化最大,由于催化劑體系有對(duì)稱的特征,最高溫度區(qū)域與圓柱型催化劑相似,仍在催化劑的中心軸線的中點(diǎn)位置。在軸向剖面上,其溫度等勢(shì)面呈近似圓角矩形分布,催化劑的外表面溫度為370 ℃,由外到內(nèi)溫度逐漸增加,其徑向的溫度梯度大于軸向的溫度梯度。因此,同樣認(rèn)為雖然四葉草型催化劑的內(nèi)部并非等溫環(huán)境,但其內(nèi)部的反應(yīng)環(huán)境與等溫環(huán)境類似。與圓柱型催化劑相似,當(dāng)四葉草型催化劑外接大圓半徑及長(zhǎng)度較大時(shí),催化劑中心的最高溫度與表面溫度相差較大,其反應(yīng)環(huán)境相對(duì)于等溫反應(yīng)偏離較大。另外,由于計(jì)算機(jī)硬件系統(tǒng)內(nèi)存的限制,沿著大圓圓心與小圓公切點(diǎn)方向及其鄰域的計(jì)算點(diǎn)與采樣點(diǎn)數(shù)目有限,導(dǎo)致對(duì)該方向及其鄰域內(nèi)溫度變化的描述具有一定的誤差。

3 結(jié) 論

在加氫裂化反應(yīng)中,圓柱型及四葉草型催化劑顆粒內(nèi)部的最高溫度及平均溫度均隨反應(yīng)放熱量、空速、原料密度、催化劑半徑及催化劑長(zhǎng)度的增加而增大,其中反應(yīng)放熱量和催化劑半徑對(duì)催化劑內(nèi)部溫度的影響更顯著。即使在理想的宏觀等溫反應(yīng)條件下,兩種催化劑內(nèi)部仍然是非等溫區(qū)域。在工況條件及催化劑半徑和長(zhǎng)度均相同時(shí),四葉草型催化劑內(nèi)部的最高溫度、平均溫度均低于圓柱型催化劑,具有比圓柱型催化劑更均勻的溫度分布。

[1] 尹兆林.煉油企業(yè)全廠用能分析及節(jié)能優(yōu)化[J].石油煉制與化工,2012,43(10):86-91

[2] 董兆海,袁永新,王明傳.加氫裂化裝置能耗及節(jié)能分析[J].齊魯石油化工,2011,39(2):87-91

[3] 劉小波,毛羽,王娟,等.基于多孔介質(zhì)加氫裂化反應(yīng)器多相流數(shù)值模擬[J].石油學(xué)報(bào)(石油加工),2012,28(2):260-267

[4] 龍軍,邵潛,賀振富,等.規(guī)整結(jié)構(gòu)催化劑及反應(yīng)器研究進(jìn)展[J].化工進(jìn)展,2004,23(9):925-931

[5] 梁文杰,闕國(guó)和.石油化學(xué)[M].2版.東營(yíng):中國(guó)石油大學(xué)出版社,2011:356

[6] 鄭忠,何臘梅.紅外測(cè)溫技術(shù)及在鋼鐵生產(chǎn)中的應(yīng)用[J].工業(yè)加熱,2005,34(3):25-29

[7] 廖玉麟.數(shù)學(xué)物理方程[M].上海:華東理工大學(xué)出版社,1995:12-13

[8] 吳建民,張海濤,應(yīng)衛(wèi)勇,等.鈷基催化劑固定床有效導(dǎo)熱系數(shù)[J].過(guò)程工程學(xué)報(bào),2010,10(1):29-34

