譚媛
[摘要]白血病是兒童最常見的惡性腫瘤,也是通過化療可以治療的疾病,但感染和化療藥物的毒副作用是導(dǎo)致兒童白血病患者死亡的原因,因此,臨床中常采用中藥聯(lián)合化療藥物的方式治療兒童白血病,盡管中藥在治療白血病方面具有廣泛的臨床經(jīng)驗,但作用機制并不清楚。目前,靶向藥物由于具有選擇性高和毒副作用小的優(yōu)勢是研究的熱點,在白血病領(lǐng)域的靶向藥物主要是針對BCR/ABL,TARA和FLT3蛋白,它們的異常引起下游PI3K/AKT,JNK/STAT,Ras/ERK等信號通路的變化。近年來發(fā)現(xiàn)治療白血病的中藥的作用靶點或作用通路逐步清晰,該文總結(jié)具有調(diào)節(jié)信號通路作用的中藥復(fù)方或單體成分,為中藥聯(lián)合化療藥物或靶向藥物治療兒童白血病提供依據(jù)。
[關(guān)鍵詞]白血??;兒童白血??;信號通路;中藥
癌癥已成為兒童死亡的首要疾病[1]。白血?。╨eukaemia)是兒童最常見的惡性腫瘤,占兒童惡性腫瘤病例的30%,白血病可分為急性白血?。╝cute leukaemia, AL)和慢性白血病(chronic leukaemia, CL),兒童白血病患者多為AL[2]。隨著診斷和治療手段的不斷發(fā)展,兒童白血病患者的治療也得到很大的提升,患者的5年生存率達70%~90% [34]。但白血病患者的復(fù)發(fā)性、難治性或生存率低的問題仍不可小視,近年來,靶向治療由于其選擇性高和毒副作用小的優(yōu)勢受到人們的青睞,靶向治療主要是通過選擇性地抑制靶蛋白進而引起一系列級聯(lián)反應(yīng),抑制腫瘤細胞的生長、轉(zhuǎn)移、誘導(dǎo)凋亡等。在白血病治療中有2類小分子靶向藥物成功上市,一類是作用于維甲酸受體(retinoic acid receptors, RARs)的全反式維甲酸(alltrans retinoic acid, ATRA),研究發(fā)現(xiàn)ATRA的關(guān)鍵作用靶蛋白為Pin1蛋白[5];另一類為作用于BCR/ABL的酪氨酸激酶抑制劑伊馬替尼(imatinib)和達沙替尼(dasatinib)[67]。這2類藥物在兒童白血病治療方面起著重要作用,臨床試驗顯示能夠顯著提高兒童白血病患者的無疾病生存期[89]。最近,F(xiàn)MS樣酪氨酸激酶3(FMSlike tyrosine kinase 3,F(xiàn)LT3)在白血病治療中作為新的治療靶點備受關(guān)注[10],F(xiàn)LT3抑制劑如Lestaurtinib治療成人白血病有顯著療效[11],隨后,對兒童白血病患者也進行了臨床階段研究[10]。無論是BCR/ABL還是FLT3,它們均能調(diào)節(jié)多條信號通路如Ras/Raf, PI3K, JAK等[1214],見圖1,此外,它們也影響Hedgehog (Hh)通路和Wnt通路[12]。盡管這些靶向藥物具有靶點明確和療效確切的優(yōu)勢,但是癌細胞對其耐藥性仍是不可避免的問題。
中醫(yī)藥作為我國的國粹,在白血病治療中發(fā)揮重要作用,如中藥砒霜的活性成分三氧化二砷(arsenic trioxide,ATO)聯(lián)合化療藥物使白血病患者的5年無病生存率從25%提高到95%。由于中藥的復(fù)雜性使得中藥的藥效物質(zhì)基礎(chǔ)和作用機制不清楚,但是隨著研究的深入,一些中藥的作用機制也隨之明確。中醫(yī)古籍中并無“白血病”病名,常記錄本病臨床表現(xiàn)的病證,AL表現(xiàn)出28個證型,CL有21個證型,根據(jù)這些證型,中醫(yī)采用不同的治療方劑,用的較多的為清熱、補益和理血方劑等[15]。由于兒童白血病對化療藥物有很強烈的敏感性,在臨床中化療藥物依然占據(jù)主體地位,但是化療的毒副作用又是不可避免的,因此,臨床中常采用化療藥物聯(lián)合中藥的方式,由于兒童白血病的特殊性,本文從信號通路角度出發(fā)總結(jié)了治療白血病的常用中藥及作用機制,為兒童白血病治療提供潛在的治療藥物,并為中藥聯(lián)合其他藥物治療白血病提供依據(jù)。
