楊接來(lái) 程冬冬 朱斌 閆明霞 姚明 楊慶誠(chéng)
200233, 上海交通大學(xué)附屬第六人民醫(yī)院骨科(楊接來(lái)、程冬冬、朱斌、楊慶誠(chéng));200032, 上海市腫瘤研究所(閆明霞、姚明)
?
XBP1在氯化鈷誘導(dǎo)骨肉瘤細(xì)胞缺氧環(huán)境下抗凋亡作用實(shí)驗(yàn)研究
楊接來(lái)程冬冬朱斌閆明霞姚明楊慶誠(chéng)
200233,上海交通大學(xué)附屬第六人民醫(yī)院骨科(楊接來(lái)、程冬冬、朱斌、楊慶誠(chéng));200032,上海市腫瘤研究所(閆明霞、姚明)
【摘要】目的探討在氯化鈷誘導(dǎo)骨肉瘤細(xì)胞缺氧情況下,X盒結(jié)合蛋白1(XBP1)在骨肉瘤細(xì)胞中表達(dá)量的變化、其對(duì)細(xì)胞凋亡的影響及與低氧誘導(dǎo)因子(HIF)-1α信號(hào)轉(zhuǎn)導(dǎo)通路的關(guān)系。方法通過(guò)氯化鈷誘導(dǎo)骨肉瘤MNNG、MG-63細(xì)胞達(dá)到模擬缺氧狀態(tài),通過(guò)實(shí)時(shí)聚合酶鏈?zhǔn)椒磻?yīng)(PCR)檢測(cè)不同時(shí)間、不同氯化鈷濃度下HIF-1α和XBP1的表達(dá)情況;采用流式細(xì)胞儀檢測(cè)骨肉瘤細(xì)胞凋亡率;采用siRNA干擾技術(shù),下調(diào)XBP1。實(shí)驗(yàn)將骨肉瘤細(xì)胞分為干擾組(經(jīng)XBP1 siRNA轉(zhuǎn)染骨肉瘤細(xì)胞)和空白對(duì)照組(未經(jīng)XBP1 siRNA轉(zhuǎn)染骨肉瘤細(xì)胞)。結(jié)果XBP1表達(dá)具有氯化鈷濃度和時(shí)間依賴(lài)性:一定范圍內(nèi),隨著氯化鈷濃度增高和時(shí)間延長(zhǎng),XBP1表達(dá)升高;敲除XBP1后,干擾組骨肉瘤細(xì)胞凋亡率明顯高于對(duì)照組(P>0.05);PCR檢測(cè) HIF-1α及下游靶基因mRNA表達(dá)無(wú)明顯變化(P<0.05)。結(jié)論XBP1在氯化鈷誘導(dǎo)缺氧的骨肉瘤細(xì)胞中表達(dá)明顯增高,其對(duì)骨肉瘤細(xì)胞在缺氧環(huán)境下抗凋亡有明顯作用,其抗凋亡作用與HIF-1α信號(hào)轉(zhuǎn)導(dǎo)通路無(wú)直接關(guān)聯(lián),具體機(jī)制有待進(jìn)一步研究。
【關(guān)鍵詞】骨肉瘤;X盒結(jié)合蛋白1;低氧誘導(dǎo)因子-1α信號(hào)轉(zhuǎn)導(dǎo)通路;氯化鈷;缺氧
惡性腫瘤的形成原因?yàn)槟[瘤細(xì)胞無(wú)限增殖,細(xì)胞增殖過(guò)快必將導(dǎo)致局部組織營(yíng)養(yǎng)不足。腫瘤細(xì)胞產(chǎn)生應(yīng)激反應(yīng),激活各種適應(yīng)性通路,其中由內(nèi)質(zhì)網(wǎng)跨膜感受器肌醇需要酶(IRE)1及其下游底物X盒結(jié)合蛋白(XBP)1介導(dǎo)的未折疊蛋白系統(tǒng)或內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)為非常重要的適應(yīng)性通路[1]。XBP1參與多種生理、病理過(guò)程,如脂肪形成和脂質(zhì)代謝,在調(diào)控未折疊蛋白方面發(fā)揮重要作用[2]。XBP1在某些腫瘤形成過(guò)程中也起著重要作用[3-4]。缺氧為導(dǎo)致實(shí)體瘤內(nèi)質(zhì)網(wǎng)應(yīng)激的常見(jiàn)因素之一。多項(xiàng)研究[5]表明,腫瘤缺氧預(yù)示著更高的局部復(fù)發(fā)率和遠(yuǎn)處轉(zhuǎn)移率,以及更低的遠(yuǎn)期生存率??