桂水榮 萬水 陳水生
摘要:根據(jù)模態(tài)綜合疊加技術(shù)的優(yōu)勢(shì),提出基于精細(xì)積分算法(PIM)的車橋耦合振動(dòng)模型新算法??紤]積分步長(zhǎng)內(nèi)荷載協(xié)調(diào)分解,通過插值函數(shù)將移動(dòng)車輛荷載等效到單元節(jié)點(diǎn),利用科茨積分格式求解Duhamel非齊次項(xiàng)荷載。以移動(dòng)常量力作用于簡(jiǎn)支梁橋?yàn)槔瑢⒔馕鼋夂投喾N迭代格式數(shù)值解進(jìn)行對(duì)比,校驗(yàn)精細(xì)積分法結(jié)合科茨積分格式求解車橋耦合振動(dòng)模型算法的準(zhǔn)確性。以移動(dòng)彈簧質(zhì)量車模型作用于簡(jiǎn)支梁橋?yàn)槔?,分析積分步長(zhǎng)、計(jì)算時(shí)間對(duì)RungKutta法、Newmarkβ法及PIM法計(jì)算結(jié)果的影響。結(jié)果表明:基于模態(tài)綜合疊加法并結(jié)合精細(xì)積分格式求解車橋耦合振動(dòng)問題不受積分步長(zhǎng)限制,具有快速收斂的優(yōu)勢(shì)。
關(guān)鍵詞:車橋耦合振動(dòng);移動(dòng)彈簧質(zhì)量;數(shù)值迭代格式;精細(xì)積分算法;模態(tài)綜合疊加法
中圖分類號(hào):U443文獻(xiàn)標(biāo)志碼:A
Abstract: According to the superiority of the modal superposition method, a new numerical algorithm based on precise integration method (PIM)was proposed to solve the problem of vehiclebridge coupling vibration. The load decomposition coordination in an integration step was considered, and moving vehicle load was equivalent to element point through interpolating function, then Cotes Integral format was introduced to solve Duhamel nonhomogeneous load. Taking a moving constant force on simply supported beam as an example, the veracity of Cotes Integral format was verified through comparing the analytical solution with several numerical integral results. Taking a moving spring mass vehicle model on simply supported beam as an example, the effects of integral time step and computing time on computing results using RungKutta method, Newmarkβ method and PIM were analyzed. The results show that the PIM lies in unlimited by integral step length, and has superiority of quick convergence in solving the problem of vehiclebridge coupling vibration.
Key words: vehiclebridge coupling vibration; moving spring mass; numerical iterative scheme; precise integration method; modal superposition method
0引言
