莊鵬 聶攀 薛素鐸 韓淼
摘要:利用2種鎳鈦形狀記憶合金(SMA)研制了大尺寸超彈性螺旋彈簧,對(duì)其進(jìn)行了單軸反復(fù)荷載作用下的滯回性能試驗(yàn),研究了超彈性SMA螺旋彈簧的恢復(fù)力特性與耗能能力,分析了加載頻率、位移幅值對(duì)2種SMA螺旋彈簧滯回曲線以及等效剛度、單位循環(huán)耗能、等效阻尼比和殘余位移等力學(xué)性能參數(shù)的影響;采用剛彈性模型和BoucWen模型,建立了適用于整體結(jié)構(gòu)分析的SMA螺旋彈簧簡(jiǎn)化恢復(fù)力模型,并利用該模型進(jìn)行了數(shù)值模擬。結(jié)果表明:超彈性SMA螺旋彈簧具有穩(wěn)定的滯回曲線,且具有良好的復(fù)位性能和大變形能力,可用于結(jié)構(gòu)自復(fù)位控制裝置的研發(fā);數(shù)值模擬結(jié)果與試驗(yàn)結(jié)果吻合較好,驗(yàn)證了簡(jiǎn)化恢復(fù)力模型的正確性。
關(guān)鍵詞:形狀記憶合金;螺旋彈簧;超彈性;力學(xué)試驗(yàn);滯回性能
中圖分類號(hào):TU352.1文獻(xiàn)標(biāo)志碼:A
Abstract: The large scale superelastic helical springs were fabricated with two types of NiTi shape memory alloy (SMA), and hysteretic performance test of superelastic SMA helical springs was carried out under uniaxial cyclic loading.The restoring force behavior and energy dissipation capacity of SMA helical springs were studied, and the influences of loading frequency, displacement amplitude on the hysteretic curves and the mechanical behavior parameters, such as equivalent stiffness, energy dissipation per cycle, equivalent damping ratio and residual displacement, were analyzed.Combining the rigidelastic model and the BoucWen model, a simplified restoring force model of SMA helical spring was established, which was available to integral structure, and numerical simulation was done with the model. The results show that SMA helical springs exhibit stable hysteresis curves, excellent recentering performance and large deformation capacity. The remarkable properties make the SMA spring an ideal subcomponent for use in recentering devices. The numerical results match closely with the experimental data, proving the validity of the proposed restoring force model of the SMA helical springs.
Key words: shape memory alloy; helical spring; superelasticity; mechanical experiment; hysteretic performance
0引言
形狀記憶合金(Shape Memory Alloy,簡(jiǎn)稱SMA)是一種新型功能材料,其在奧氏體相狀態(tài)所具有的超彈性效應(yīng)可用于工程結(jié)構(gòu)的被動(dòng)減振控制[1]。自20世紀(jì)90年代以來(lái),各國(guó)學(xué)者利用SMA絲材研制了多種阻尼器和隔震支座[212]。近年來(lái),隨著材料加工技術(shù)的發(fā)展,大尺寸SMA部件逐漸被引入到結(jié)構(gòu)減振控制中,并已成為結(jié)構(gòu)振動(dòng)控制技術(shù)的一個(gè)研究新熱點(diǎn)。研究人員提出了多種含有SMA棒或大尺寸SMA螺旋彈簧的減振、隔震裝置,并對(duì)其進(jìn)行了理論分析和試驗(yàn)研究[1318]。