鼓[瘤藥物的療效與缺氧密切相關(guān):一方面,藥物在缺氧缺血組織中很難達(dá)到有效濃度,對(duì)腫瘤細(xì)胞的殺傷力下降;另一方面,缺氧環(huán)境能夠?yàn)V出惡性程度更高和轉(zhuǎn)移潛能更大的腫瘤細(xì)胞,進(jìn)而使腫瘤細(xì)胞產(chǎn)生耐藥性。研究[4]表明,XBP1可通過(guò)低氧誘導(dǎo)因子(HIF)-1α信號(hào)轉(zhuǎn)導(dǎo)通路促進(jìn)腫瘤形成,在三陰性乳腺癌中,XBP1與HIF-1α不直接發(fā)生作用,兩者在細(xì)胞內(nèi)共同表達(dá),共同作用于HIF-1α下游的靶分子,進(jìn)而發(fā)揮相應(yīng)的促癌作用。近年來(lái),關(guān)于HIF-1α在促腫瘤增殖、腫瘤轉(zhuǎn)移、血管形成、耐藥等方面的研究較多。作為內(nèi)質(zhì)網(wǎng)上的應(yīng)激分子,XBP1在缺氧環(huán)境下對(duì)腫瘤的發(fā)生發(fā)展有重要作用,但XBP1在骨肉瘤中的作用及參與的調(diào)節(jié)機(jī)制尚未闡明。本文旨在通過(guò)氯化鈷化學(xué)誘導(dǎo)骨肉瘤MNNG、MG-63細(xì)胞缺氧研究XBP1在骨肉瘤細(xì)胞缺氧狀態(tài)下的抗凋亡作用,進(jìn)而探討相應(yīng)作用機(jī)制。
1材料與方法
1.1材料
細(xì)胞株、試劑和主要儀器:骨肉瘤細(xì)胞株MNNG、MG-63細(xì)胞(上海中科院細(xì)胞庫(kù));Dulbecco改良的Eagle培養(yǎng)液(DMEM)、新生胎牛血清(美國(guó)Hyclone公司);氯化鈷六水合物(美國(guó)Sigma公司);實(shí)時(shí)定量聚合酶鏈?zhǔn)椒磻?yīng)(PCR)試劑盒(日本TaKaRa公司);FACSort 流式細(xì)胞儀(美國(guó)BD公司)。
siRNA 試劑:純化siRNA(上海拓然生物科技有限公司)。XBP1轉(zhuǎn)染組siRNA序列:正義鏈5′-CACCCUGAAUUCAUUGUCUdTdT-3′,反義鏈5′-AGACAAUGAAUUCAGGGUGdTdT-3′。對(duì)照組siRNA序列:正義鏈5′-UAGCGACUAAA-CACAUCAAUU-3′,反義鏈5′-UUGAUGUGU-UAGUCGCUAUU-3′。
1.2實(shí)驗(yàn)分組
對(duì)照組:未經(jīng)XBP1 siRNA轉(zhuǎn)染的MNNG細(xì)胞和MG-63細(xì)胞。
實(shí)驗(yàn)組:即干擾組,經(jīng)XBP1 siRNA轉(zhuǎn)染的MNNG細(xì)胞和MG-63細(xì)胞。
1.3方法
1.3.1細(xì)胞培養(yǎng)
在5%CO2、37℃的培養(yǎng)箱中用含10%胎牛血清和雙抗DMEM培養(yǎng)液(青霉素100 U/mL、鏈霉素100 U/mL)進(jìn)行細(xì)胞培養(yǎng)。采用0.25%的胰酶消化、傳代。
1.3.2氯化鈷誘導(dǎo)細(xì)胞缺氧
培養(yǎng)液中加入不同濃度氯化鈷(50、150、200、400 uM),培養(yǎng)細(xì)胞24 h,檢測(cè)目的分子X(jué)BP1及HIF-1α表達(dá)量變化。在最佳濃度(MNNG細(xì)胞為200 uM, MG-63細(xì)胞為50 uM)下取不同時(shí)間段(6、12、18、24、48 h)檢測(cè)目的分子表達(dá)。
1.3.3定量和純度檢測(cè)
