国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

生長(zhǎng)素運(yùn)輸載體研究進(jìn)展

2016-04-11 11:00俞晨良董文其張成浩
關(guān)鍵詞:生長(zhǎng)素突變體極性

俞晨良, 董文其, 張成浩

(浙江省農(nóng)業(yè)科學(xué)院 蔬菜研究所,浙江 杭州 310021)

生長(zhǎng)素運(yùn)輸載體研究進(jìn)展

俞晨良, 董文其, 張成浩*

(浙江省農(nóng)業(yè)科學(xué)院 蔬菜研究所,浙江 杭州 310021)

生長(zhǎng)素極性運(yùn)輸在植物器官形態(tài)建成、發(fā)育等過程中發(fā)揮重要的調(diào)控作用,生長(zhǎng)素極性運(yùn)輸主要依賴生長(zhǎng)素運(yùn)輸載體來調(diào)控。本文對(duì)生長(zhǎng)素極性運(yùn)輸載體 AUX/LAX 蛋白、PIN 蛋白家族和ABCB/MDR/PGP 蛋白家族的近期研究結(jié)果進(jìn)行了綜述,為生長(zhǎng)素極性運(yùn)輸?shù)难芯刻峁├碚撘罁?jù)。

生長(zhǎng)素;運(yùn)輸載體;極性分布;定位;組織表達(dá)

生長(zhǎng)素是非常重要的植物激素。近年來,遺傳、分子和藥理學(xué)等方面的研究已經(jīng)表明,生長(zhǎng)素作用于植物生長(zhǎng)和發(fā)育的各個(gè)方面。生長(zhǎng)素參與調(diào)控根系形成、花序和葉序發(fā)育、維管組織分化、頂端優(yōu)勢(shì)、果實(shí)成熟以及向光性和向重性等植物的生長(zhǎng)發(fā)育和形態(tài)建成過程。生長(zhǎng)素在植物面對(duì)生物脅迫及非生物脅迫時(shí)起著重要的作用。生長(zhǎng)素主要在生命力旺盛的組織中合成,如發(fā)育的種子、根尖分生組織、莖分生組織、幼葉等,然后運(yùn)輸?shù)阶饔玫牟课弧T诟叩戎参镏?,生長(zhǎng)素存在2種截然不同的運(yùn)輸方式:1) 依賴于自由擴(kuò)散的維管系統(tǒng)運(yùn)輸,運(yùn)輸方向取決于兩端濃度差等因素,是一種長(zhǎng)距離的運(yùn)輸[1];2) 耗能并需要運(yùn)輸載體的運(yùn)輸,是一種短程的主動(dòng)運(yùn)輸[2]。主動(dòng)運(yùn)輸對(duì)生長(zhǎng)素不對(duì)稱分布起著關(guān)鍵作用,又稱為生長(zhǎng)素極性運(yùn)輸(polar auxin transport,PAT)。根據(jù)生長(zhǎng)素運(yùn)輸方向分為向基運(yùn)輸和向頂運(yùn)輸[1]。植物根中同時(shí)存在這2條運(yùn)輸途徑:一條是向頂運(yùn)輸,即生長(zhǎng)素在地上部合成后運(yùn)往根尖;另一條是向基運(yùn)輸,即將生長(zhǎng)素從根尖運(yùn)輸?shù)礁o連接處。植物地上部中只存在向基運(yùn)輸,即生長(zhǎng)素在葉尖合成后向根莖結(jié)合部運(yùn)輸。

對(duì)于生長(zhǎng)素極性運(yùn)輸?shù)臋C(jī)制研究,Raven提出細(xì)胞內(nèi)外的pH值和電勢(shì)差對(duì)生長(zhǎng)素的運(yùn)輸具有決定作用,在此基礎(chǔ)上形成了化學(xué)滲透偶聯(lián)模型(chemiosmotic hypothesis)。生長(zhǎng)素(吲哚乙酸,indole-3-acetic acid,IAA)是一種弱酸(pKa=4.75),在細(xì)胞質(zhì)生長(zhǎng)素解離為陰離子狀態(tài)(IAA-),IAA-較難透過質(zhì)膜,由不對(duì)稱分布在質(zhì)膜上的運(yùn)輸載體轉(zhuǎn)運(yùn)出細(xì)胞,從而實(shí)現(xiàn)生長(zhǎng)素的極性運(yùn)輸[3]。極性運(yùn)輸是生長(zhǎng)素特有的運(yùn)輸方式,依靠特定的載體來完成。生長(zhǎng)素極性運(yùn)輸依賴3種運(yùn)輸?shù)鞍祝狠斎胼d體AUX/LAX(auxinresistant1 /likeAUX1)家族、輸出載體PIN(pin-formed)家族和兼有輸入和輸出功能的ABCB/MDR/PGP(ATP binding cassette B/Multidrug-resistance/p-glycoprotein)家族。