目前,有關(guān)大尺寸SMA螺旋彈簧的試驗(yàn)研究尚不夠充分,科研人員對(duì)于SMA螺旋彈簧的力學(xué)行為在不同試驗(yàn)條件下的變化規(guī)律還缺乏深入的認(rèn)識(shí),如Speicher等[17]僅進(jìn)行了單一加載頻率下大尺寸SMA螺旋彈簧的擬靜力試驗(yàn)。此外,以往SMA螺旋彈簧的數(shù)值模擬主要采用精細(xì)化有限元模型[18],而缺少適合整體結(jié)構(gòu)分析的理論模型。為了系統(tǒng)研究大尺寸SMA螺旋彈簧的滯回行為及其建模理論,本文選取了2種中國(guó)產(chǎn)鎳鈦形狀記憶合金(NiTi SMA),研制了簧桿直徑為12 mm的SMA螺旋彈簧,進(jìn)行了多種工況下的單軸拉壓循環(huán)力學(xué)試驗(yàn),分析了加載頻率、位移幅值對(duì)SMA螺旋彈簧滯回性能的影響。在此基礎(chǔ)上建立了SMA螺旋彈簧的恢復(fù)力簡(jiǎn)化計(jì)算模型,并對(duì)恢復(fù)力模型的正確性進(jìn)行了驗(yàn)證。本文的研究可為大尺寸SMA螺旋彈簧阻尼器的設(shè)計(jì)與性能分析提供參考。
1試驗(yàn)概況
1.1SMA螺旋彈簧試件
SMA螺旋彈簧分別由2種NiTi記憶合金材料制作而成,其中,材料A的化學(xué)成分為Ni50.8,Ti49.2(下標(biāo)數(shù)值表示原子比百分?jǐn)?shù),單位為%),材料B的化學(xué)成分為Ni51.0,Ti49.0。材料A和材料B的奧氏體相變結(jié)束溫度分別為-12.3 ℃和-26.0 ℃,故在室溫下2種SMA的初始狀態(tài)均為奧氏體狀態(tài)。
利用上述2種SMA制作螺旋彈簧試件,分別命名為彈簧A(材料A)和彈簧B(材料B)。2種彈簧具有相同的尺寸,如圖1所示。
由圖5可見:彈簧A和彈簧B在正向加載和反向加載過(guò)程中均可提供光滑的梭形恢復(fù)力位移曲線,且二者的滯回曲線在正向加載和反向加載階段基本對(duì)稱,同時(shí),2種彈簧在卸載后幾乎無(wú)殘余變形;當(dāng)位移幅值由12 mm增至36 mm時(shí),彈簧A的滯回曲線加載段未出現(xiàn)非線性強(qiáng)化;當(dāng)位移幅值小于20 mm時(shí),彈簧B的加載段曲線未出現(xiàn)非線性強(qiáng)化,但是當(dāng)位移幅值區(qū)間為28~36 mm時(shí),彈簧B的加載段曲線斜率增加,使得其滯回曲線出現(xiàn)硬化的趨勢(shì)。
由圖6可見:2種彈簧的等效剛度隨位移幅值的增加而降低,如彈簧A的等效剛度由位移幅值為12 mm時(shí)的0.323 1 kN·mm-1降至位移幅值為36mm時(shí)的0.219 4 kN·mm-1,減小29.0%,相同條件下彈簧B的等效剛度由0.314 9 kN·mm-1降至0.226 8 kN·mm-1,減小28.29%;2種彈簧的單位循環(huán)耗能隨著位移幅值的增加而增大,當(dāng)位移幅值由12 mm增至36 mm時(shí),彈簧A的單位循環(huán)耗能由12.781 3 kN·mm增至110.342 9 kN·mm,增加了763.32%,彈簧B的單位循環(huán)耗能由14.271 9 kN·mm增至106.103 9 kN·mm,增加了643.45%;2種彈簧的等效阻尼比均隨位移幅值的增加而增大,在位移幅值為28 mm時(shí)達(dá)到最大,在這一位移幅值下彈簧A和彈簧B的等效阻尼比分別為6.18%和6.22%,其后繼續(xù)增大位移幅值,2種彈簧的等效阻尼比略微降低,位移幅值為36 mm時(shí)彈簧A和彈簧B的等效阻尼比分別為6.12%和5.75%;2種彈簧的殘余位移隨位移幅值的增加而增大,位移幅值為36 mm時(shí),彈簧A和彈簧B的殘余位移分別為0.27 mm和0.36 mm,其值較位移幅值為12 mm時(shí)2種彈簧的殘余位移分別增加了35.0%和71.43%,在整個(gè)位移幅值區(qū)間內(nèi),彈簧A的殘余位移占位移幅值的0.75%~1.67%,彈簧B殘余位移占位移幅值的1.0%~1.75%,2種SMA螺旋彈簧的殘余位移均極小。
3SMA螺旋彈簧恢復(fù)力的數(shù)值模擬
3.1簡(jiǎn)化計(jì)算模型
現(xiàn)有關(guān)于SMA減振裝置的數(shù)值模擬主要采用分段線性模型,但是通過(guò)分段線性模型得到的恢復(fù)力位移曲線在轉(zhuǎn)折處帶有尖角,將其用于受控結(jié)構(gòu)動(dòng)力分析可能導(dǎo)致計(jì)算結(jié)果失真。基于實(shí)體單元的精細(xì)化有限元模型也可用于SMA螺旋彈簧的數(shù)值模擬,但其計(jì)算效率較低,難以用于整體結(jié)構(gòu)的分析。為了便捷地模擬出光滑的恢復(fù)力位移曲線,本文選擇適當(dāng)?shù)暮瘮?shù)建立SMA螺旋彈簧簡(jiǎn)化滯回模型,并利用試驗(yàn)結(jié)果對(duì)模型的正確性進(jìn)行驗(yàn)證。
3.2模擬結(jié)果與分析
