張 兵,徐文軍,徐延勇,顧嬌揚(yáng),楊 光,趙錦程
(1.中聯(lián)煤層氣有限責(zé)任公司,北京 100011; 2.中國(guó)礦業(yè)大學(xué) 煤層氣資源與成藏過(guò)程教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 徐州 221116)
?
鄂爾多斯盆地東緣臨興區(qū)塊深部關(guān)鍵煤儲(chǔ)層參數(shù)識(shí)別
張兵1,徐文軍1,徐延勇1,顧嬌揚(yáng)1,楊光2,趙錦程2
(1.中聯(lián)煤層氣有限責(zé)任公司,北京100011; 2.中國(guó)礦業(yè)大學(xué) 煤層氣資源與成藏過(guò)程教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 徐州221116)
摘要:深部條件下煤儲(chǔ)層關(guān)鍵參數(shù)的識(shí)別是煤層氣開(kāi)發(fā)評(píng)價(jià)的基礎(chǔ)?;诙鯛柖嗨箹|緣臨興區(qū)塊深部煤層氣勘探和測(cè)試研究結(jié)果顯示:朗格繆爾體積隨鏡質(zhì)組反射率的增大先增加后減小,朗格繆爾壓力與鏡質(zhì)組反射率呈“U”型變化,兩者均在2.5% Ro,max左右出現(xiàn)轉(zhuǎn)折。采用非線性分析方法,基于實(shí)測(cè)含氣飽和度與煤層埋深的關(guān)系,建立了含校正系數(shù)的深部煤層含氣量計(jì)算模型。山西組4+5號(hào)煤層預(yù)測(cè)含氣量6.7~22.1 m3/t;本溪組8+9號(hào)煤層含氣量在12~20 m3/t,在平面上總體均呈東低西高展布。4+5號(hào)煤預(yù)測(cè)臨界解吸壓力介于1.03~9.40 MPa,臨儲(chǔ)比介于0.11~0.63,平均為0.33;8+9號(hào)煤預(yù)測(cè)臨界解吸壓力介于1.27~10.47 MPa,臨儲(chǔ)比介于0.12~0.64,平均0.334。在平面上,4+5號(hào)煤臨界解吸壓力與臨儲(chǔ)比均呈西高東低、西北部最高展布,而8+9號(hào)煤總體呈北高南低展布。
關(guān)鍵詞:臨興區(qū)塊;深部煤層氣;含氣飽和度;含氣量;臨界解吸壓力
深部煤層氣是中國(guó)非常規(guī)天然氣勘探的一個(gè)新領(lǐng)域,在沁水盆地鄭莊區(qū)塊、鄂爾多斯延川南區(qū)塊以及新疆五彩灣地區(qū)試采取得了工業(yè)氣流,對(duì)于其研究尚處于探索階段[1-3]。相對(duì)淺部煤層,深部地層的溫度和壓力環(huán)境顯著改變。以地表恒溫帶平均溫度15 ℃和地溫梯度2.5 ℃/100 m計(jì)算,埋深介于1 200~3 000 m的煤層溫度在45~90 ℃,靜水壓力為12~30 MPa,遠(yuǎn)高于甲烷臨界溫度和壓力,這必將影響煤層氣的賦存和儲(chǔ)層特性。
針對(duì)深部煤層氣賦存規(guī)律和儲(chǔ)層特點(diǎn),認(rèn)識(shí)了較高溫度和壓力作用下煤吸附特征及其影響因素[4-8],預(yù)測(cè)了深部煤層含氣量[9-11],揭示了深部煤層氣儲(chǔ)層特殊性[3,12-14],建立了深部煤層氣有利區(qū)優(yōu)選方法[1,3,15]。然而,此類研究多基于理論探索,較少針對(duì)具體的地區(qū)開(kāi)展工作。為了進(jìn)一步理解深部煤儲(chǔ)層參數(shù)特征,本文依托鄂爾多斯東緣臨興區(qū)塊深部煤層氣勘探實(shí)踐,采集了不同煤級(jí)的煤樣,開(kāi)展了不同溫度和壓力條件下的等溫吸附模擬實(shí)驗(yàn),識(shí)別了深部煤層氣儲(chǔ)層關(guān)鍵參數(shù)。