1 輸入載體AUX/LAX家族

AUX/LAX家族是一類被公認(rèn)的生長(zhǎng)素輸入載體,屬于氨基酸轉(zhuǎn)運(yùn)蛋白(Amino Acid Transporter,AAT)家族中的AAAP亞家族(the amino acid/auxin permease, AAAP)[4]。AtAUX1(auxin resistant 1)是擬南芥中第1個(gè)被克隆到的生長(zhǎng)素輸入載體[5],具有11個(gè)跨膜結(jié)構(gòu)[6]。AtAUX1突變體喪失根的向重性,對(duì)生長(zhǎng)素具有選擇性抗性,對(duì)于吲哚乙酸(IAA)、2,4-二氯苯氧乙酸(2,4-D)等生長(zhǎng)素不敏感,對(duì)唯一可以自由擴(kuò)散的NAA沒有抗性,只有NAA可以恢復(fù)ataux1的向中性反應(yīng)[5,7]。2006年,Yang等在爪蟾卵母細(xì)胞中異源表達(dá)AtAUX1蛋白,利用放射性同位素標(biāo)記技術(shù),證實(shí)了AtAUX1蛋白具有共轉(zhuǎn)運(yùn)H+/IAA-的功能[8]。利用報(bào)告基因(GUS、GFP和YFP等)和原位雜交等方法,發(fā)現(xiàn)在地下部AtAUX1主要在根尖表皮細(xì)胞、根冠小柱細(xì)胞,側(cè)根根冠維管柱、韌皮部中表達(dá),在原生韌皮部中與AtPIN1位置相反,AtAUX1呈現(xiàn)不對(duì)稱分布[9-10]。AtAUX1的蛋白定位依賴AtAXR4基因,AtAXR4突變體表現(xiàn)出類似于AtAUX1突變體的表型[11]。 在根中AtAUX1參與生長(zhǎng)素向頂和向基運(yùn)輸,AtAUX1突變導(dǎo)致生長(zhǎng)素從源(葉)到庫(kù)的運(yùn)輸被破壞,體中生長(zhǎng)素向基性運(yùn)輸能力減弱[12]。除了AtAUX1外,之后又發(fā)現(xiàn)了與AtAUX1序列高度同源的蛋白,分別被命名為L(zhǎng)AX1/2/3(like AUX1)。這些基因都編碼含多個(gè)跨膜結(jié)構(gòu)的蛋白。AtAUX/LAX家族基因結(jié)構(gòu)相似,氨基酸序列高度同源,如AtAUX1 分別與AtLAX1、AtLAX2、AtLAX3的同源性達(dá)到了82%、78%和76% ,因此AtAUX/LAX家族可能是同一個(gè)祖先基因經(jīng)過復(fù)制而來的[13]。AtAUX1、AtLAX1、AtLAX2和AtLAX3在根中的表達(dá)呈互補(bǔ)方式。AtLAX1在主根成熟區(qū)的維管系統(tǒng)中表達(dá),在根尖處有微弱表達(dá)[4]。AtLAX2在子葉維管和根尖靜止中心處有強(qiáng)烈的表達(dá),調(diào)控子葉維管的分化[4]和根尖靜止中心(quiescent center)的分裂[14]。在地上部,AtLAX2突變體表現(xiàn)出子葉維管斷裂的表型[4]。在地下部,AtLAX2突變體主根靜止中心分裂不正常,抑制AtWOX5基因和生長(zhǎng)素報(bào)告基因DR5-GFP的表達(dá),研究發(fā)現(xiàn)細(xì)胞分裂信號(hào)轉(zhuǎn)導(dǎo)B型調(diào)控蛋白AtARR1直接結(jié)合在AtLAX2基因的啟動(dòng)子上,表明AtLAX2基因受細(xì)胞分裂素信號(hào)的直接調(diào)控。AtLAX3與AtAUX1共同調(diào)控?cái)M南芥頂端彎鉤(apical hook)的發(fā)育,頂端彎鉤受乙烯-生長(zhǎng)素互作調(diào)控[15]。AtLAX3與AtAUX1協(xié)同調(diào)控側(cè)根發(fā)育。AtAUX1在中柱鞘中表達(dá),ataux1的側(cè)根數(shù)比野生型減少50%[16]。通過IAA2-GUS報(bào)告基因的分析顯示,生長(zhǎng)素在ataux1中含量和分布都與野生型不同,表明AtAUX1促進(jìn)生長(zhǎng)素在維管系統(tǒng)中的裝載。AtLAX3在剛萌發(fā)的側(cè)根原基皮層處表達(dá),介導(dǎo)側(cè)根原基發(fā)育時(shí)的生長(zhǎng)素運(yùn)輸,促進(jìn)多種細(xì)胞壁重組酶的表達(dá),使得側(cè)根更加容易的發(fā)生和發(fā)育[17]。atlax3的側(cè)根數(shù)目減少,但側(cè)根原基增多[18]。AtAUX1、AtLAX1和AtLAX2共同調(diào)控葉原基發(fā)育和葉序模式的形成[19-20]。AtAUX/LAX基因家族共同調(diào)控胚根的發(fā)育[21]。

除擬南芥外,西紅柿,苜蓿,大豆,玉米,水稻,櫻桃,楊樹等物種的AUX/LAX家族的相關(guān)研究也已展開。AtAUX1突變體中表達(dá)野櫻桃的PaLAX1,能夠恢復(fù)ataux1主根的向重性和增加內(nèi)源生長(zhǎng)素含量[22]。PtAUX1在楊樹中超表達(dá)后,再生芽頂端的IAA含量改變,直接發(fā)育子房狀結(jié)構(gòu)[23]。水稻中OsAUX1/LAX有5個(gè)成員,氨基酸序列較為相似,但基因結(jié)構(gòu)不相似,如OsLAX5只有2個(gè)外顯子[24]。OsAUX1在水稻各個(gè)器官中都有表達(dá),osaux1對(duì)IAA,2,4-D不敏感,對(duì)NAA敏感,并且側(cè)根密度減少,根毛變短,這些表型都與ataux1相似,表明AUX1在不同物種中有保守的功能[24]。但osaux1主根比野生型長(zhǎng),并且OsAUX1在根毛細(xì)胞中表達(dá)[25],而擬南芥AtAUX1在非根毛細(xì)胞表達(dá),在根毛細(xì)胞不表達(dá)[26],這些結(jié)果表明單子葉植物和雙子葉植物的根毛發(fā)育都依賴于生長(zhǎng)素,但生長(zhǎng)素的運(yùn)輸方式采取的是完全不同的機(jī)制。OsAUX1在重金屬鎘處理下受誘導(dǎo),突變體對(duì)鎘脅迫敏感,可能是內(nèi)源生長(zhǎng)素、細(xì)胞周期基因OsCYCB1;1和活性氧(ROS)共同影響的結(jié)果[25]。高粱中有5個(gè)SbLAX成員,SbLAX2和SbLAX3受IAA誘導(dǎo),SbLAX1和SbLAX4在地上部和地下部都被IAA抑制,在地上部IAA抑制SbLAX5基因的表達(dá)[27]。玉米中有5個(gè)ZmLAX成員,進(jìn)化關(guān)系與水稻的基因相近,大部分ZmLAX基因受IAA誘導(dǎo)表達(dá)[28]。大豆基因組中發(fā)現(xiàn)了15個(gè)GmLAX基因,包含7對(duì)復(fù)制基因,多數(shù)基因?qū)Ω珊担}脅迫,生長(zhǎng)素和脫落酸有響應(yīng)[29]。楊樹中有8個(gè)PtaAUX成員,每個(gè)成員在各組織中的表達(dá)相對(duì)一致,在發(fā)育過程中的木質(zhì)部,PtaAUX2的表達(dá)最高[30]。