1中藥治療白血病信號通路分析
目前治療白血病的中藥復(fù)方及中藥活性成分在信號通路方面的研究,見表1。
11劇毒類中藥ATO是中藥砒霜的主要活性成分,砒霜有劇毒,常治療一些惡性疾病。ATO在治療白血病中取得了突出成績,臨床中聯(lián)合其他化療藥物能顯著提高兒童白血病的存活率[4345]。研究發(fā)現(xiàn)ATO能夠影響癌細胞的凋亡、增殖、血管生成等,能降解PML/RARα蛋白、下調(diào)Bcl2的表達、活化Caspase 3/8、抑制NFκB活性等,在作用通路方面對PI3K/Akt通路和JNK通路有影響[16, 4649],這也說明ATO聯(lián)合伊馬替尼對白血病患者有增效作用,同時對伊馬替尼耐藥的白血病患者依然有效[5051]。另一味有劇毒的中藥雷公藤也用于治療疾病,臨床中常作為免疫抑制劑治療類風(fēng)濕性關(guān)節(jié)炎、系統(tǒng)性紅斑狼瘡等疾病。雷公藤紅素是其活性成分之一,雷公藤紅素在白血病治療方面也有顯著療效,它是HSP90的抑制劑,對白血病癌細胞的AKT通路和Notch/NFκB通路均有抑制作用[3840],對BCR/ABL突變的白血病患者有效,亦可逆轉(zhuǎn)伊馬替尼耐藥的作用[52]。
12清熱類藥靛玉紅是中藥青黛的活性成分,以青黛為主組成的中藥復(fù)方青黛片臨床試驗中對兒童白血病患者療效確切[53],同時靛玉紅聯(lián)合化療藥物也能緩解白血病患者的臨床表征[54],機制方面靛玉紅通過調(diào)節(jié)SFK/STAT5通路抑制BCL/ABL突變型和野生型白血病細胞的增殖[17],同時它也是FLT3的抑制劑[18]??鄥A是中藥苦參的主要活性成分,苦參屬于清熱解毒類藥,用于白血病的清熱解毒和涼血散淤。以苦參為主的上市藥物復(fù)方苦參注射液臨床試驗顯示能夠減輕白血病患者化療時的毒副作用[55]。對于苦參堿的研究較多,它能逆轉(zhuǎn)ATRA的耐藥性[5657],調(diào)節(jié)白血病癌細胞的JAK/STAT3通路和AKT通路[20,2334]。這些作用機制表明苦參堿與伊馬替尼等藥物聯(lián)合具有增效作用。黃芩苷為中藥黃芩的主要活性成分,在臨床試驗中,將含有黃芩苷、黃芩素、漢黃芩苷和漢黃芩素的黃芩提取物用于治療兒童白血病患者,發(fā)現(xiàn)其具有免疫扶正作用[58]。黃芩苷對白血病癌細胞的PI3K/AKT通路和Notch通路有抑制作用,也能抑制耐藥的細胞株生長[3032],在聯(lián)合方面研究的較少,但從作用通路中可以看出其與伊馬替尼、ATO等聯(lián)合具有協(xié)同增效作用。
13活血類藥大黃素是中藥大黃的主要活性成分之一,大黃具有多種藥理活性,對白血病患者化療后的發(fā)熱、出血、嘔吐等具有很好的療效[59],它是大黃蟅蟲丸的重要組成。研究發(fā)現(xiàn)大黃素具有抗腫瘤、保肝、抗炎等作用,基礎(chǔ)研究表明對白血病亦有藥效[60]。大黃素的作用機制較多,對BCR/ABL突變的白血病癌細胞有抑制作用,能調(diào)節(jié)BCR/ABL引起的下游通路如PI3K/AKT通路和MEK通路等[24];與ATRA合用時具有協(xié)同增效的作用[61];也能逆轉(zhuǎn)癌細胞對伊馬替尼的耐藥性[62]。姜黃素是中藥姜黃的活性成分,它的藥理活性較多,研究也很多。姜黃素具有多個作用靶點,能夠抑制AKT/mTOR通路和Raf/ERK/MAPK通路,從而增強伊馬替尼的藥效作用,也能抑制對伊馬替尼耐藥的癌細胞生長;此外,姜黃素也是FLT3的抑制劑,對癌細胞的轉(zhuǎn)移也有抑制作用,姜黃素的多靶向型使得其使用時多與其他化療藥物聯(lián)合使用,從而達到增效減毒的作用[2729]。川芎嗪為中藥川芎的主要活性成分,亦為川芎嗪注射液的主要成分,臨床試驗中川芎嗪注射液與化藥聯(lián)合后能夠改善和緩解白血病患者的臨床癥狀[63]。