實(shí)時(shí)定量PCR Trizol法提取總RNA,用分光光度計(jì)進(jìn)行定量和純度檢測(cè)。①逆轉(zhuǎn)錄:將逆轉(zhuǎn)錄相關(guān)反應(yīng)液充分混勻,放置于PCR儀上,反應(yīng)條件為37℃、15 min,85℃、5 s,將得到的cDNA儲(chǔ)存于-20℃條件下備用。②逆轉(zhuǎn)錄PCR:將逆轉(zhuǎn)錄得到的cDNA原液以1∶10的比例稀釋?zhuān)捎肧YBR Premix Ex Taq Kit(寶生物染料法熒光定量試劑盒),各基因引序列見(jiàn)表1。反應(yīng)條件為95℃預(yù)變性10 s,共1個(gè)循環(huán);95℃、5 s,60℃、31 s,共40個(gè)循環(huán)。③定量:以甘油醛-3-磷酸脫氫酶(GAPDH)作為內(nèi)參照,采用2-△△Ct法,計(jì)算每個(gè)基因的相對(duì)表達(dá)量。對(duì)溶解曲線(xiàn)進(jìn)行分析,確定擴(kuò)增產(chǎn)物為單一的目的片段。實(shí)驗(yàn)重復(fù)3次。
表1 各基因引物序列
1.3.4siRNA轉(zhuǎn)染
①鋪板:將骨肉瘤細(xì)胞按每孔2×105個(gè)鋪于六孔板,待細(xì)胞貼壁。②稀釋?zhuān)菏褂眠M(jìn)口無(wú)菌槍頭及離心管,吸出完全培養(yǎng)液,每孔加入1.5 mL純DMEM培養(yǎng)液。取5 μL siRNA用250 μL純DMEM孵育。另取5 μL lipo 2000轉(zhuǎn)染試劑加入250 μL純DMEM培養(yǎng)液。③轉(zhuǎn)染:將上面2種孵育培養(yǎng)液均勻混合,靜置20 min,滴至六孔板,輕輕搖勻。④換液:轉(zhuǎn)染后6 h更換新鮮完全培養(yǎng)液,培養(yǎng)48 h,缺氧處理(MNNG細(xì)胞為200 uM, MG-63細(xì)胞為50 uM)24 h后進(jìn)行下一步實(shí)驗(yàn)。
1.3.5檢測(cè)細(xì)胞凋亡率
采用Annexin V/PI雙染法檢測(cè)細(xì)胞凋亡率,具體步驟如下。①鋪板:骨肉瘤細(xì)胞按每孔4.0×105個(gè)鋪于六孔板,待細(xì)胞貼壁。②消化:胰酶消化貼壁的MNNG及MG-63細(xì)胞,用1 mL磷酸鹽緩沖液(PBS)吹打MNNG及MG-63細(xì)胞并轉(zhuǎn)移至1.5 mL離心管,以2000 rpm離心5 min,棄PBS。③染色:每管加100 μL結(jié)合液吹打細(xì)胞,各加 5 μL Annexin V 及 5 μL PI染液,室溫孵育15 min,避光操作。④流式檢測(cè):各管加 400 μL結(jié)合液,吹打混勻,轉(zhuǎn)移至流式管檢測(cè)凋亡率。
1.4統(tǒng)計(jì)學(xué)分析
2結(jié)果
2.1氯化鈷誘導(dǎo)缺氧后HIF-1α mRNA變化
HIF-1α mRNA在常氧下表達(dá)較低,接受氯化鈷誘導(dǎo)缺氧后其相對(duì)表達(dá)量發(fā)生變化(圖1)。
圖1氯化鈷誘導(dǎo)缺氧后HIF-1α mRNA變化a. MNNG細(xì)胞在氯化鈷濃度為200 uM情況下,隨時(shí)間推移,其HIF-1α表達(dá)量變化b. MG-63細(xì)胞在氯化鈷濃度為50 uM情況下,隨時(shí)間推移,其HIF-1α表達(dá)量變化c. MNNG細(xì)胞經(jīng)不同濃度氯化鈷處理24 h,隨氯化鈷濃度增加,其HIF-1α表達(dá)量變化d. MG-63細(xì)胞經(jīng)不同濃度氯化鈷處理24 h,隨氯化鈷濃度增加,其HIF-1α表達(dá)量變化
2.2氯化鈷誘導(dǎo)缺氧后XBP1 mRNA變化
相比于HIF-1α,缺氧導(dǎo)致的XBP1變化相對(duì)滯后,對(duì)缺氧引起變化的閾值更高,且MG-63細(xì)胞對(duì)氯化鈷誘導(dǎo)的缺氧更敏感(下頁(yè)圖2)。
2.3對(duì)比結(jié)果