1研究區(qū)背景
研究區(qū)位于山西省興縣南部和臨縣北部??傮w為東高西低的西傾單斜構(gòu)造,地層傾角小,以幅度低、影響范圍小、構(gòu)造發(fā)育為特點(diǎn)。煤層氣開(kāi)發(fā)目標(biāo)層位山西組4+5號(hào)煤層埋深一般在1 010~2 007 m,平均1 792 m;而本溪組8+9號(hào)煤層埋深一般為1 086~2 105 m,平均1 870 m。
實(shí)驗(yàn)用煤樣采自研究區(qū)石炭二疊系煤層。煤樣油浸鏡質(zhì)組最大反射率0.57%~4.04%,涵蓋了長(zhǎng)焰煤到無(wú)煙煤的所有煤級(jí)(表1)。
表1 實(shí)驗(yàn)用樣品的基本性質(zhì)和等溫吸附常數(shù)
2深部煤儲(chǔ)層參數(shù)特征
2.1深部含氣量預(yù)測(cè)模型
統(tǒng)計(jì)研究區(qū)及臨近區(qū)27組煤礦和鉆孔煤樣較高溫壓等溫吸附實(shí)驗(yàn)結(jié)果顯示(表1,圖1),鏡質(zhì)組反射率(Ro,max)增高,朗格繆爾體積VL先增加后減小,朗格繆爾壓力PL呈“U”型演化,兩個(gè)參數(shù)轉(zhuǎn)折點(diǎn)均出現(xiàn)反射率2.5%左右(圖2)。
圖1 Langmuir體積與Ro,max關(guān)系Fig.1 Relation between Langmuir volume and Ro,max
圖2 Langmuir壓力與Ro,max關(guān)系Fig.2 Relation between Langmuir pressure and Ro,max
進(jìn)一步分析,朗格繆爾體積VL與溫度呈線性負(fù)相關(guān),溫度每升高1 ℃,研究區(qū)煤的甲烷吸附量平均降低約0.12 cm3/(g·℃)(圖3)。與我國(guó)低階煤實(shí)驗(yàn)結(jié)果(0.002~0.068 cm3/(g·℃))[16]相比,本區(qū)煤樣吸附量溫敏衰減率偏高,顯示本區(qū)煤層吸附性對(duì)溫度更為敏感。朗格繆爾壓力與溫度呈線性正相關(guān)關(guān)系,如圖4所示。
圖3 Langmuir體積與溫度關(guān)系Fig.3 Relation between Langmuir volume and temperature
圖4 Langmuir壓力與溫度關(guān)系Fig.4 Relation between Langmuir pressure and temperature
基于上述相關(guān)關(guān)系分析,采用非線性回歸分析方法,建立適合于研究區(qū)上古生界煤的朗格繆爾吸附常數(shù)(干燥無(wú)灰基)預(yù)測(cè)模型,即
(1)
(2)
式中,VL為朗格繆爾體積,m3;PL為朗格繆爾壓力,MPa;T為地層溫度,℃;Ro,max為鏡質(zhì)組油浸最大反射率,%。
將上述參數(shù)代入經(jīng)典Langmuir模型,即可獲得本區(qū)深部理論含煤層氣量預(yù)測(cè)模型。該模型計(jì)算結(jié)果實(shí)為理論上最大含氣量,而實(shí)際上含氣量受沉積、構(gòu)造及水文等地質(zhì)因素影響,往往呈不飽和狀態(tài)。為了準(zhǔn)確的預(yù)測(cè)深部煤層含氣量,需要進(jìn)一步對(duì)理論含氣量進(jìn)行校正,從而建立原位煤層含氣量預(yù)測(cè)模型。分析發(fā)現(xiàn),研究區(qū)煤層埋深與實(shí)測(cè)含氣飽和度呈明顯的負(fù)相關(guān)關(guān)系(圖5)。由此,基于實(shí)測(cè)含氣飽和度與煤層埋深的計(jì)算,最終建立了適合于研究區(qū)的深部煤層原位含氣量預(yù)測(cè)模型,即