2 輸出載體PIN家族

PIN家族是目前研究最多且最深入的一類生長(zhǎng)素輸出載體。AtPIN1是PIN家族第1個(gè)克隆到的基因,atpin1表現(xiàn)出花序發(fā)育缺陷,形成針狀花序(pin-formed),沒有莖生葉和花器官,生長(zhǎng)素在莖中的向基運(yùn)輸能力減弱[31]。先后人們從擬南芥中分離到了8個(gè)PIN蛋白家族成員。在結(jié)構(gòu)上,PIN 蛋白是一類由2個(gè)疏水區(qū)和1個(gè)親水區(qū)構(gòu)成的膜內(nèi)在蛋白,2個(gè)疏水區(qū)均由 5個(gè)跨膜螺旋結(jié)構(gòu)。親水區(qū)結(jié)構(gòu)可分為2類:1) 由 C1 和 V1結(jié)構(gòu)構(gòu)成較短的親水區(qū);2) 由 C1、C2、C3 和V1、V2 結(jié)構(gòu)構(gòu)成較長(zhǎng)的親水區(qū)域。研究表明,親水區(qū)對(duì)PIN 蛋白的定位和調(diào)控功能有著重要的作用。在 V2 區(qū)和C端疏水區(qū)之間有1個(gè)NPXXY保守結(jié)構(gòu),在親水區(qū)還有糖基化和磷酸化位點(diǎn), 對(duì) PINs 翻譯后修飾起重要作用[32]。

AtPIN1定位于根和莖的中柱細(xì)胞及維管組織的細(xì)胞基部,負(fù)責(zé)莖中生長(zhǎng)素的向基式運(yùn)輸和根中的向頂式運(yùn)輸[33],突變體表現(xiàn)出針狀花序,同時(shí)側(cè)生器官也發(fā)育異常。AtPIN2定位于根皮層細(xì)胞,根冠細(xì)胞頂部,且極性分布在伸長(zhǎng)區(qū)表皮細(xì)胞基部,負(fù)責(zé)根中生長(zhǎng)素的向基運(yùn)輸,atpin2表現(xiàn)出根向重性減弱和側(cè)根延伸遲緩[34]。AtPIN3側(cè)向分布于根的中柱、中柱鞘細(xì)胞及莖的內(nèi)皮層,介導(dǎo)生長(zhǎng)素在重力反應(yīng)和向光性的側(cè)向分布,atpin3對(duì)光和重力性反應(yīng)降低,并且生長(zhǎng)緩慢[33,35]。AtPIN4分布于根尖靜止中心細(xì)胞及下方的一些細(xì)胞中,維持靜止中心下方生長(zhǎng)素庫(kù)濃度具有重要功能,AtPIN4參與維持根尖分生組織的發(fā)育模式[36]。在胚發(fā)育的1細(xì)胞期至16細(xì)胞期,AtPIN7極性分布于胚柄細(xì)胞質(zhì)膜的頂部,在16/32細(xì)胞期,AtPIN7的定位發(fā)生逆轉(zhuǎn)而定位于胚柄細(xì)胞質(zhì)膜的底部。AtPIN7對(duì)于胚軸的形成和根中生長(zhǎng)素的向頂運(yùn)輸有著重要功能[37]。AtPIN5、AtPIN6、AtPIN8的疏水區(qū)較短,3個(gè)蛋白都定位于內(nèi)質(zhì)網(wǎng)中,負(fù)責(zé)生長(zhǎng)素在細(xì)胞質(zhì)和內(nèi)質(zhì)網(wǎng)的運(yùn)輸,調(diào)節(jié)細(xì)胞內(nèi)的生長(zhǎng)素平衡[38-39]。atpin5表現(xiàn)出側(cè)根發(fā)生缺陷、主根和下胚軸變短[38]。啟動(dòng)子::GUS表達(dá)分析顯示,AtPIN6在原分生組織中表達(dá),暗示AtPIN6參與組織或器官的分化,但pin6在并沒有明顯的表型[40]。AtPIN8在擬南芥雄性配子中表達(dá),對(duì)于花粉的發(fā)育起至關(guān)重要的作用[39]。雖然AtPIN家族成員有著各自的定位及功能,但它們?cè)谀骋惶囟ǖ纳L(zhǎng)過程中起著協(xié)同的功能,如AtPIN1、AtPIN2、AtPIN3、AtPIN4和AtPIN7協(xié)同調(diào)控根系的發(fā)育。AtPIN1負(fù)責(zé)生長(zhǎng)素在根中的向頂式運(yùn)輸,生長(zhǎng)素在根尖處積累,形成生長(zhǎng)素庫(kù),由AtPIN4重新分配,生長(zhǎng)素通過AtPIN2在表皮和皮層中進(jìn)行反流的向基運(yùn)輸,在伸長(zhǎng)區(qū)AtPIN1、AtPIN2和AtPIN7介導(dǎo)生長(zhǎng)素側(cè)向分布或回流到中柱,從而形成回流環(huán)路,保持靜止中心端的生長(zhǎng)素濃度最大值[36,40]。