川芎嗪可下調(diào)GSK3β的表達,進而下調(diào)NFκB的表達,進而抑制癌細胞的生長[33]。丹參酮ⅡA為中藥丹參的活性成分之一,丹參為上市藥物復(fù)方丹參注射液的主要成分,復(fù)方丹參注射液配合化療治療成人白血病和兒童白血病能提高療效,降低毒副作用和改善患者生存質(zhì)量[6465]。丹參酮ⅡA對BCR/ABL引起的下游信號通路如JAK/STAT3/5通路、MPK/mTOR通路、Raf/ERK通路等具有調(diào)節(jié)作用,能抑制耐伊馬替尼的癌細胞生長[3435],與伊馬替尼、TARA和ATO聯(lián)合具有協(xié)同增效作用[6667]。
14補氣補血類黃芪多糖為中藥黃芪的活性成分之一,黃芪為補中益氣類中藥,是治療白血病補氣藥中最常用的一味藥[15],是黃芪注射液的重要組成,臨床試驗中,黃芪注射液聯(lián)合化療可增強抗腫瘤作用,提高兒童白血病患者的臨床療效,改善其預(yù)后[68]。黃芪多糖主要起到免疫調(diào)節(jié)作用,通過上調(diào)MICA表達增強其對NK細胞殺傷敏感性[36]。另一個起免疫調(diào)節(jié)作用的多糖為當歸多糖,它是中藥當歸的活性成分,當歸是最常用的補血類藥物。當歸多糖通過下調(diào)JAK/STAT3信號通路對白血病癌細胞起到抑制作用[37]。
15其他類表沒食子兒茶素沒食子酸酯為綠茶的活性成分之一,為茶多酚中最有效的活性成分,能夠抑制FLT3的表達,可以調(diào)節(jié)JNK通路和AKT通路的活性[4142],與姜黃素合用具有協(xié)同增效作用[69],與化療藥物如阿霉素聯(lián)合具有增效減毒療效[70]。
2結(jié)論與展望
隨著分子生物技術(shù)的發(fā)展,大量的試驗研究證實許多癌癥患者存在突變基因,這使得越來越多的靶向藥物被批準上市。目前被批準治療白血病的靶向小分子藥物是治療BCR/ABL突變的患者,而針對其他基因突變的藥物正處于臨床或臨床前階段,在此基礎(chǔ)上,中醫(yī)藥也隨之發(fā)展。但由于白血病患者的中醫(yī)征候分型復(fù)雜導(dǎo)致中藥組方不斷的變化,進而使得活性成分難分析,加之我國科研基礎(chǔ)薄弱,所以,中藥在分子方面的基礎(chǔ)研究處于初級階段。兒童白血病是通過化療可以治療的惡性腫瘤疾病,但化療藥物的毒副作用和治療中的感染也是導(dǎo)致兒童白血病患者的死亡原因之一,而中藥恰好能較為有效彌補這些缺點,因此,臨床常采用中藥配合化療藥物的方式治療白血病,主要起到增效減毒、逆轉(zhuǎn)多藥耐藥性、增強機體免疫力和緩解白血病患者的臨床癥狀等作用。結(jié)合目前靶向藥物信號通路的研究,本文總結(jié)了信號通路較為明確的中藥,從而為其聯(lián)合化療藥物提供依據(jù),指導(dǎo)兒童白血病患者的治療。
借鑒化藥的研究模型對中藥藥效成分的作用及作用機制進行探討分析,分析中發(fā)現(xiàn)許多中藥針對PI3K/AKT,JNK/STAT,Ras/ERK等信號通路有調(diào)節(jié)作用,有些也能調(diào)節(jié)多條信號通路,而且多數(shù)能夠逆轉(zhuǎn)化藥的耐藥性作用,這為中藥與化療的聯(lián)合提供依據(jù),針對兒童白血病的治療,上述中藥按照相關(guān)醫(yī)囑均可采用,除了ATO和雷公藤外,其他中藥聯(lián)合化療藥物或靶向藥物療效最佳。這些明確作用機制的中藥均為單體成分,而且僅處于基礎(chǔ)研究階段,進入臨床研究的是其復(fù)方,這表明中藥復(fù)方與化療藥物聯(lián)合的增效減毒作用仍需進一步研究。
[參考文獻]
[1]Saletta F, Wadham C, Ziegler D S,et al. Molecular profiling of childhood cancer: biomarkers and novel therapies[J]. BBA Clin,2014(1): 59.