Vs=rP(-0.110 7T+40.259 7)×
(3)
(4)
式中,Vs為干燥無(wú)灰基煤層含氣量,m3/t;h為煤層埋深,m;r為校正系數(shù);P為煤儲(chǔ)層壓力,MPa。
圖5 含氣飽和度隨埋深的變化Fig.5 Variance of gas saturation with burial depth
圖6 不同變質(zhì)程度下煤層含氣量與埋深關(guān)系Fig.6 Relationship between gas content and burial depth under different metamorphic conditions
模型計(jì)算結(jié)果顯示:隨埋深加大,研究區(qū)不同煤階煤層含氣量均呈先增加后降低的變化趨勢(shì),存在一個(gè)“臨界深度”;臨界深度隨著煤級(jí)增加而變淺,隨地溫梯度的增高而加深(圖6,7)。研究區(qū)煤的鏡質(zhì)組最大反射率主要集中在0.8%~1.5%,地溫梯度在2.5 ℃/100 m左右。對(duì)照?qǐng)D6所示的含氣量模型,臨興區(qū)塊由于巖漿熱變質(zhì)作用導(dǎo)致煤級(jí)增高,臨界深度淺至1 500 m左右。
圖7 不同地溫梯度下煤層含氣量與埋深關(guān)系Fig.7 Relationship between gas content and burial depth under different geothermal gradients
2.2深部含氣量及其區(qū)域分布
根據(jù)上述模型,預(yù)測(cè)了研究區(qū)上古生界主煤層含氣量(圖8)。結(jié)果顯示:
山西組4+5號(hào)煤層含氣量在6.7~22.1 m3/t,一般為12~22 m3/t,平均14.66 m3/t;等含氣量帶總體上呈東西向展布,由北向南依次出現(xiàn)“高值區(qū)―低值區(qū)―高值區(qū)―低值區(qū)”,高含氣量中心分別發(fā)育在中部L-101~L-6地區(qū)以及西南部TB區(qū)塊,含氣量高于18 m3/t(圖8)。
本溪組8+9號(hào)煤層含氣量多在12~20 m3/t,平均14.92 m3/t(圖8)。平面上煤層含氣量由北向南逐漸增高,高于18 m3/t的地帶連片出現(xiàn)在西南部地區(qū),包括臨興區(qū)塊大部和TB區(qū)塊全部,其中TB區(qū)塊中—北部和臨興區(qū)塊西北部煤層含氣量高于21 m3/t,最高(L-5井)達(dá)27 m3/t。
圖8 研究區(qū)主煤層含氣量等值線Fig.8 Gas content contour of the main coalbeds
2.3煤層含氣飽和度及其分布
采用式(4)計(jì)算主煤層含氣飽和度。
(5)
式中,Sg為煤層含氣飽和度,%。
研究區(qū)煤層含氣飽和度變化較大,臨興區(qū)塊山西組4+5號(hào)煤層含氣飽和度大于50%的區(qū)域覆蓋了整個(gè)TB區(qū)塊和臨興區(qū)塊,在TB區(qū)塊西部和臨興區(qū)塊北部大于75%。其中,在臨興區(qū)塊北部以L-17,L-6,L-101井包圍的區(qū)域出現(xiàn)異常高煤層含氣飽和度區(qū),整體大于88%(圖9)。本溪組8+9號(hào)煤層含氣飽和度整體較4+5號(hào)煤低,高飽和度區(qū)域依然分布在研究區(qū)西南部,但含氣飽和度大于50%的分布面積顯著減小。在TB區(qū)塊中部,煤層含氣飽和度大于75%。臨興區(qū)塊以L-17井為中心出現(xiàn)小范圍高值區(qū),含氣飽和度最高可達(dá)70.36%。