流式細(xì)胞儀檢測(cè)缺氧條件下抑制XBP1表達(dá)對(duì)細(xì)胞凋亡的影響結(jié)果顯示:在氯化鈷導(dǎo)致缺氧處理24 h后,干擾組凋亡率明顯低于對(duì)照組(P<0.05,下頁(yè)圖3)。圖3a、3b、3d、3e為細(xì)胞流式凋亡圖,采用PI和Annexin V雙染色法,G1象代表壞死細(xì)胞,G2象代表中晚期凋亡細(xì)胞,G3象代表正?;罴?xì)胞,G4代表早期凋亡細(xì)胞。圖3c為MNNG細(xì)胞各象比例的柱狀圖,其中干擾組的中晚期凋亡率(G2)明顯高于對(duì)照組;圖3f為MG-63細(xì)胞各象比例的柱狀圖,其中干擾組的中晚期凋亡率(G2)明顯高于對(duì)照組。
圖2氯化鈷誘導(dǎo)缺氧后XBP1 mRNA變化a. MNNG細(xì)胞在氯化鈷濃度為200 uM情況下,隨時(shí)間推移,其XBP1表達(dá)量變化b.MG-63細(xì)胞在氯化鈷濃度為 50 uM情況下,隨時(shí)間推移,其XBP1表達(dá)量變化c. MNNG細(xì)胞經(jīng)不同濃度氯化鈷處理24 h,隨氯化鈷濃度增加,其XBP1表達(dá)量變化d. MG-63細(xì)胞經(jīng)不同濃度氯化鈷處理24 h,隨氯化鈷濃度增加,其XBP1表達(dá)量變化
圖3MNNG細(xì)胞和MG-63細(xì)胞凋亡情況a. 對(duì)照組MNNG細(xì)胞凋亡情況b. 干擾組MNNG細(xì)胞凋亡情況c. MNNG細(xì)胞各象比例的柱狀圖d. 對(duì)照組MG-63細(xì)胞凋亡情況e. 干擾組MG-63細(xì)胞凋亡情況f. MG-63細(xì)胞各象比例的柱狀圖
*表示P<0.05
2.4氯化鈷抑制XBP1 mRNA表達(dá)對(duì)HIF-1α信號(hào)轉(zhuǎn)導(dǎo)通路上下游的影響
逆轉(zhuǎn)錄PCR結(jié)果顯示,氯化鈷處理24 h后,干擾組和對(duì)照組HIF-1α信號(hào)轉(zhuǎn)導(dǎo)通路上的靶基因表達(dá)量無(wú)明顯差異(P>0.05,圖4、5)。下調(diào)MNNG細(xì)胞中XBP1表達(dá)(圖4a),對(duì)照組和干擾組HIF-1α相對(duì)表達(dá)量無(wú)明顯變化,HIF-1α下游分子PDK1、VEGFA、CAIX、PGK1相對(duì)表達(dá)量變化不明顯(圖4b~4f)。下調(diào)MG-63細(xì)胞中XBP1表達(dá)(圖5a),對(duì)照組和干擾組HIF-1α相對(duì)表達(dá)量無(wú)明顯變化,HIF-1α下游分子PDK1、VEGFA、CAIX、PGK1相對(duì)表達(dá)量的變化不明顯(圖5b~5f)。
圖4 氯化鈷抑制XBP1 mRNA表達(dá)對(duì)MNNG細(xì)胞中HIF-1α信號(hào)轉(zhuǎn)導(dǎo)通路上下游的影響
*表示P<0.05
圖5 氯化鈷抑制XBP1 mRNA表達(dá)對(duì)MG-63細(xì)胞中HIF-1α信號(hào)轉(zhuǎn)導(dǎo)通路上下游的影響
*表示P<0.05
3討論
骨肉瘤是最常見(jiàn)的好發(fā)于青少年的骨惡性腫瘤之一,其發(fā)生與腫瘤微環(huán)境改變、癌基因突變等因素有關(guān),但具體機(jī)制尚未明確[6]。XBP1作為內(nèi)質(zhì)網(wǎng)上的未折疊蛋白,在許多細(xì)胞正常代謝及病理過(guò)程中都發(fā)揮重要作用。正常情況下,XBP1的持續(xù)表達(dá)對(duì)漿細(xì)胞分化、脂質(zhì)代謝等活動(dòng)起重要作用[2,7];病理狀態(tài)下,XBP1對(duì)動(dòng)脈粥樣硬化、缺血性疾病及癌癥的發(fā)生發(fā)展起重要作用[1]。研究[3,8]表明,在骨髓間充質(zhì)干細(xì)胞(BMSC)中XBP1高表達(dá)對(duì)破骨細(xì)胞生成有重要作用;而多發(fā)性骨髓瘤的重要成分為BMSC,因此XBP1過(guò)表達(dá)對(duì)多發(fā)性骨髓瘤具有促進(jìn)作用,其有望成為多發(fā)性骨髓瘤的有效治療靶點(diǎn)。其他腫瘤如肝癌和結(jié)腸癌中,也存在XBP1的激活及其促癌作用的報(bào)道,但具體機(jī)制尚不清楚[9]。