移動(dòng)車輛荷載與橋梁相互作用的數(shù)值模擬能高效準(zhǔn)確地計(jì)算二者動(dòng)力響應(yīng),可以用來研究車輛行駛過程中的行車舒適性及橋梁振動(dòng)特性,對(duì)橋梁及車輛設(shè)計(jì)提供理論依據(jù)。通??紤]車橋耦合振動(dòng)的數(shù)值模擬有2種方法:一種方法是直接建立橋梁全自由度的車橋耦合振動(dòng)方程進(jìn)行同步求解,這種方法稱為全自由度耦合振動(dòng)法[1];另一種方法則是利用結(jié)構(gòu)模態(tài)正交特性,使用振型疊加技術(shù),分別建立車輛與橋梁振動(dòng)方程,使橋梁各階模態(tài)廣義坐標(biāo)與車輛自由度位移協(xié)調(diào),進(jìn)行耦合求解,這種方法稱為模態(tài)綜合法[2]。求解車橋耦合振動(dòng)問題的數(shù)值積分格式常用的有Newmarkβ法[1]、RungeKutta法[3]、翟婉明的顯式積分法[4],喬宏等[5]基于Duhamel法積分求解,張楠等[6]運(yùn)用全積分法求解,施穎等[7]運(yùn)用ANSYS二次開發(fā)進(jìn)行求解,張亞輝等[89]首先將精細(xì)積分法運(yùn)用于求解車橋耦合振動(dòng)方程。常規(guī)的逐步積分法計(jì)算移動(dòng)車輛荷載與橋梁相互作用,在每一個(gè)積分步長(zhǎng)內(nèi),荷載的大小及作用點(diǎn)位不變,導(dǎo)致從一個(gè)積分點(diǎn)到另一個(gè)積分點(diǎn)的“突變”,因而積分步長(zhǎng)將影響數(shù)值計(jì)算精度。鐘萬勰[1011]提出的結(jié)構(gòu)動(dòng)力方程精細(xì)時(shí)程積分方法考慮荷載在積分步長(zhǎng)內(nèi)的連續(xù)變化。結(jié)合精細(xì)積分方法,研究移動(dòng)荷載過橋問題,各學(xué)者研究了積分步長(zhǎng)內(nèi)荷載變化關(guān)系[710]、非齊次項(xiàng)荷載特解的求解問題[12]及將二者同時(shí)改進(jìn)的算法[1314]。杜憲亭等[1516]運(yùn)用精細(xì)積分法進(jìn)行優(yōu)化來求解車橋耦合振動(dòng)問題。上述文獻(xiàn)采用精細(xì)積分法求解移動(dòng)荷載過橋問題,均采用全自由度耦合振動(dòng)法[79,1214]或解析方法來進(jìn)行求解,這些方法在計(jì)算公路橋梁車橋耦合振動(dòng)問題時(shí),因車輛在橋梁上行駛的橫向、縱向位置的改變,橋梁有限元模型自由度將成倍增大,導(dǎo)致車橋耦合振動(dòng)問題求解難以精確完成。
根據(jù)模態(tài)綜合疊加法優(yōu)勢(shì),結(jié)合精細(xì)積分格式,本文提出基于精細(xì)積分格式的車橋耦合振動(dòng)模型的求解算法。考慮積分步長(zhǎng)內(nèi)外荷載按線性變化,運(yùn)用插值函數(shù)將移動(dòng)車輛荷載等效到單元節(jié)點(diǎn),并利用指數(shù)矩陣及科茨積分格式求解非齊次項(xiàng)荷載。以移動(dòng)彈簧質(zhì)量車橋耦合模型為例,對(duì)比分析積分步長(zhǎng)及計(jì)算時(shí)間對(duì)不同結(jié)果的影響,提出基于模態(tài)綜合疊加法并結(jié)合精細(xì)積分格式求解車橋耦合振動(dòng)問題的優(yōu)勢(shì)。
1移動(dòng)彈簧質(zhì)量車橋耦合振動(dòng)模型
將車輛模型簡(jiǎn)化為由2個(gè)質(zhì)量體系組成的移動(dòng)彈簧質(zhì)量車模型。假定車輛與橋梁始終保持接觸,車輛模型質(zhì)量由車輪質(zhì)量m1及車體的簧載質(zhì)量m2組成,車輪和懸架系統(tǒng)的彈簧剛度及阻尼分別等效為剛度k1、阻尼c1的彈簧阻尼系統(tǒng)。假設(shè)簡(jiǎn)支梁橋靜止時(shí)為平衡位置,車輛以速度v行駛,梁的動(dòng)撓度為y(x,t),簧載質(zhì)量m2的動(dòng)位移為z(t),車輪始終與梁體保持接觸不脫離,移動(dòng)彈簧質(zhì)量車模型如圖1所示。
5結(jié)語
將簡(jiǎn)支梁離散成歐拉梁?jiǎn)卧?,并結(jié)合模態(tài)綜合疊加法建立了移動(dòng)彈簧質(zhì)量車橋耦合系統(tǒng)振動(dòng)方程,考慮荷載在積分步內(nèi)的線性變化關(guān)系,引入精細(xì)積分迭代格式,提出了基于模態(tài)綜合疊加法的移動(dòng)彈簧質(zhì)量車橋耦合振動(dòng)模型的精細(xì)求解算法。研究結(jié)果表明,車橋耦合振動(dòng)系統(tǒng)采用模態(tài)綜合法結(jié)合精細(xì)積分迭代格式,具有較好的通用性和準(zhǔn)確性,能不受積分步長(zhǎng)的限制,快速收斂,后期可推廣用于求解長(zhǎng)大跨橋梁及多車耦合振動(dòng)響應(yīng)。
參考文獻(xiàn):
References:
[1]李小珍,馬文彬,強(qiáng)士中.車橋系統(tǒng)耦合振動(dòng)分析的數(shù)值解法[J].振動(dòng)與沖擊,2002,21(3):2125,90.