以不同位移幅值下2種SMA螺旋彈簧滯回行為的數(shù)值模擬為例考察本文恢復(fù)力模型的正確性。首先,通過(guò)不同位移幅值下的試驗(yàn)數(shù)據(jù)確定彈簧A和彈簧B的屈服位移xy取值分別為4.6 mm和4.5 mm,屈服后剛度分別為0.1914 kN·mm-1和0.199 8 kN·mm-1。進(jìn)而,利用不同位移幅值下的試驗(yàn)結(jié)果可確定最大恢復(fù)力Fd的取值(表1)。在此基礎(chǔ)上,通過(guò)求解式(7)得到不同位移幅值下的恢復(fù)力模型特征參數(shù)取值,其中,當(dāng)彈簧A的位移幅值分別為12,20,28,36 mm時(shí),對(duì)應(yīng)的Fb分別為0.753 3,0.755 3,0.733 8,0.743 0 kN,而相同位移幅值下Fy的取值與Fb的取值相同;同理,在上述位移幅值下,彈簧B的Fb等于Fy,對(duì)應(yīng)于12,20,28,36 mm四種位移幅值的Fb分別為0.565 3,0.578 3,0.521 1,0.538 7 kN。此外,BoucWen模型中的常數(shù)α,γ,β,A,n統(tǒng)一取為0,0.5,0.5,1,2?;谝陨蠀?shù)取值,按照式(3)~(6)編寫MATLAB計(jì)算程序。表2和表3分別給出了不同位移幅值下2種SMA螺旋彈簧的等效剛度、單位循環(huán)耗能、等效阻尼比試驗(yàn)值與模擬值,可見力學(xué)性能參數(shù)試驗(yàn)值和模擬值之間的相對(duì)誤差絕大部分在10%以內(nèi),僅有個(gè)別相對(duì)誤差在10%~15%之間。研究結(jié)果表明,本文簡(jiǎn)化恢復(fù)力模型能夠較好地模擬SMA螺旋彈簧的恢復(fù)力位移滯回曲線。
4結(jié)語(yǔ)
(1)隨著加載頻率的增加,2種SMA螺旋彈簧的恢復(fù)力位移曲線在正向加載階段和反向加載階段分別向斜上方和斜下方發(fā)展;在試驗(yàn)研究的加載頻率區(qū)間內(nèi),2種SMA螺旋彈簧的等效剛度均逐漸增加,單位循環(huán)耗能和等效阻尼比則變化較小,殘余位移均有所增大。
(2)隨著位移幅值的增加,2種SMA螺旋彈簧的滯回環(huán)均在坐標(biāo)系內(nèi)漸呈狹長(zhǎng)的梭形;在位移幅值區(qū)間內(nèi),2種彈簧的單位循環(huán)耗能均成倍增加,等效阻尼比均在位移幅值為28 mm時(shí)達(dá)到最大值,隨后等效阻尼比有所減小;卸載后2種彈簧的殘余位移均累積增加,但其值極小。
(3)基于剛彈性模型和BoucWen模型可建立大尺寸SMA螺旋彈簧的簡(jiǎn)化恢復(fù)力模型,使用該簡(jiǎn)化模型能夠較好地描述記憶合金螺旋彈簧的滯回行為,且力學(xué)性能參數(shù)的模擬值與試驗(yàn)值較為接近,從而驗(yàn)證了該模型的合理性與有效性。
參考文獻(xiàn):
References:
[1]GRAESSER E,COZZARELLI F.Shape Memory Alloys as New Materials for Aseismic Isolation[J].Journal of Engineering Mechanics,1991,117(11):25902608.
[2]DOLCE M,CARDONE D,MARNETTO R.Implementation and Testing of Passive Control Devices Based on Shape Memory Alloys[J].Earthquake Engnineering and Structural Dynamics,2000,29(7):945968.
[3]DOLCE M,CARDONE D,PONZO F,et al.Shaking Table Tests on Reinforced Concrete Frames Without and with Passive Control Systems[J].Earthquake Engnineering and Structural Dynamics,2005,34(14):16871717.
[4]OZBULUT O,HURLEBAUS S.Optimal Design of Superelasticfriction Base Isolators for Seismic Protection of Highway Bridges Against Nearfield Earthquakes[J].Earthquake Engineering and Structural Dynamics,2011,40(3):273291.
[5]李忠獻(xiàn),陳海泉,劉建濤.應(yīng)用SMA復(fù)合橡膠支座的橋梁隔震[J].地震工程與工程振動(dòng),2002,22(2):143148.
LI Zhongxian,CHEN Haiquan,LIU Jiantao.Bridge Isolation with SMAcomposite Rubber Bearing[J].Earthquake Engineering and Engineering Vibration,2002,22(2):143148.