[2]Tosi S, Mostafa Kamel Y, Owoka T,et al. Paediatric acute myeloid leukaemia with the t(7;12)(q36;p13) rearrangement: a review of the biological and clinical management aspects[J]. Biomark Res,2015,(3): 21.
[3]Hunger S P, Lu X, Devidas M,et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children's oncology group[J]. J Clin Oncol,2012,30 (14):1663.
[4]Rubnitz J E. Childhood acute myeloid leukemia[J]. Curr Treat Options Oncol, 2008, 9 (1):95.
[5]Wei S, Kozono S, Kats L,et al. Active Pin1 is a key target of alltrans retinoic acid in acute promyelocytic leukemia and breast cancer[J]. Nat Med, 2015, 21 (5): 457.
[6]HernandezBoluda J C, Cervantes F. Imatinib mesylate (Gleevec, Glivec): a new therapy for chronic myeloid leukemia and other malignancies[J]. Drug Today (Barc),2002,38 (9):601.
[7]Larson R A, Hochhaus A, Hughes T P,et al. Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosomepositive chronic myeloid leukemia in chronic phase: ENESTnd 3year followup[J]. Leukemia, 2012, 26 (10): 2197.
[8]Tallman M S, Andersen J W, Schiffer C A,et al. Alltrans retinoic acid in acute promyelocytic leukemia: longterm outcome and prognostic factor analysis from the North American intergroup protocol[J]. Blood,2002,100 (13):4298.
[9]Tanizawa A. Optimal management for pediatric chronic myeloid leukemia[J]. Pediatr Int,2016,58 (3):171.
[10]Annesley C E, Brown P. The biology and targeting of FLT3 in pediatric leukemia[J]. Front Oncol,2014,4 :263.
[11]Smith B D, Levis M, Beran M,et al. Singleagent CEP701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia[J]. Blood,2004, 103 (10):3669.
[12]Cilloni D, Saglio G. Molecular pathways: BCRABL[J]. Clin Cancer Res,2012,18 (4):930.
[13]Zhang S, Broxmeyer HE. Flt3 ligand induces tyrosine phosphorylation of gab1 and gab2 and their association with shp2, grb2, and PI3 kinase[J]. Biochem Biophys Res Commun,2000,277 (1):195.
[14]Zhang S, Fukuda S, Lee Y,et al. Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3dependent signaling[J]. J Exp Med,2000,192 (5):719.
[15]司富春, 王振旭. 白血病中醫(yī)證型與方藥分析[J]. 中華中醫(yī)藥雜志,2013 (7):1971.
[16]Alimoghaddam K. A review of arsenic trioxide and acute promyelocytic leukemia[J]. Int J Hematol Oncol Stem Cell Res,2014,8 (3):44.
[17]Nam S, Scuto A, Yang F,et al. Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling[J]. Mol Oncol,2012,6 (3):276.
[18]Choi S J, Moon M J, Lee S D,et al. Indirubin derivatives as potent FLT3 inhibitors with antiproliferative activity of acute myeloid leukemic cells[J]. Bioorg Med Chem Lett,2010,20 (6):2033.