研究[10]表明,XBP1可通過(guò)磷酸酰肌醇3-激酶/蛋白激酶B/糖原合酶激酶-3β/E2F轉(zhuǎn)錄因子2(P13k/Akt-1/GSK3β/E2F2)信號(hào)轉(zhuǎn)導(dǎo)通路促進(jìn)內(nèi)皮細(xì)胞增殖和新生血管形成。另一項(xiàng)研究[11]表明,XBP1可與組蛋白去乙酰(HDAC)3一起通過(guò)核因子紅細(xì)胞衍生物(Nrf)-2介導(dǎo)的血紅素加氧酶(HO)-1和哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)依賴(lài)的Akt-1蛋白,調(diào)控內(nèi)皮細(xì)胞抵抗氧化應(yīng)激。在骨代謝方面,XBP1能夠調(diào)節(jié)侏儒相關(guān)轉(zhuǎn)錄因子Runx2,對(duì)成骨細(xì)胞和軟骨細(xì)胞分化起作用[12]。雖然以上研究均針對(duì)正常細(xì)胞,但可為XBP1在腫瘤中的研究提供更多思路。
HIF-1α對(duì)多種腫瘤具有促進(jìn)作用,尤其在骨肉瘤中的作用已有報(bào)道[13-14]。HIF-1α對(duì)于腫瘤應(yīng)對(duì)缺氧環(huán)境起著非常重要的作用,同樣作為應(yīng)激相關(guān)分子,XBP1在細(xì)胞缺氧、缺糖等條件下應(yīng)激反應(yīng)表達(dá)也會(huì)增加。早期研究[15]表明,XBP1對(duì)人纖維肉瘤細(xì)胞的生長(zhǎng)必不可少,且缺氧環(huán)境下XBP1可減少細(xì)胞凋亡,對(duì)腫瘤細(xì)胞具有保護(hù)作用。腫瘤細(xì)胞單憑HIF-1α升高不足以抵抗缺氧等應(yīng)激反應(yīng),只有與XBP1協(xié)同作用,抵抗應(yīng)激作用才會(huì)增強(qiáng)。缺氧環(huán)境下XBP1和HIF-1α的表達(dá)均升高,以往研究認(rèn)為兩者是獨(dú)立的,可能通過(guò)不同機(jī)制通路發(fā)揮作用,但近期研究表明,XBP1與HIF-1α在三陰性乳腺癌中存在一定交集。
盡管XBP1在腫瘤中有一定研究,但在骨肉瘤中的報(bào)道卻較少[16]。本研究采用氯化鈷構(gòu)建骨肉瘤缺氧模型,在通過(guò)不同氯化鈷濃度和不同時(shí)間處理后,發(fā)現(xiàn)XBP1 mRNA的表達(dá)明顯升高,與HIF-1α升高趨勢(shì)相仿,雖然XBP1 mRNA對(duì)缺氧的敏感性遜于HIF-1α,但其升高后維持時(shí)間長(zhǎng)于HIF-1α,推測(cè)XBP1在骨肉瘤細(xì)胞中應(yīng)對(duì)極度缺氧環(huán)境時(shí)更具優(yōu)勢(shì)。凋亡實(shí)驗(yàn)表明,XBP1干擾組的凋亡率明顯高于對(duì)照組,推測(cè)XBP1對(duì)骨肉瘤細(xì)胞在缺氧環(huán)境中具有保護(hù)作用。