LI Xiaozhen,MA Wenbin,QIANG Shizhong.Coupling Vibration Analysis of Vehiclebridge System by Iterative Solution Method[J].Journal of Vibration and Shock,2002,21(3):2125,90.
[2]HENCHI K,F(xiàn)AFARD M,TALBOT M,et al.An Efficient Algorithm for Dynamic Analysis of Bridges Under Moving Vehicles Using a Coupled Modal and Physical Components Approach[J].Journal of Sound and Vibration,1998,212(4):663683.
[3]LIN Y H,TRETHEWEY M W.Finite Element Analysis of Elastic Beams Subjected to Moving Dynamic Loads[J].Journal of Sound and Vibration,1990,136(2):323342.
[4]ZHAI W M,WANG K Y,CAI C B.Fundamentals of Vehicletrack Coupled Dynamics[J].Vehicle System Dynamics,2009,47(11):13491376.
[5]喬宏,夏禾,杜憲亭.基于Duhamel積分的車橋耦合動(dòng)力分析方法[J].西南交通大學(xué)學(xué)報(bào),2014,49(5):766771.
QIAO Hong,XIA He,DU Xianting.Analytical Method for Calculating Dynamic Response of Coupled Trainbridge System Based on Duhamel Integral[J].Journal of Southwest Jiaotong University,2014,49(5):766771.
[6]張楠,夏禾.基于全過程迭代的車橋耦合動(dòng)力系統(tǒng)分析方法[J].中國(guó)鐵道科學(xué),2013,34(5):3238.
ZHANG Nan,XIA He.A Vehiclebridge Interaction Dynamic System Analysis Method Based on Intersystem Iteration[J].China Railway Science,2013,34(5):3238.
[7]施穎,宋一凡,孫慧,等.基于ANSYS的公路復(fù)雜橋梁車橋耦合動(dòng)力分析方法[J].天津大學(xué)學(xué)報(bào),2010,43(6):537543.
SHI Ying,SONG Yifan,SUN Hui,et al.Dynamic Analysis Method of Vehiclebridge Coupling for Complicated Bridges Based on ANSYS[J].Journal of Tianjin University,2010,43(6):537543.
[8]張亞輝,張守云,趙巖,等.橋梁受移動(dòng)荷載動(dòng)力響應(yīng)的一種精細(xì)積分法[J].計(jì)算力學(xué)學(xué)報(bào),2006,23(3):290294.
ZHANG Yahui,ZHANG Shouyun,ZHAO Yan,et al.A Precise Integration Method for Bridges Subjected to Moving Loads[J].Chinese Journal of Computational Mechanics,2006,23(3):290294.
[9]林家浩,張守云,呂峰,等.移動(dòng)簡(jiǎn)諧荷載作用下橋梁響應(yīng)的高效計(jì)算[J].計(jì)算力學(xué)學(xué)報(bào),2006,23(4):385390.
LIN Jiahao,ZHANG Shouyun,LU Feng,et al.Precise Integration for Bridge Subjected to Moving Harmonic Loads[J].Chinese Journal of Computational Mechanics,2006,23(4):385390.
[10]鐘萬勰.結(jié)構(gòu)動(dòng)力方程的精細(xì)時(shí)程積分法[J].大連理工大學(xué)學(xué)報(bào),1994,34(2):131136.