PIN蛋白的活性影響植物各部位的生長(zhǎng)素濃度,從而影響植物生長(zhǎng)發(fā)育過程。近年來的研究表明,PIN 蛋白的活性調(diào)節(jié)機(jī)制可分為4類:基因表達(dá)調(diào)控、磷酸化調(diào)控、極性定位調(diào)控和生長(zhǎng)素運(yùn)輸抑制劑調(diào)控。除生長(zhǎng)素外,油菜素內(nèi)酯、乙烯、赤霉素、細(xì)胞分裂素以及黃酮類物質(zhì)都能影響PIN基因的轉(zhuǎn)錄。PIN 蛋白的親水區(qū)存在著磷酸化位點(diǎn)。PIN的極性定位可被絲氨酸/蘇氨酸蛋白激酶(PINPID)調(diào)控,而 PID是受激酶PDK1的磷酸化調(diào)控,這表明磷酸化調(diào)節(jié)PIN蛋白的極性定位。GNOM基因與真菌毒素布雷菲爾德菌A(brefeldin A,BFA)都通過影響囊泡運(yùn)輸而影響PIN蛋白的分布。固醇類物質(zhì)對(duì)AtPIN2的極性分布至關(guān)重要,cyclopropylsterolisomerase1-1 (cpi1-1) 突變體中,固醇的組成發(fā)生改變,可能影響了AtPIN2的內(nèi)吞作用和根的向重性反應(yīng)發(fā)生改變:野生型中AtPIN2蛋白首先定位在膜兩極,然后在某一極消失,而cpi1-1中PIN2始終定位在膜的兩極[41]。生長(zhǎng)素極性運(yùn)輸抑制劑也影響著PIN蛋白的表達(dá)與分布。當(dāng)添加抑制劑后,野生型擬南芥與pin突變體有著相似的表型。天然生長(zhǎng)素運(yùn)輸載體抑制劑萘基鄰氨酰苯甲酸(NPA),可能通過NPA結(jié)合蛋白(NPA binding proteins, NBP)與肌動(dòng)蛋白相互作用,調(diào)控著 PIN 蛋白的囊泡運(yùn)輸和極性定位[41-43]。

在其他物種也發(fā)現(xiàn)了多個(gè)AtPIN家族的同源基因。水稻中鑒定出了12個(gè)PIN家族成員[44]。水稻有4個(gè)AtPIN1同源基因,分別為OsPIN1a、OsPIN1b、 OsPIN1c、OsPIN1d。通過對(duì)OsPIN1a-GUS 轉(zhuǎn)基因水稻和熒光定量PCR的研究表明,OsPIN1a在幼穗、 葉片及根系中均有表達(dá),其中在幼嫩的組織中表達(dá)最高,如剛萌發(fā)種子的胚芽鞘、花藥和柱頭[44]。OsPIN1a受外源生長(zhǎng)素處理而誘導(dǎo)表達(dá),受生長(zhǎng)素極性運(yùn)輸抑制劑( TIBA) 的抑制[44];OsPIN1b與AtPIN1高度同源,在側(cè)根原基和維管組織中表達(dá),對(duì)OsPIN1b基因的過量表達(dá)株系和干涉株系的表型分析,結(jié)果表明,OsPIN1b在水稻分蘗、地下部和地上部比例及不定根的發(fā)育中具有重要調(diào)控作用[45]。過量表達(dá)OsPIN2基因抑制OsLAZY1的表達(dá)導(dǎo)致葉夾角增大,OsPIN2過表達(dá)轉(zhuǎn)基因水稻地下部對(duì)NPA不敏感,暗示OsPIN2是編碼1個(gè)輸出載體[46]。OsPIN3t在維管組織中強(qiáng)烈表達(dá),參與生長(zhǎng)素應(yīng)答干旱脅迫[47]。OsPIN10a和OsPIN10b在蛋白結(jié)構(gòu)上有1個(gè)長(zhǎng)的中間親水環(huán),根據(jù)組織特異性表達(dá)模式分析,它們可能參與水稻的分蘗過程。分析表明,OsPIN10a在莖、葉和幼穗中表達(dá),但不在根中表達(dá)。OsPIN10b主要表達(dá)在葉片,也在莖基部和橫向側(cè)根原基處表達(dá),OsPIN10b基因在IAA、6-BA和JA處理下表達(dá)上升[44],在玉米基因組中共鑒定出了12個(gè)ZmPIN家族成員,其中4個(gè)AtPIN1 同源基因(ZmPIN1a-d),1個(gè)AtPIN2同源基因(ZmPIN2),3個(gè)AtPIN5同源基因(ZmPIN5a-c),11個(gè)AtPIN8同源基因(ZmPIN8),3個(gè)單葉子特有的PIN基因(ZmPIN9,ZmPIN10a和ZmPIN10b)[48]。ZmPIN1a-d這4個(gè)基因在不同組織中呈現(xiàn)不同的極性分布模式[48]。ZmPIN1d的轉(zhuǎn)錄產(chǎn)物在頂端分生組織和花序分生組織的L1層細(xì)胞中被檢測(cè)到[49]。ZmPIN5b蛋白極性分布在細(xì)胞基部(細(xì)胞的下端),可能參與維管組織的分化。單子葉特有的ZmPIN9基因在根內(nèi)皮層和中柱鞘中表達(dá)[48]。在地上部多數(shù)ZmPIN基因受鹽、干旱脅迫誘導(dǎo)表達(dá),而在根中其表達(dá)被鹽、干旱脅迫抑制[28]。在楊樹中有15個(gè)PIN家族成員,包括4個(gè)PIN1,1個(gè)PIN2,2個(gè)PIN3,3個(gè)PIN5,3個(gè)PIN6,2個(gè)PIN7等6類基因。相對(duì)擬南芥,楊樹中的PIN基因表達(dá)更多元化,研究結(jié)果為PIN家族對(duì)樹木的生長(zhǎng)發(fā)育的功能提供了重要的線索[50]。馬鈴薯中StPIN2在花芽,匍匐莖的維管組織,生長(zhǎng)中的塊莖儲(chǔ)存實(shí)質(zhì)中表達(dá),StPIN4在雌蕊柱頭、花瓣、子房、莖維管組織和塊莖的實(shí)質(zhì)細(xì)胞中表達(dá)[51]。番茄中SlPIN1和SlPIN2在幼嫩的果實(shí)中強(qiáng)烈表達(dá)[52]。分別降低SlPIN3和SlPIN4的表達(dá),莖的結(jié)構(gòu)就會(huì)改變[53]。