[19]Liu X S, Jiang J, Jiao X Y,et al. Matrineinduced apoptosis in leukemia U937 cells: involvement of caspases activation and MAPKindependent pathways[J]. Planta Med,2006,72 (6):501.
[20]Lu X, Zhu Z, Jiang L,et al. Matrine increases NKG2D ligand ULBP2 in K562 cells via inhibiting JAK/STAT3 pathway: a potential mechanism underlying the immunotherapy of matrine in leukemia[J]. Am J Transl Res,2015,7 (10):1838.
[21]Ma L, Zhu Z, Jiang L,et al. Matrine suppresses cell growth of human chronic myeloid leukemia cells via its inhibition of the interleukin6/Janus activated kinase/signal transducer and activator of transcription 3 signaling cohort[J]. Leuk Lymphoma,2015,56 (10):2923.
[22]Zhang L, Zhang H, Zhu Z,et al. Matrine regulates immune functions to inhibit the proliferation of leukemic cells[J]. Int J Clin Exp Med,2015,8 (4):5591.
[23]Zhang S, Zhang Y, Zhuang Y,et al. Matrine induces apoptosis in human acute myeloid leukemia cells via the mitochondrial pathway and Akt inactivation[J]. PLoS ONE,2012,7 (10):e46853.
[24]Li J, Chen Y, Chen B,et al. Inhibition of 32Dp210 cells harboring T315I mutation by a novel derivative of emodin correlates with downregulation of BCRABL and its downstream signaling pathways[J]. J Cancer Res Clin Oncol,2015,141 (2):283.
[25]鄭合勇, 林武強, 胡建達,等. 大黃素可能通過AktCaspase 3信號通路誘導(dǎo)K562/Adr細胞凋亡[J]. 中國實驗血液學(xué)雜志,2015 (6):1556.
[26]Zhu G H, Dai H P, Shen Q,et al. Curcumin induces apoptosis and suppresses invasion through MAPK and MMP signaling in human monocytic leukemia SHI1 cells[J]. Pharm Biol, 2015, doi:10. 3109/13880209. 2015. 1060508.
[27]Guo Y, Li Y, Shan Q,et al. Curcumin potentiates the antileukemia effects of imatinib by downregulation of the AKT/mTOR pathway and BCR/ABL gene expression in Ph+ acute lymphoblastic leukemia[J]. Int J Biochem Cell Biol,2015,65 :1.
[28]Guo Y, Shan Q, Gong Y,et al. Curcumin induces apoptosis via simultaneously targeting AKT/mTOR and RAF/MEK/ERK survival signaling pathways in human leukemia THP1 cells[J]. Pharmazie,2014,69 (3):229.
[29]Tima S, Ichikawa H, Ampasavate C,et al. Inhibitory effect of turmeric curcuminoids on FLT3 expression and cell cycle arrest in the FLT3overexpressing EoL1 leukemic cell line[J]. J Nat Prod,2014,77 (4):948.
[30]Zheng J, Hu J D, Chen Y Y,et al. Baicalin induces apoptosis in leukemia HL60/ADR cells via possible downregulation of the PI3K/Akt signaling pathway[J]. Asian Pac J Cancer Prev,2012,13 (4):1119.
[31]Wang A M, Ku H H, Liang Y C,et al. The autonomous notch signal pathway is activated by baicalin and baicalein but is suppressed by niclosamide in K562 cells[J]. J Cell Biochem,2009,106 (4):682.
[32]Huang Y, Hu J, Zheng J,et al. Downregulation of the PI3K/Akt signaling pathway and induction of apoptosis in CA46 Burkitt lymphoma cells by baicalin[J]. J Exp Clin Cancer Res,2012, 31 :48.
[33]Wang X J, Xu Y H, Yang G C,et al. Tetramethylpyrazine inhibits the proliferation of acute lymphocytic leukemia cell lines via decrease in GSK3beta[J]. Oncol Rep,2015,33 (5):2368.
[34]Jung J H, Kwon T R, Jeong S J,et al. Apoptosis induced by tanshinone IIA and cryptotanshinone is mediated by distinct JAK/STAT3/5 and SHP1/2 signaling in chronic myeloid leukemia K562 cells[J]. Evid Based Complement Alternat Med,2013,2013(1):805639.