2.4臨界解吸壓力和臨儲(chǔ)比
臨界解吸壓力可由Langmuir方程計(jì)算:
圖9 研究區(qū)主煤層含氣飽和度等值線Fig.9 Gas saturation contour of the main coalbeds
(6)
式中,Pcd為臨界解吸壓力,MPa;Vr為實(shí)際含氣量,m3/t。
研究區(qū)主煤層臨界解吸壓力介于1.27~10.47 MPa,平均值為4.629 MPa;臨儲(chǔ)比介于0.111~0.639,平均為0.332。在平面上,臨興區(qū)塊兩套主煤層臨界解吸壓力和臨儲(chǔ)比顯示出差異的分布格局(圖10,11)。本溪組8+9號(hào)煤以L-4井區(qū)為高值中心形成向四周降低的同心環(huán)帶,臨界解吸壓力高達(dá)10.47 MPa,臨儲(chǔ)比達(dá)0.638;低值區(qū)出現(xiàn)在區(qū)塊西南角L-1井區(qū)附近。山西組4+5號(hào)煤高值中心出現(xiàn)在區(qū)塊西北部L-10井區(qū)附近,臨界解吸壓力最高為9.4 MPa,臨儲(chǔ)比0.639。
圖10 研究區(qū)主煤層臨界解吸壓力等值線Fig.10 Critical desorption pressure contour of the main coalbeds
圖11 研究區(qū)主煤層臨儲(chǔ)比等值線Fig.11 Contour of ratio of critical desorption pressure and reservoir pressure of the main coalbeds
3結(jié)論
(1)朗格繆爾體積VL隨鏡質(zhì)組反射率的增大先增加后減小,在隨鏡質(zhì)組反射率值為2.5%左右出現(xiàn)轉(zhuǎn)折,朗格繆爾壓力PL與鏡質(zhì)組反射率呈“U”型變化,轉(zhuǎn)折點(diǎn)同樣出現(xiàn)在鏡質(zhì)組反射率值為2.5%左右。
(2)采用非線性分析方法,基于理論含氣飽和度與煤層埋深的計(jì)算,建立了含校正系數(shù)的研究區(qū)深部煤層含氣量計(jì)算模型。山西組4+5號(hào)煤層預(yù)測(cè)含氣量6.7~22.1 m3/t,總體呈西高東低,在L-6~L-101與L-2-TB29存在2個(gè)富氣中心;本溪組8+9號(hào)煤層含氣量多在12~20 m3/t,平均14.92 m3/t,總體呈東低西高展布,在L-5~L-9存在富氣中心。
(3)4+5號(hào)煤預(yù)測(cè)臨界解吸壓力介于1.03~9.40 MPa,臨儲(chǔ)比介于0.11~0.63,平均0.33;8+9號(hào)煤預(yù)測(cè)臨界解吸壓力介于1.27~10.47 MPa,平均4.74 MPa,臨儲(chǔ)比介于0.12~0.64,平均0.334;下主煤層略優(yōu)于上主煤。在平面上,4+5號(hào)煤臨界解吸壓力與臨儲(chǔ)比均呈西高東低、西北部最高展布,而8+9號(hào)煤總體呈北高南低展布。
參考文獻(xiàn):
[1]秦勇,申建,王寶文,等.深部煤層氣成藏效應(yīng)及其耦合關(guān)系[J].石油學(xué)報(bào),2012,33(1):48-54.
Qin Yong,Shen Jian,Wang Baowen,et al..Accumulation effects and coupling relationship of deep coalbed methane[J].Acta Petrolei Sinica,2012,33(1):48-54.