3 ABCB/MDR/PGP蛋白家族

ABCB/MDR/PGP(ATP binding cassette B/Multidrug-resistance/p-glycoprotein)蛋白,又稱多重抗藥性/磷酸糖蛋白家族,是ABC轉(zhuǎn)運(yùn)蛋白家族(ATP-binding cassette,ABC)的1個(gè)亞家族,也參與生長(zhǎng)素的極性運(yùn)輸。ATP結(jié)合蛋白(ABC,ATP-binding cassette)家族廣泛存在于真核及原核生物中,在細(xì)胞間信號(hào)傳遞和調(diào)控等一系列的生化反應(yīng)中起關(guān)鍵作用。ABCB蛋白(ATP binding cassette B,ATP結(jié)合蛋白B亞家族)可能是韌皮部中快速運(yùn)輸生長(zhǎng)素的載體蛋白[54], 主要在生長(zhǎng)素的長(zhǎng)距離運(yùn)輸和在頂端組織的生長(zhǎng)素輸出過程中發(fā)揮作用[55]。擬南芥中已發(fā)現(xiàn)了22個(gè)ABCB基因[56],其中AtABCB1 (PGP1)、AtABCB4(PGP4/MDR4)和AtABCB19 (MDR1/PGP19)3個(gè)基因的研究較為深入,3個(gè)蛋白都具有轉(zhuǎn)運(yùn)生長(zhǎng)素的功能[57-58]。Murphy 等首次證實(shí)了AtPGP1蛋白可以將生長(zhǎng)素運(yùn)出細(xì)胞外。AtABCB1在擬南芥原生質(zhì)體、酵母細(xì)胞中等證實(shí)了它編碼1個(gè)輸出載體[57],其突變會(huì)導(dǎo)致生長(zhǎng)素極性運(yùn)輸減弱[59]。AtABCB1過表達(dá)株系在暗光下培養(yǎng)時(shí)下胚軸伸長(zhǎng),這與低濃度生長(zhǎng)素處理的野生型表型相似,而反義株系則表現(xiàn)出下胚軸伸長(zhǎng)減弱,這與NPA處理的野生型表型相似。AtABCB19和AtABCB1高度同源,生物學(xué)功能也較為相似。在AtABCB19突變體和AtABCB1/AtABCB19雙突變體中,生長(zhǎng)素運(yùn)輸受到極大的損害,出現(xiàn)生長(zhǎng)緩慢,子葉卷曲的表型[57]。AtABCB1和AtABCB19突變體中生長(zhǎng)素向基運(yùn)輸減弱,內(nèi)源生長(zhǎng)素含量降低,并且這2個(gè)基因都能與生長(zhǎng)素運(yùn)輸載體抑制劑NPA結(jié)合[57]。AtABCB4在根毛細(xì)胞里表達(dá),突變體表現(xiàn)出根毛變長(zhǎng)的表型[60],過量表達(dá)AtABCB4會(huì)導(dǎo)致根毛變短。最近的研究表明,AtABCB4同時(shí)具備生長(zhǎng)素運(yùn)輸輸入和輸出功能[61]。

和PIN介導(dǎo)的生長(zhǎng)素運(yùn)輸類似,ABCB介導(dǎo)的生長(zhǎng)素運(yùn)輸活性受轉(zhuǎn)錄水平、極性定位、內(nèi)吞循環(huán)、蛋白磷酸化和蛋白互作等多方面的調(diào)控。外源生長(zhǎng)素能改變ABCB家族的轉(zhuǎn)錄水平,AtABCB1、AtABCB4和AtABCB19受外源生長(zhǎng)素的處理而誘導(dǎo)表達(dá)[62]。其他激素,如脫落酸(Abscisic acid)、赤霉素(Gibberellic acid)、油菜素內(nèi)酯(Brassinosteroid)、水楊酸(Salicyclic acid)、茉莉酸(Jasmonate)和非生物脅迫鹽、干旱、低溫等都能影響ABCB基因家族的表達(dá)[27-28]。生長(zhǎng)素運(yùn)輸載體抑制劑NPA能與AtABCB1、AtABCB4和AtABCB19蛋白特異結(jié)合,抑制轉(zhuǎn)運(yùn)活性從而抑制生長(zhǎng)素的極性運(yùn)輸。黃酮醇也能結(jié)合ABCB蛋白,抑制ABCB的轉(zhuǎn)運(yùn)活性。此外黃酮醇還能破壞AtABCB1與TWD1蛋白的互作,從而影響AtABCB1的折疊,因此黃酮醇負(fù)調(diào)控生長(zhǎng)素的極性運(yùn)輸[63-64]。用囊泡運(yùn)輸載體抑制劑布雷菲德菌素A(Brefeldin A,BFA)處理后,AtABCB4的膜定位發(fā)生改變,表明ABCB家族受內(nèi)吞作用的調(diào)節(jié)[58]。AtABCB1的轉(zhuǎn)運(yùn)活性依賴與AtTWD1蛋白的互作,AtTWD1通過與PINOID互作來磷酸化AtABCB1從而調(diào)節(jié)AtABCB1的生長(zhǎng)素轉(zhuǎn)運(yùn)活性。AtABCB19能被蛋白激酶Phototropin1(phot1)磷酸化而失去運(yùn)輸活性[65]。近年來,已經(jīng)發(fā)現(xiàn)PIN和ABCB存在相互作用,從而調(diào)節(jié)生長(zhǎng)素的運(yùn)輸活性。研究發(fā)現(xiàn),AtABCB19可以穩(wěn)定AtPIN1的蛋白定位。在酵母或Hela細(xì)胞中,AtABCB1或AtABCB19與AtPIN1共表達(dá),會(huì)增強(qiáng)生長(zhǎng)素的輸出。而AtABCB1或AtABCB19與AtPIN2共表達(dá),生長(zhǎng)素輸出減弱。AtABCB4與AtPIN1共表達(dá),生長(zhǎng)素吸收則下降;AtABCB4與AtPIN2共表達(dá),生長(zhǎng)素吸收增加[66]。這些結(jié)果表明PIN與ABCB參與2條獨(dú)立又協(xié)同的生長(zhǎng)素轉(zhuǎn)運(yùn)機(jī)制。