為了進(jìn)一步闡述XBP1在骨肉瘤細(xì)胞中抵抗缺氧的相關(guān)機(jī)制,探討其與HIF-1α信號(hào)轉(zhuǎn)導(dǎo)通路的關(guān)系,在缺氧模擬的骨肉瘤細(xì)胞中下調(diào)XBP1 ,結(jié)果并未發(fā)現(xiàn)HIF-1α及下游靶基因有明顯變化,推測(cè)骨肉瘤細(xì)胞在應(yīng)對(duì)缺氧等應(yīng)激時(shí),XBP1和HIF-1α升高可能是一個(gè)獨(dú)立過(guò)程,與之前在其他腫瘤的報(bào)道一致,單憑HIF-1α激活不足以抵抗缺氧等應(yīng)激反應(yīng),XBP1在骨肉瘤應(yīng)對(duì)缺氧時(shí)發(fā)揮的作用機(jī)制可能與HIF-1α信號(hào)轉(zhuǎn)導(dǎo)通路無(wú)直接關(guān)聯(lián)。其他信號(hào)通路如Nrf-2/Ho-1、P13k/Akt等信號(hào)轉(zhuǎn)導(dǎo)通路在內(nèi)皮細(xì)胞中有所報(bào)道,但是否在骨肉瘤細(xì)胞中起作用,還有待驗(yàn)證。
綜上所述,缺氧環(huán)境下XBP1在骨肉瘤細(xì)胞中的表達(dá)明顯升高,且對(duì)骨肉瘤細(xì)胞抵抗缺氧具保護(hù)作用,推測(cè)XBP1可促進(jìn)骨肉瘤發(fā)展,有望為臨床骨肉瘤靶向治療提供一種新思路。
參考文獻(xiàn)
[ 1 ]Jiang D, Niwa M, Koong AC. Targeting the IRE1α-XBP1 branch of the unfolded protein response in human diseases[J]. Semin Cancer Biol, 2015, 33:48-56.
[ 2 ]Cho YM, Kwak SN, Joo NS, et al. X-box binding protein 1 is a novel key regulator of peroxisome proliferator-activated receptor γ2[J]. FEBS J, 2014, 281(22):5132-5146.
[ 3 ]Xu G, Liu K, Anderson J, et al. Expression of XBP1s in bone marrow stromal cells is critical for myeloma cell growth and osteoclast formation[J]. Blood, 2012, 119(18):4205-4514.
[ 4 ]Chen X, Iliopoulos D, Zhang Q, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway[J]. Nature, 2014, 508(7494):103-107.
[ 5 ]Zeng W, Liu P, Pan W, et al. Hypoxia and hypoxia inducible factors in tumor metabolism[J]. Cancer Lett, 2015, 356(2 Pt A):263-267.
[ 6 ]韓修國(guó),湯亭亭. 腫瘤微環(huán)境對(duì)骨肉瘤發(fā)生發(fā)展的影響[J]. 國(guó)際骨科學(xué)雜志, 2015, 36(3):168-171.
[ 7 ]Bettigole SE, Lis R, Adoro S, et al. The transcription factor XBP1 is selectively required for eosinophil differentiation[J]. Nat Immunol, 2015, 16(8):829-837.
[ 8 ]Mimura N, Fulciniti M, Gorgun G, et al. Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma[J]. Blood, 2012, 119(24):5772-5781.
[ 9 ]Kim H, Bhattacharya A, Qi L. Endoplasmic reticulum quality control in cancer: friend or foe[J]. Semin Cancer Biol, 2015, 33:25-33.