[9] 劉桂榮,顧元通.無(wú)網(wǎng)格法理論及程序設(shè)計(jì)[M].濟(jì)南:山東大學(xué)出版社,2007:24

[10]劉欣.無(wú)網(wǎng)格方法[M].北京:科學(xué)出版社,2011:9

[11]貝新源,岳宗五.三維SPH程序及其在斜高速碰撞問題中的應(yīng)用[J].計(jì)算物理,1997,14(2):155-166

[12]張雄,劉巖.無(wú)網(wǎng)格方法[M].北京,清華大學(xué)出版社,2001:42

[13]鐘萬(wàn)勰.彈性力學(xué)求解新體系[M].大連:大連理工大學(xué)出版社,1995:35

[14]莫爾比代利M,加夫里迪斯A,瓦爾馬A.催化劑設(shè)計(jì)[M].王安杰,李翔,趙蓓,等,譯.北京:化學(xué)工業(yè)出版社,2004:128

[15]王曉丹,吳崇明.基于MATLAB的系統(tǒng)分析與設(shè)計(jì)[M].西安:西安電子科技大學(xué)出版社,2000:125

[16]劉維.實(shí)戰(zhàn)Matlab之并行程序設(shè)計(jì)[M].北京:北京航空航天大學(xué)出版社,2012:135-137

NUMERICAL SIMULATION OF TEMPERATURE DISTRIBUTION IN FOUR-LEAF SHAPE CATALYST BY MESHLESS METHOD

Wang Kuo1, Zhao Bo2, Qin Bo1, Du Yanze1

(1.SINOPECFushunResearchInstituteofpetroleumandPetrochemical,F(xiàn)ushun,Liaoning113001; 2.LiaoningShihuaUniversity,CollegeofScience)

Based on three-dimensional bulk of real four-leaf type hydrocracking catalyst, the meshfree calculation to solve the fourier partial differential equation for heat transmission was used to simulate the influence of external temperature fluctuation on the internal temperature distribution in the catalyst using industrial operating temperature and catalysts size as the boundary conditions. The analysis results show that the reactions in the catalyst do not occur under real isothermal surroundings. The maximum and average temperature increases in the cylindrical and four-leaf type catalyst as the increase of reaction heat release, space velocity, feed density, catalyst radius and length of the catalyst. Among them, the heat release and catalyst radius have much more influence. Even under ideal apparent isothermal reaction conditions, the non-isothermal area still exists in the two catalysts. When the operation conditions and catalyst size are the same, the four-leaf type catalyst has the highest internal temperature, while its average temperature and distribution are lower and better than cylindrical one.

hydrocracking catalyst; heat transmission; meshless method; numerical simulation; temperature distribution

2016-02-29; 修改稿收到日期: 2016-05-18。

王闊,碩士,工程師,研究方向?yàn)楣I(yè)催化及分子模擬。

王闊,E-mail:wangkuo.fshy@sinopec.com。

中國(guó)石油化工股份有限公司項(xiàng)目(JQ-011308)。

猜你喜歡
圓柱型四葉草加氫裂化
加氫裂化裝置脫丁烷塔頂換熱器失效原因分析及預(yù)防措施
板式換熱器進(jìn)口處液體分布器的數(shù)值模擬*
阿爾法·羅密歐 GIULIA & STELVIO 四葉草版
四葉草書簽
發(fā)明解讀刀具夾持裝置以及包括這種刀具夾持裝置的手持式電動(dòng)工具
圓柱型功能梯度雙材料界面裂紋問題研究
四葉草
四葉草
加氫裂化裝置循環(huán)氫壓縮機(jī)干氣密封失效處理
圓柱型正交各向異性圓板的自由振動(dòng)分析
临颍县| 绥德县| 龙州县| 东至县| 高邑县| 江川县| 化州市| 大城县| 荆门市| 青河县| 呼和浩特市| 云龙县| 宜兰县| 维西| 六安市| 昌乐县| 汝南县| 乳山市| 乌拉特中旗| 祁门县| 石河子市| 荔波县| 江陵县| 交口县| 弥渡县| 永泰县| 青龙| 焦作市| 澎湖县| 上虞市| 福泉市| 永泰县| 普格县| 叶城县| 泗水县| 新田县| 柏乡县| 宿松县| 柳河县| 乌海市| 黄骅市|