[6]李惠,毛晨曦.新型SMA耗能器及結(jié)構(gòu)地震反應(yīng)控制試驗(yàn)研究[J].地震工程與工程振動(dòng),2003,23(1):133139.
LI Hui,MAO Chenxi.Experimental Investigation of Earthquake Response Reduction of Buildings with Added Two Types of SMA Passive Energy Dissipation Devices[J].Earthquake Engineering and Engineering Vibration,2003,23(1):133139.
[7]薛素鐸,董軍輝,卞曉芳,等.一種新型形狀記憶合金阻尼器[J].建筑結(jié)構(gòu)學(xué)報(bào),2005,26(3):4550.
XUE Suduo,DONG Junhui,BIAN Xiaofang,et al.A New Type of Shape Memory Alloy Damper[J].Journal of Building Structures,2005,26(3):4550.
[8]趙祥,王社良,周福霖,等.基于SMA阻尼器的古塔模型結(jié)構(gòu)振動(dòng)臺(tái)試驗(yàn)研究[J].振動(dòng)與沖擊,2011,30(11):219223.
ZHAO Xiang,WANG Sheliang,ZHOU Fulin,et al.Shaking Table Tests for Ancient Pagoda Model Structure Based on Shape Memory Alloy Actuating Devices[J]. Journal of Vibration and Shock,2011,30(11):219223.
[9]錢輝,李宏男,任文杰,等.形狀記憶合金復(fù)合摩擦阻尼器設(shè)計(jì)及試驗(yàn)研究[J].建筑結(jié)構(gòu)學(xué)報(bào),2011,32(9):5864.
QIAN Hui,LI Hongnan,REN Wenjie,et al.Experimental Investigation of an Innovative Hybrid Shape Memory Alloys Friction Damper[J].Journal of Building Structures,2011,32(9):5864.
[10]任文杰,李宏男,宋鋼兵,等.新型自復(fù)位SMA阻尼器對(duì)框架結(jié)構(gòu)減震控制的研究[J].土木工程學(xué)報(bào),2013,46(6):1420.
REN Wenjie,LI Hongnan,SONG Gangbing,et al.Study on Seismic Response Control of Frame Structure Using Innovative Recentering SMA Damper[J].China Civil Engineering Journal,2013,46(6):1420.
[11]ATTANASI G,AURICCHIO F,URBANO M.Theoretical and Experimental Investigation on SMA Superelastic Springs[J].Journal of Materials Engineering and Performance,2011,20(4):706711.
[12]黃斌,蒲武川,張海洋,等.基于超彈性SMA螺旋彈簧的基礎(chǔ)隔震研究[J].地震工程與工程振動(dòng),2014,34(2):209215.
HUANG Bin,PU Wuchuan,ZHANG Haiyang,et al.Study on Seismic Responses of Base Isolated Structures with Superelastic SMA Helical Springs[J].Earthquake Engineering and Engineering Vibration,2014,34(2):209215.
[13]MILLER D,F(xiàn)AHNESTOCK L,EATHERTON M.Development and Experimental Validation of a Nickeltitanium Shape Memory Alloy Selfcentering Bucklingrestrained Brace[J].Engineering Structures,2012,40:288298.
[14]BHUIYAN A,ALAM M.Seismic Vulnerability Assessment of a Multispan Continuous Highway Bridge Fitted with Shape Memory Alloy Bars and Laminated Rubber Bearing[J].Earthquake Spectra,2012,28(4):13791404.
[15]陳鑫,李愛群,丁幼亮,等.空間網(wǎng)架結(jié)構(gòu)形狀記憶合金隔震研究[J].工程力學(xué),2010,27(9):8693,101.
CHEN Xin,LI Aiqun,DING Youliang,et al.Study on Isolation of Space Grid Structure Using Shape Memory Alloy[J].Engineering Mechanics,2010,27(9):8693,101.
[16]何小輝.鋼框架新型耗能梁柱節(jié)點(diǎn)滯回性能的研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2012.
HE Xiaohui.Hysteretic Behavior of New Energydissipated Beamtocolumn Connections in Steel Frame[D].Harbin:Harbin Institute of Technology,2012.
[17]SPEICHER M,HODGON D,DESROCHES R,et al.Shape Memory Alloy Tension/Compression Device for Seismic Retrofit of Buildings[J].Journal of Material Engineering and Performance,2009,18(5):746753.
[18]MIRZAEIFAR R,DESROCHES R,YAVARI A.A Combined Analytical,Numerical and Experimental Study of Shapememoryalloy Helical Springs[J].International Journal of Solids and Structures,2011,48(3/4):611624.
[19]WEN Y K.Method for Random Vibration of Hysteretic System[J].Journal of the Engineering Mechanics Division,1976,102(2):249263.