單子葉模式植物水稻中有22個(gè)ABCB家族成員,只有OsABCB14被詳細(xì)報(bào)道了生物學(xué)功能。OsABCB14與AtABCB19和AtABCB1高度同源,編碼1個(gè)輸入載體,并且與鐵離子的動(dòng)態(tài)平衡相關(guān)[67]。玉米中發(fā)現(xiàn)了35 個(gè)ZmABCB基因,在非生物脅迫(鹽、干旱和低溫)處理下,絕大多數(shù)ABCB基因在根中的表達(dá)上升[28]。AtABCB1的同源基因,DwarfBrachytic2/ZmABCB4,被發(fā)現(xiàn)在根和莖的分生區(qū)中起生長(zhǎng)素輸出功能,DBR2(DwarfBrachytic2)基因在莖節(jié)內(nèi)表達(dá),突變體細(xì)胞伸長(zhǎng)和生長(zhǎng)素極性運(yùn)輸受抑制[68]。高粱中有24個(gè)SbABCB基因,其中SbABCB7在根中強(qiáng)烈表達(dá),SbABCB17主要在莖中表達(dá)[27]。在苜?;蚪M中鑒定出了37個(gè)MtABCB家族成員。根瘤菌侵染后,多數(shù)MtABCB在根中表達(dá)上升,而在地上部的表達(dá)下降[69]。

4 結(jié)語(yǔ)

近年來,隨著遺傳學(xué)和分子生物學(xué)實(shí)驗(yàn)方法的進(jìn)步,人們對(duì)生長(zhǎng)素運(yùn)輸載體及其對(duì)植物生長(zhǎng)發(fā)育的作用機(jī)制有了進(jìn)一步認(rèn)識(shí)。但對(duì)某些載體蛋白(如擬南芥的AtLAX1、AtPIN6以及大部分的ABCB基因)的功能知之甚少,對(duì)所有生長(zhǎng)素運(yùn)輸載體功能的研究有助于生長(zhǎng)素運(yùn)輸整體模型的建立。生長(zhǎng)素通過運(yùn)輸載體完成運(yùn)輸,但各運(yùn)輸載體家族如何協(xié)調(diào)生長(zhǎng)素運(yùn)輸以及生長(zhǎng)素在胞內(nèi)具體運(yùn)輸過程了解有限。運(yùn)輸載體蛋白的定位機(jī)理和影響載體蛋白定位的因素更有待于進(jìn)一步研究。

[1] 蔣德安,朱誠(chéng),楊玲.植物生理學(xué)第二版[M].北京:高等教育出版社,2011:168-179.

[2] Lomax T L,Muday G K,Rubery,et al.Plant hormones:physiology,biochemistry and molecular biology[M].Springer,1995:509-530.

[3] Goldsmith M.The polar transport of auxin[J].Ann Rev Plant Physiol,1977,28:439-478.

[4] Peret B,Swarup K,Ferguson A,et al.AUX/LAXgenes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development[J].Plant Cell,2012,24:2874-2885.

[5] Bennett M J,Marchant A,Green H G,et al.ArabidopsisAUX1 gene:a permease-like regulator of root gravitropism[J].Science,1996,273:948-950.

[6] Swarup R,Kargul J,Marchant A,et al.Structure-function analysis of the presumptiveArabidopsisauxin permease AUX1[J].Plant Cell,2004,16:3069-3083.

[7] Marchant A,Kargul J,May S T.AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues[J].Embo J,1999,18:2066-2073.

[8] Yang Y,Hammes U Z,Taylor C G,et al.High-affinity auxin transport by the AUX1 influx carrier protein[J].Curr Biol,2006,16:1123-1127.

[9] Swarup R,Friml J,Marchant A,et al.Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in theArabidopsisroot apex[J].Genes Dev,2001,15:2648-2653.

[10] Kleine-Vehn J,Dhonukshe P,Swarup R,et al.Subcellular trafficking of theArabidopsisauxin influx carrier AUX1 uses a novel pathway distinct from PIN1[J].Plant Cell,2006,18:3171-3181.

[11] Dharmasiri S,Swarup R,Mockaitis K,et al.AXR4 is required for localization of the auxin influx facilitator AUX1[J].Science,2006,312:1218-1220.

[12] Marchant A,Bhalerao R,Casimiro I,et al.AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in theArabidopsisseedling[J].Plant Cell,2002,14:589-597.

[13] Swarup R,Peret B.AUX/LAX family of auxin influx carriers-an overview[J].Front Plant Sci,2012,03:225-230.

[14] Zhang W,Swarup R,Bennett M,et al.Cytokinin induces cell division in the quiescent center of the Arabidopsis root apical meristem[J].Curr Biol,2013,23:1979-1989.