[10]Zeng L, Xiao Q, Chen M, et al. Vascular endothelial cell growth-activated XBP1 splicing in endothelial cells is crucial for angiogenesis[J]. Circulation, 2013, 127(16):1712-1722.
[11]Martin D, Li Y, Yang J, et al. Unspliced X-box-binding protein 1 (XBP1) protects endothelial cells from oxidative stress through interaction with histone deacetylase 3[J]. J Biol Chem, 2014, 289(44):30625-30634.
[12]Liberman M, Johnson RC, Handy DE, et al. Bone morphogenetic protein-2 activates NADPH oxidase to increase endoplasmic reticulum stress and human coronary artery smooth muscle cell calcification[J]. Biochem Biophys Res Commun, 2011, 413(3):436-441.
[13]Hu T, He N, Yang Y, et al. DEC2 expression is positively correlated with HIF-1 activation and the invasiveness of human osteosarcomas[J]. J Exp Clin Cancer Res, 2015, 34:22.
[14]Yang QC, Zeng BF, Dong Y, et al. Overexpression of hypoxia-inducible factor-1alpha in human osteosarcoma: correlation with clinicopathological parameters and survival outcome[J]. Jpn J Clin Oncol, 2007, 37(2):127-134.
[15]Romero-Ramirez L, Cao H, Nelson D, et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth[J]. Cancer Res, 2004, 64(17):5943-5947.
[16]Fan Q, Hu Y, Pang H, et al. Melittin protein inhibits the proliferation of MG63 cells by activating inositol-requiring protein-1α and X-box binding protein 1-mediated apoptosis[J]. Mol Med Rep, 2014, 9(4):1365-1370.
(收稿:2015-11-18;修回:2015-12-14)
(本文編輯:李昱霏)
Experimental study of the anti-apoptosis effect of XBP1s on osteosarcoma cells under CoCl2-induced hypoxic conditionYANGJie-lai1,CHENGDong-dong1,ZHUBin1,YANMing-xia2,YAOMing2,YANGQing-cheng1.
DepartmentofOrthopaedics,theSixthPeople’sHospitalAffiliatedtoShanghaiJiaotongUniversity1,Shanghai200233,China;ShanghaiCancerInstitute2,Shanghai200032,China
【Abstract】ObjectiveTo investigate the expression level, anti-apoptotic effect and association with hypoxia inducible factor-1α (HIF-1α) signaling of X-box binding protein 1 (XBP1s) in osteosarcoma cells under CoCl2-induced hypoxic condition. Methods CoCl2 was used to simulate hypoxic environment for MNNG and MG-63 cells. The expression of XBP1s and HIF-1α mRNA of osteosarcoma cells were detected by real-time polymerase chain reaction (PCR) for treatment of different CoCl2 concentration and time span. Flow cytometry was utilized to measure the apoptotic rate of osteosarcoma cells. The siRNA interfering technique was used to reduce the expression of XBP1s. The osteosarcoma cells were divided into the XBP1s-siRNA transfected group and the un-transfected group. Results XBP1s expression was CoCl2-concentration and time-dependent, which increased with the raised CoCl2 concentration and prolonged time in a certain range. After knockdown of XBP1s, the cell apoptotic rate of osteosarcoma cells in the hypoxic group was significantly higher than that in the control group (P>0.05). However, the PCR results showed that there was no significant changes of HIF-1α and its downstream targeted genes after knockdown of XBP1s (P<0.05). Conclusion XBP1s could be increased remarkably in osteosarcoma cells after CoCl2-induced hypoxic treatment. It has anti-apoptotic effects on osteosarcoma cells under hypoxic condition. However, there is little relationship between XBP1s and HIF-1α signaling pathway. The specific mechanism for XBP1s acting as an anti-apoptotic gene in osteosarcoma is needed further deeper investigation.
【Key words】Osteosarcoma; X-box binding protein 1;Hypoxia inducible factor-1α signaling pathway; CoCl2; Hypoxic
Corresponding author:YANG Qing-chenE-mail: tjyqc@163.com
DOI:10.3969/j.issn.1673-7083.2016.02.013
通信作者:楊慶誠(chéng)E-mail: tjyqc@163.com