[35]Yun S M, Jung J H, Jeong S J,et al. Tanshinone ⅡA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM5 leukemia cells[J]. Phytother Res,2014,28 (3):458.
[36]鄧黎黎. 黃芪多糖對白血病細胞MICA表達及NK細胞殺傷敏感性的影響[D]. 蘭州: 蘭州大學(xué), 2012.
[37]華自森, 王建偉, 宋姝丹,等. 當歸多糖對K562白血病細胞JAK2、STAT3表達和活化的影響[J]. 解剖學(xué)雜志,2009 (1):8.
[38]Wang X N, Wu Q, Yang X,et al. Effects of Celastrol on growth inhibition of U937 leukemia cells through the regulation of the Notch1/NFkappaB signaling pathway in vitro[J]. Chin J Cancer,2010,29 (4):385.
[39]Peng B, Xu L, Cao F,et al. HSP90 inhibitor, celastrol, arrests human monocytic leukemia cell U937 at G0/G1 in thiolcontaining agents reversible way[J]. Mol Cancer,2010,9 :79.
[40]王曉南, 吳青, 楊旭, 等. 雷公藤紅素對白血病細胞Akt信號通路的影響及在細胞凋亡中的作用[J]. 中國中西醫(yī)結(jié)合雜志,2011 (2):228.
[41]Ly B T, Chi H T, Yamagishi M,et al. Inhibition of FLT3 expression by green tea catechins in FLT3 mutatedAML cells[J]. PLoS ONE,2013,8 (6):e66378.
[42]Saeki K, Kobayashi N, Inazawa Y,et al. Oxidationtriggered cJun Nterminal kinase (JNK) and p38 mitogenactivated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin3gallate (EGCG): a distinct pathway from those of chemically induced and receptormediated apoptosis[J]. Biochem J,2002,368 (Pt 3):705.
[43]黎陽, 賴冬波, 方建培,等. 全反式維甲酸三氧化二砷聯(lián)合化療治療兒童急性早幼粒白血病的療效分析[J]. 中國實用兒科雜志,2007 (6):448.
[44]譚立君, 周晉, 魏慶芳,等. 三氧化二砷治療兒童急性早幼粒細胞白血病29例臨床分析[J]. 哈爾濱醫(yī)科大學(xué)學(xué)報,2006 (5):420.
[45]張鵬, 王樹葉, 胡龍虎,等. 三氧化二砷治療急性早幼粒細胞白血病七年總結(jié)——附242例分析[J]. 中華血液學(xué)雜志,2000 (2):10.
[46]Szegezdi E, Cahill S, Meyer M,et al. TRAIL sensitisation by arsenic trioxide is caspase8 dependent and involves modulation of death receptor components and Akt[J]. Br J Cancer,2006,94 (3):398.
[47]Davison K, Mann K K, Waxman S,et al. JNK activation is a mediator of arsenic trioxideinduced apoptosis in acute promyelocytic leukemia cells[J]. Blood,2004,103 (9):3496.
[48]Geoffroy M C, Jaffray E G, Walker K J,et al. Arsenicinduced SUMOdependent recruitment of RNF4 into PML nuclear bodies[J]. Mol Biol Cell,2010,21 (23):4227.
[49]Estrov Z, Manna S K, Harris D,et al. Phenylarsine oxide blocks interleukin1betainduced activation of the nuclear transcription factor NFkappaB, inhibits proliferation, and induces apoptosis of acute myelogenous leukemia cells[J]. Blood,1999,94 (8):2844.
[50]Du Y, Wang K, Fang H,et al. Coordination of intrinsic, extrinsic, and endoplasmic reticulummediated apoptosis by imatinib mesylate combined with arsenic trioxide in chronic myeloid leukemia[J]. Blood,2006,107 (4):1582.
[51]Konig H, Hartel N, Schultheis B,et al. Enhanced BcrAblspecific antileukemic activity of arsenic trioxide (Trisenox) through glutathionedepletion in imatinibresistant cells[J]. Haematologica,2007,92 (6):838.
[52]Lu Z, Jin Y, Qiu L,et al. Celastrol, a novel HSP90 inhibitor, depletes BcrAbl and induces apoptosis in imatinibresistant chronic myelogenous leukemia cells harboring T315I mutation[J]. Cancer Lett,2010,290 (2):182.