[15] Vandenbussche F,Petrasek J,Zadnikova P,et al.The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings[J].Development,2010,137:597-606.

[16] Hobbie L,Estelle M.The axr4 auxin-resistant mutants ofArabidopsisthalianadefine a gene important for root gravitropism and lateral root initiation[J].Plant J,1995,7:211-220.

[17] Swarup K,Benkova E,Swarup R.The auxin influx carrier LAX3 promotes lateral root emergence [J].Nat Cell Biol,2008,10:946-954.

[18] Lucas M,Godin C,Jay-Allemand C,et al.Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation[J].J Exp Bot,2008,59:55-66.

[19] Reinhardt D.Vscular patterning:more than just auxin[J].Curr Biol,2003,13:485-487.

[20] Bainbridge K,Guyomarc'h S,Bayer E,et al.Auxin influx carriers stabilize phyllotactic patterning [J].Genes Dev,2008,22:810-823.

[21] Ugartechea-Chirino Y,Swarup R,Swarup K,et al.The AUX1/LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization inArabidopsisthaliana[J].Ann Bot,2010,105:277-289.

[22] Hoyerova K,Perry L,Hand P.Functional characterization of PaLAX1,a putative auxin permease,in heterologous plant systems[J].Plant Physiol,2008,146:1128-1141.

[23] 李靜.白毛楊PtAUX1基因的分離及超表達(dá)植株的表型分析[D].泰安:山東農(nóng)業(yè)大學(xué),2007

[24] Zhao H,Ma T,Wang X,et al. OsAUX1 controls lateral root initiation in rice(Oryza sativa L.)[J].Plant Cell Environ,2015,38:2208-2222.

[25] Yu C,Sun C,Shen C,et al.The auxin transporter,OsAUX1,is involved in primary root and root hair elongation and in Cd stress responses in rice(Oryza sativaL.)[J].Plant J,2015,83:818-830.

[26] Jones A R,Kramer E M,Knox K,et al.Auxin transport through non-hair cells sustains root-hair development[J].Nat Cell Biol,2009,11:78-84.

[27] Shen C,Bai Y,Wang S,et al.Expression profile of PIN,AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress[J].FEBS Lett,2010,277:2954-2969.

[28] Yue R,Tie S,Sun T,et al.Genome-wide identification and expression profiling analysis of ZmPIN,ZmPILS,ZmLAX and ZmABCB auxin transporter gene families in maize(Zea mays L.)under various abiotic stresses[J].Plos One,2015,10:e0118751.

[29] Chai C,Wang Y,Valliyodan B,et al.Comprehensive analysis of the soybean(Glycine max)GmLAX auxin transporter gene family[J].Front Plant Sci,2016(07):282.

[30] Carraro N,Tisdale-Orr T,Clouse R,et al.Diversification and expression of the PIN,AUX/LAX,and ABCB families of putative auxin transporters in populus[J].Front Plant Sci 2012,3:17-27.

[31] Okada K,Ueda J,Komaki,et al.Requirement of the auxin polar transport system in early stages ofArabidopsisfloral bud formation[J].Plant Cell,1991(03):677-684.

[32] Zazímalová E,Krecek P,Skupa P,et al.Polar transport of the plant hormone auxin—the role of PIN-FORMED(PIN)proteins[J].Cell Mol Life Sci,2007,64(13):1621-1637.

[33] Blilou I,Xu J,Wildwater M,et al.The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots[J].Nature,2005,433:39-44.

[34] Muller A,Guan C,Galweiler L,et al.AtPIN2 defines a locus of Arabidopsis for root gravitropism control[J].EMBO J,1998,17:6903-6911.

[35] Friml J,Wisniewska J,Benkova E, et al. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis [J].Nature,2002,415:806-809.

[36] Friml J,Blilou I,Wisniewska J,et al.AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis [J].Cell,2002,108:661-673.

[37] Friml J,Vieten A,Sauer M,et al.Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis[J].Nature,2003,426:147-153.

[38] Mravec J, Skupa P,Bailly A,et al.Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter[J].Nature,2009,459:1136-1140.

[39] Ding Z,Wang B,Moreno I,et al.ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis[J].Nat Commun,2012(03):941-950.

[40] Benková E,Michniewicz M,Sauer M,et al.Local,efflux-dependent auxin gradients as a common module for plant organ formation[J].Cell,2003,115:591-602.

[41] Men S,Boutté Y,Ikeda Y,et al.Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity[J].Nature Cell Biology,2008(10):237-244.

[42] Leyser O.Dynamic integration of auxin transport and signaling[J].Curr Bio,2006(16):424-433.

[43] Muday G,Murphy A.An emerging model of auxin transport regulation[J].Plant Cell,2002,14(02):293-299

[44] Wang J,Hu H,Wang G,et al.Expression of PIN genes in rice(Oryza sativa L.):tissue specificity and regulation by hormones[J].Mol Plant,2009(02):823-831.

[45] Xu M,Zhu L,Shou H,et al.A PIN1 family gene,OsPIN1,involved in auxin-dependent adventitious root emergence and tillering in rice[J].Plant Cell Physiol,2005,46:1674-1681.

[46] Chen Y,Fan X,Song W,et al.Over-expression ofOsPIN2 leads to increased tiller numbers,angle and shorter plant height through suppression ofOsLAZY1[J].Plant Biotechnol J,2012,10:139-149.

[47] Zhang Q,Li J,Zhang W,et al.The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance[J].Plant J,2012,72:805-816.

[48] Forestan C,Farinati S,Varotto S.The Maize PIN gene family of auxin transporters [J].Front Plant Sci,2012(03):16-26.

[49] Forestan C,Meda S,Varotto S.ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development [J].Plant Physiol,2010,152:1373-1390.

[50] Liu B,Zhang J,Wang L,et al.A survey of Populus PIN-FORMED family genes reveals their diversified expression patterns[J].J Exp Bot,2014,65:2437-2448.