[2]陳剛,秦勇,李五忠,等.鄂爾多斯盆地東部深層煤層氣成藏地質(zhì)條件分析[J].高校地質(zhì)學(xué)報(bào),2012,18(3):465-473.
Chen Gang,Qin Yong,Li Wuzhong,et al.Analysis of geological conditions of deep coalbed methane reservoiring in the eastern ordos basin[J].Geological Journal of China Universities,2012,18(3):465-473.
[3]申建.論深部煤層氣成藏效應(yīng)[D].徐州:中國(guó)礦業(yè)大學(xué),2011.
Shen Jian.On CBM-reservoiring effect in deep strata[D].Xuzhou:China University of Mining & Technology,2011.
[4]Yang R T,Saunders J T.Adsorption of gases on coals and heattreated coals at elevated temperature and pressure:1.Adsorption from hydrogen and methane as single gases[J].Fuel,1985,64(5):616-620.
[5]Gregg S J.The surface chemistry of solids[M].New York:Chapman & Hall Ltd.,1961.
[6]Scott A R.Factors affecting gas content distribution in coal beds[A].Geology and Hydrology of Coalbed Methane Producibility in the United States:Analogs for the World[C].The University of Alabama,Tuscaloosa,1995:205-250.
[7]趙志根,唐修義,張光明.較高溫度下煤吸附甲烷實(shí)驗(yàn)及其意義[J].煤田地質(zhì)與勘探,2001,29(4):29-30.
Zhao Zhigen,Tang Xiuyi,Zhang Guangming.Experiment and significance of isothermal adsorption of coal on methane under higher temperature[J].Coal Geology & Exploration,2011,29(4):29-30.
[8]Ettinger I,Eremin I,Zimakov B,et al.Natural factors influencing coal sorption properties.I.Petrography and sorption properties of coals[J].Fuel,1966,45:267-275.
[9]Levy J H ,Day S J,Killingley J S.Methane capacities of Bowen Basin coals related to coal properties[J].Fuel,1997,76(9):813-819.
[10]鐘玲文,鄭玉柱,員爭(zhēng)榮,等.煤在溫度和壓力綜合影響下的吸附性能及氣含量預(yù)測(cè)[J].煤炭學(xué)報(bào),2002,27(6):581-585.
Zhong Lingwen,Zheng Yuzhu,Yuan Zhengrong,et al.The adsorption capability of coal under integrated influence of temperature and pressure and predicted of content quantity of coal bed gas[J].Journal of China Coal Society,2002,27(6):581-585.
[11]申建,杜磊,秦勇,等.深部低階煤三相態(tài)含氣量建模及勘探啟示——以準(zhǔn)噶爾盆地侏羅紀(jì)煤層為例[J].天然氣工業(yè),2015,35(3):30-35.
Shen Jian,Du Lei,Qin Yong,et al.Three-phase gas content model of deep low rank coals and its implication for CBM exploration:A case study from the Jurassic coal in the Junggar Basin[J].Natural Gas Indurstry,2015,35(3):30-35.
[12]申建,秦勇,傅雪海,等.深部煤層氣成藏條件特殊性及其臨界深度探討[J].天然氣地球科學(xué),2014,25(9):1470-1476.
Shen Jian,Qin Yong,Fu Xuehai,et al.Properties of deep coalbed methane reservoir-forming conditions and critical depth discussion[J].Natural Gas Geoscience,2014,25(9):1470-1476.
[13]Arumugam A,Fitzgerald J,Sudibandriyo M,et al.High-pressure adsorption of pure coalbed gases on dry coal matrices[D].India:Sri Venkateswara College of Engineering Chennai,1999.
[14]Charrière D,Pokryszka Z,Behra P.Effect of pressure and temperature on diffusion of CO2and CH4into coal from the Lorraine basin (France)[J].International Journal of Coal Geology,2010,81(4):373-380.