ZHONG Wanxie.On Precise Timeintegration Method for Structural Dynamics[J].Journal of Dalian University of Technology,1994,34(2):131136.
[11]鐘萬勰.暫態(tài)歷程的精細(xì)計(jì)算方法[J].計(jì)算結(jié)構(gòu)力學(xué)及其應(yīng)用,1995,12(1):16.
ZHONG Wanxie.Precise Computation for Transient Analysis[J].Computational Structural Mechanics and Applications,1995,12(1):16.
[12]余華,吳定俊.Hermite插值在車橋耦合振動(dòng)中的應(yīng)用[J].振動(dòng)與沖擊,2006,25(2):3840,66,182.
YU Hua,WU Dingjun.Application of Hermite Function in Vehiclebridge Interaction Analysis[J].Journal of Vibration and Shock,2006,25(2):3840,66,182.
[13]余華,吳定俊,項(xiàng)海帆.移動(dòng)荷載過橋的精細(xì)計(jì)算[J].振動(dòng)與沖擊,2009,28(5):1721,201.
YU Hua,WU Dingjun,XIANG Haifan.Precise Computation for Dynamic Response of Bridge Under Moving Loads[J].Journal of Vibration and Shock,2009,28(5):1721,201.
[14]張健,譚述君,吳昌華.車輛軌道非線性耦合動(dòng)力學(xué)的精細(xì)積分法及其應(yīng)用[J].振動(dòng)與沖擊,2012,31(8):510.
ZHANG Jian,TAN Shujun,WU Changhua.A Precise Integration Method for Vehicletrack Nonlinear Coupling Dynamics and Its Application[J].Journal of Vibration and Shock,2012,31(8):510.
[15]杜憲亭,夏禾,張?zhí)铮?基于精細(xì)RungeKutta混合積分法的車橋耦合震動(dòng)非迭代求解算法[J].振動(dòng)與沖擊,2013,32(13):3942.
DU Xianting,XIA He,ZHANG Tian,et al.Noniterative Solving Algorithm for Coupled Vibration of a Trainbridge System Based on Precise RungeKutta Hybrid Integrationmethod[J].Journal of Vibration and Shock,2013,32(13):3942.
[16]杜憲亭,夏禾,李慧樂,等.基于改進(jìn)高斯精細(xì)積分法的車橋耦合振動(dòng)分析框架[J].工程力學(xué),2013,30(9):171176.
DU Xianting,XIA He,LI Huile,et al.Dynamic Analysis Framework of Trainbridge System Based on Improved Gauss Precise Integration Method[J].Engineering Mechanics,2013,30(9):171176.
[17]WARBURTON G B.The Dynamic Behaviour of Structures[M].Oxford:Pergamon Press,1964.
[18]陳水生.公路車橋耦合振動(dòng)響應(yīng)計(jì)算方法對(duì)比研究[J].華東交通大學(xué)學(xué)報(bào),2011,28(3):1825.
CHEN Shuisheng.Comparative Research on the Calculating Methods for Coupling Highway Vehiclebridge System[J].Journal of East China Jiaotong University,2011,28(3):1825.
[19]桂水榮.公路梁橋在移動(dòng)荷載作用下車橋耦合振動(dòng)響應(yīng)研究[D].南昌:華東交通大學(xué),2007.
GUI Shuirong.Response Study of Road Beam Bridges Subjected to Moving Load[D].Nanchang:East China Jiaotong University,2007.
[20]王運(yùn)金,桂水榮,陳水生.連續(xù)梁橋車橋耦合振動(dòng)分析的數(shù)值解法[J].華東交通大學(xué)學(xué)報(bào),2007,24(4):2529.
WANG Yunjin,GUI Shuirong,CHEN Shuisheng.An Efficient Algorithm for Coupled Vibration Analysis of Continuous Bridge Under Moving Vehicle[J].Journal of East China Jiaotong University,2007,24(4):2529.