[51] Roumeliotis E,Kloosterman B,Oortwijn M,et al.The PIN family of proteins in potato and their putative role in tuberization[J].Front Plant Sci,2013(04):524-534.

[52] Nishio S,Moriguchi R,Ikeda H,et al.Expression analysis of the auxin efflux carrier family in tomato fruit development[J].Planta,2010,232:755-764.

[53] Pattison R,Catala C.Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families[J].Plant J,2012,70:585-598.

[54] Titapiwatanakun B,Murphy A.Post-transcriptional regulation of auxin transport proteins:cellular trafficking,protein phosphorylation,protein maturation, ubiquitination,and membrane composition[J].Journal of Experimental Botany,2009,60(04):1093-1107.

[55] Kang J,Park J,Choi H,et al.Plant ABC transporters[J].The Arabidopsis book/American Society of Plant Biologists,2011(09):e0153.

[56] Ambudkar S,Kimchi-Sarfaty C,Sauna Z,et al.P-glycoprotein: from genomics to mechanism[J].Oncogene,2003,22:7468-7485.

[57] Geisler M,Blakeslee J,Bouchard R.Cellular efflux of auxin catalyzed by theArabidopsisMDR/PGP transporterAtPGP1[J].Plant J,2005,44:179-194.

[58] Cho M,Lee S H,Cho H T.P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells[J].Plant Cell,2007,19:3930-3943.

[59] Sidler M,Hassa P,Hasan S,et al.Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light[J].Plant Cell,1998(10):1623-1636.

[60] Santelia D,Vincenzetti V,Azzarello E,et al.MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development[J].FEBS Lett,2006,579:5399-5406.

[61] Kube? M,Yang H,Richter G L,et al.TheArabidopsisconcentration-dependent influx/efflux transporterABCB4 regulates cellular auxin levels in the root epidermis[J].Plant J,2012,69:640-654.

[62] Noh B,Murphy A,Spalding E. Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development[J].Plant Cell,2001,13:2441-2454.

[63] Murphy A,Hoogner K,Peer W,et al.Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis[J].Plant Physiol,2002,128:935-950.

[64] Bailly A,Sovero V,Vincenzetti V,et al.Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins[J].J Biol Chem,2008,283:21817-21826.

[65] Christie J,Yang H,Richter G,et al.phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism[J].Plos Biology,2011(09):1001076.

[66] Blakeslee J,Bandyopadhyay A,Lee O,et al.Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis [J].Plant Cell,2007,19:131-147.

[67] Xu Y,Zhang S,Guo H,et al.OsABCB14 functions in auxin transport and iron homeostasis in rice(Oryza sativa L.)[J].Plant J,2014,79:106-117.

[68] Balzan S,Johal G,Carraro N.The role of auxin transporters in monocots development [J].Front Plant Sci,2014(05):393.

[69] Shen C,Yue R,Bai Y,et al.Identification and analysis of medicago truncatula auxin transporter gene families uncover their roles in responses to sinorhizobium meliloti infection[J].Plant Cell Physiol,2015,56(10):1930-1943.

Research progress of auxin transport carrier

YU Chenliang, DONG Wenqi, ZHANG Chenghao*

(VegetableResearchInstitute,ZhejiangAcademyofAgriculturalSciences,Hangzhouzhejiang310021,China)

The polar auxin transport plays an important role in morphogenesis, development and other processes of plant organ. Polar auxin transport is mainly mediated by auxin transport carriers. Recent advances on AUX/LAX protein families, PIN protein families and ABCB/MDR/PGP protein families are reviewed in this paper, which will provide a theoretical basis for the study of polar auxin transport.

Auxin;transport carrier;polar distribution;localization;tissue expression

2016-08-13 基金項(xiàng)目:國(guó)家基金面上項(xiàng)目(51375460);浙江省農(nóng)業(yè)科學(xué)院青年人才培養(yǎng)項(xiàng)目(2016R23R08E05);浙江省農(nóng)業(yè)科學(xué)院創(chuàng)新載體建設(shè)工程項(xiàng)目;浙江省青年基金項(xiàng)目(LQ17C150003)

俞晨良(1987—),男,浙江嘉興人,助理研究員,博士,研究方向?yàn)樯L(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)。張成浩為通信作者,

E-mail: zhchhao2008@163.com

1004-7999(2016)04-0359-08

10.13478/j.cnki.jasyu.2016.04.015

Q945.3

A

猜你喜歡
生長(zhǎng)素突變體極性
基于科學(xué)思維培養(yǎng)的“生長(zhǎng)素的調(diào)節(jié)作用”復(fù)習(xí)課教學(xué)設(shè)計(jì)
探究生長(zhǎng)素對(duì)植物生長(zhǎng)的兩重性作用
跟蹤導(dǎo)練(四)
生長(zhǎng)素的生理作用研究
淺談生長(zhǎng)素對(duì)植物的作用
尿黑酸對(duì)擬南芥酪氨酸降解缺陷突變體sscd1的影響
CLIC1及其點(diǎn)突變體與Sedlin蛋白的共定位研究
表用無(wú)極性RS485應(yīng)用技術(shù)探討
SHP2不同突變體對(duì)乳腺癌細(xì)胞遷移和侵襲能力的影響
一種新型的雙極性脈沖電流源
扬州市| 朔州市| 宝兴县| 大城县| 读书| 潼南县| 涟源市| 南开区| 邛崃市| 长葛市| 昭苏县| 宜昌市| 聂拉木县| 襄垣县| 罗田县| 大荔县| 青冈县| 分宜县| 奉节县| 台东县| 奇台县| 大荔县| 犍为县| 孝昌县| 莱阳市| 南丰县| 大英县| 兖州市| 闻喜县| 淮滨县| 宁强县| 漳州市| 易门县| 泗阳县| 麻城市| 织金县| 洛隆县| 玉屏| 游戏| 疏附县| 长武县|