[15]宋全友.深部煤層氣成藏條件及開(kāi)發(fā)潛勢(shì)研究[D].徐州:中國(guó)礦業(yè)大學(xué),2003.
Song Quanyou.Form mode of coal bed methane and its recovery potential of deep coal reservoirs[D].Xuzhou:China University of Mining and Technology,2003.
[16]傅小康.中國(guó)西部低階煤儲(chǔ)層特征及其勘探潛力分析[D].北京:中國(guó)地質(zhì)大學(xué),2006.
Fu Xiaokang.Study on the reservoir characteristics and the exploration potential of low rank coal in the western China[D].Beijing:China University of Geosciences,2006.
Key parameters identification for deep coalbed methane reservoir in Linxing block of eastern Ordos Basin
ZHANG Bing1,XU Wen-jun1,XU Yan-yong1,GU Jiao-yang1,YANG Guang2,ZHAO Jin-cheng2
(1.ChinaUnitedCoalbedMethaneCorporationLtd.,Beijing100011,China;2.KeyLaboratoryofCBMResourcesandReservoirProcess,MinistryofEducation,ChinaUniversityofMining&Technology,Xuzhou221116,China)
Abstract:Key parameters identification for deep coalbed methane reservoir is a basis for its development.Based on the deep coalbed methane exploration and experiments in Linxing block of eastern Ordos basin,Langmuir volume increases and then decreases with vitrinite reflectance,Langmuir pressure varies like U-type with vitrinite reflectance,and the transform point of both is around 2.5% Ro,max.Using nonlinear fitting method,a prediction model for deep coalbed methane content was established,and the correction coefficients deduced from relationship between measured gas saturation and burial depth were added into the model to assure the accuracy of the model.Gas contents of No.4+5 coal in Shanxi formation vary between 6.7 and 22.1 m3/t,while those of No.8+9 coal in Benxi formation change from 12 to 20 m3/t.The gas contents distribute as high in west and low in east.Critical desorption pressure of No.4+5 coal vary between 1.03 and 9.4 MPa,and the ratios of critical desorption pressure and reservoir pressure change from 0.11 to 0.63,and averaged value is 0.33.Critical desorption pressure of No.8+9 coal vary between 1.27 and 10.47 MPa,and the ratios of critical desorption pressure and reservoir pressure change from 0.12 to 0.64,and averaged value is 0.334.Critical desorption pressure and ratios of critical desorption pressure and reservoir pressure of No.4+5 coal distribute like high in west,low in east and highest in north-west,while those of No.8+9 coal distribute as high in north and low in south.
Key words:Linxing block;deep coalbed methane;gas saturation;gas content;critical desorption pressure
中圖分類號(hào):P618.11
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0253-9993(2016)01-0087-07
作者簡(jiǎn)介:張兵(1982—),男,山東濟(jì)寧人,工程師。E-mail:zhangbing16@cnooc.com.cn
基金項(xiàng)目:國(guó)家科技重大專項(xiàng)資助項(xiàng)目(2011ZX05042);國(guó)家自然科學(xué)基金青年基金資助項(xiàng)目(41302131)
收稿日期:2015-09-20修回日期:2015-10-11責(zé)任編輯:張曉寧
張兵,徐文軍,徐延勇,等.鄂爾多斯盆地東緣臨興區(qū)塊深部關(guān)鍵煤儲(chǔ)層參數(shù)識(shí)別[J].煤炭學(xué)報(bào),2016,41(1):87-93.doi:10.13225/j.cnki.jccs.2015.9031
Zhang Bing,Xu Wenjun,Xu Yanyong,et al.Key parameters identification for deep coalbed methane reservoir in Linxing block of eastern Ordos Basin[J].Journal of China Coal Society,2016,41(1):87-93.doi:10.13225/j.cnki.jccs.2015.9031