[53]向陽,黃世林,郭愛霞,等. 復(fù)方青黛片為主治療急性早幼粒細胞白血病60例[J]. 解放軍醫(yī)學(xué)雜志,1995 (3):227.
[54]高淑香. 靛玉紅治療慢性粒細胞白血病26例臨床分析[J]. 中國社區(qū)醫(yī)師:醫(yī)學(xué)專業(yè),2011 (9):49.
[55]李海菊, 梁玉崗, 張國香. 復(fù)方苦參注射液在輔助白血病化療中的減毒作用[J]. 中國藥房,2012 (4):323.
[56]Wu D, Shao K, Sun J,et al. Matrine cooperates with alltrans retinoic acid on differentiation induction of alltrans retinoic acidresistant acute promyelocytic leukemia cells (NB4LR1): possible mechanisms[J]. Planta Med,2014,80 (5):399.
[57]吳迪炯, 劉婷婷, 周琦浩,等. PLSCR1在苦參堿逆轉(zhuǎn)APL細胞維甲酸耐藥中的意義[J]. 中國中西醫(yī)結(jié)合雜志,2015 (11):1345.
[58]Orzechowska B, Chaber R, Wisniewska A,et al. Baicalin from the extract of Scutellaria baicalensis affects the innate immunity and apoptosis in leukocytes of children with acute lymphocytic leukemia[J]. Int Immunopharmacol,2014,23 (2):558.
[59]王詩偉, 馮建莊. 大黃在白血病治療中的應(yīng)用[J]. 浙江中醫(yī)雜志,2003 (2):34.
[60]鄭君婷. 大黃素抗白血病研究進展[J]. 福建中醫(yī)藥大學(xué)學(xué)報,2012 (4):69.
[61]Chen Y, Li J, Hu J,et al. Emodin enhances ATRAinduced differentiation and induces apoptosis in acute myeloid leukemia cells[J]. Int J Oncol,2014,45 (5):2076.
[62]李博君, 劉庭波, 王文峰,等. 設(shè)計合成新的大黃素衍生物對慢性髓系白血病細胞株K562及K562/G01的作用[J]. 中國實驗血液學(xué)雜志,2016 (1):1.
[63]王永勝, 侯偉, 李欲來. 川芎嗪注射液治療高白細胞急性白血病療效觀察[J]. 河北中醫(yī),2011 (4):586.
[64]陳波. 復(fù)方丹參注射液預(yù)防急性早幼粒細胞白血病合并彌散性血管內(nèi)凝血25例[J]. 時珍國醫(yī)國藥,2002 (7):393.
[65]楊淑蓮, 邸海俠, 杜昊,等. 參芪清熱顆粒聯(lián)合復(fù)方丹參注射、生脈注射液治療急性白血病臨床研究[J]. 浙江中醫(yī)藥大學(xué)學(xué)報,2012 (10):1079.
[66]張鴿, 羊裔明, 孟文彤,等. 丹參酮ⅡA與三氧化二砷協(xié)同誘導(dǎo)急性早幼粒白血病細胞凋亡的研究[J]. 四川大學(xué)學(xué)報:醫(yī)學(xué)版,2010 (1):57.
[67]劉志剛, 羊裔明, 孟文彤,等. 丹參酮A與全反式維甲酸協(xié)同誘導(dǎo)急性早幼粒細胞白血病細胞株的分化和凋亡[J]. 四川大學(xué)學(xué)報:醫(yī)學(xué)版,2004 (6):788.
[68]顏培花, 嚴媚, 王學(xué)梅,等. 黃芪注射液對兒童急性淋巴細胞白血病近期預(yù)后的影響[J]. 中國當代兒科雜志,2014 (2):141.
[69]Ghosh A K, Kay N E, Secreto C R,et al. Curcumin inhibits prosurvival pathways in chronic lymphocytic leukemia B cells and may overcome their stromal protection in combination with EGCG[J]. Clin Cancer Res,2009,15 (4):1250.
[70]趙芳, 張茂宏, 李麗珍,等. 表沒食子兒茶素沒食子酸酯增強阿霉素抗白血病作用的體外研究[J]. 山東大學(xué)學(xué)報:醫(yī)學(xué)版,2004 (6):664.
[責(zé)任編輯丁廣治]