崔鐵忠 盧康榮 李銀霞 王萬山
【摘 要】線粒體是細胞內(nèi)不可或缺的細胞器,它合成細胞所需90%以上的能量。線粒體疾病多為遺傳性罕見病,但其致死性強且致病機理還不清晰。電子傳遞鏈復(fù)合物III是電子傳遞的重要載體,與呼吸鏈上其他復(fù)合物相比,其與線粒體疾病的聯(lián)系并不是很清楚。隨著人們對復(fù)合物III組裝過程研究的不斷深入,多個致病基因不斷被發(fā)現(xiàn),使得人們重新審視其與線粒體疾病的關(guān)系。本綜述以近年來復(fù)合物III的研究進展為基礎(chǔ),分析并總結(jié)了相關(guān)線粒體疾病的發(fā)病機理和未來的研究方向 。
【關(guān)鍵詞】線粒體;疾??;復(fù)合物III
Complex III of the electron transport chain and mitochondrial diseases
CUI Tie-zhong1 LU Kang-rong2 LI Yin-xia3 WANG Wan-shan4
(1.Department of Cell Biology, Yale School of Medicine, New Haven, 06520, USA;
2.Basic Medical College of Southern Medical University, Guangzhou Guangdong 510515, China;
3.Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, 84112, USA;
4.Institute of Comparative Medicine, Southern Medical University, Guangzhou Guangdong 510515, China)
【Abstract】Mitochondrion is an essential organelle which produces above 90% of energy in cells. Mitochondrial diseases are rare genetic disorders, but they are potentially life-threatening diseases with unknown pathogenic mechanisms. Complex III(also called Cytochrome c reductase) is directly involved in the electron transport in the mitochondria. Relative to the other respiratory complexes, the complex III is loosely associated with mitochondrial diseases. With the rapid expanding of complex III knowledge in the recent years, multiple mutations in the genes of complex III have been discovered to cause mitochondrial diseases, and this also calls attentions of scientists on the relation between complex III and mitochondrial diseases. Based upon the recent progress of mitochondrial complex III, we summarized the complex III-associated mitochondrial diseases and the future research directions.
【Key words】Mitochondrion; Diseases; Complex III
0 引言
線粒體疾病是一類相對罕見的、但非常嚴重的遺傳性疾病。線粒體疾病主要由電子傳遞鏈相關(guān)基因突變而引起,其中由復(fù)合物I、復(fù)合物II和復(fù)合物IV突變誘發(fā)的線粒體疾病已經(jīng)有很多報道[1-4],但由復(fù)合物III(或稱為細胞色素c還原酶)突變引起的線粒體疾病鮮有報道。這一現(xiàn)象可由兩個因素來解釋。第一,復(fù)合物III相對穩(wěn)定,突變幾率比可能較??;第二,對應(yīng)于復(fù)合物III的缺陷,沒有明顯的病理學(xué)和生物化學(xué)標記物,使得對其診斷變得格外困難。盡管如此,有復(fù)合物III缺陷的病人都伴有較低的輔酶Q:細胞色素c氧化酶活性,同時可以觀測到多種不同的臨床癥狀[5-7]。由于復(fù)合物III組裝機制十分復(fù)雜且并不清晰,使得沒有辦法去解釋這些臨床癥狀[8]。
1 線粒體復(fù)合物III概述
線粒體復(fù)合物III是電子傳遞鏈上的核心元素,它介導(dǎo)輔酶Q的氧化和細胞色素c的還原[9-11]。復(fù)合物III在結(jié)構(gòu)和功能上,從低等生物到高等生物都是高度保守的[12]。在高等哺乳動物中,復(fù)合物III由11個亞基組成[13-14]。其中,細胞色素b由線粒體基因組編碼,而其他10個基因均由核基因組編碼。復(fù)合物III的功能單位為二聚體,而且有證據(jù)表明在真核生物中復(fù)合物III和復(fù)合物IV(或包含復(fù)合物I)形成超高分子復(fù)合物[15-16]。這一超級復(fù)合物的形成有助于提高電子傳輸?shù)男屎蜏p少自由基的產(chǎn)生。在復(fù)合物III的11個亞基中,只有3個亞基是催化亞基,他們分別是細胞色素b,細胞色素c1和Rieske鐵硫蛋白。細胞色素b含有兩個血紅素:高電位血紅素(bH)和低電位血紅素(bL)。細胞色素c1含有1個c類血紅素分子。Rieske鐵硫蛋白含有一個2Fe-2S的鐵硫簇。其他8個非催化性亞基(UQCRC1,UQCRC2,UQCRH,UQCRB,UQCRQ,Subunit 9,UQCR10和UQCR11)多為結(jié)構(gòu)性元素,但它們具體的功能還不是十分清楚。
復(fù)合物III的組裝在酵母中研究得最為清晰,目前的證據(jù)支持酵母中復(fù)合物III的組裝機制在高等生物中也是高度保守的[17-18]。隨著近年來研究的不斷深入,科學(xué)家已經(jīng)繪制出一個相對較為清晰的組裝模型。組裝首先是由幾個核心結(jié)構(gòu)亞基起始的,在組裝因子的協(xié)助下其他亞基通過蛋白間相互作用而加入以形成亞復(fù)合物。其后,不同亞復(fù)合物合并而形成復(fù)合物III前體復(fù)合物。最后,Rieske蛋白在分子伴侶和轉(zhuǎn)運酶的介導(dǎo)下完成轉(zhuǎn)運而嵌入到前體復(fù)合物中而完成復(fù)合物III的成熟[19]。由于復(fù)合物III的結(jié)構(gòu)亞基的鑒定已經(jīng)很清晰,目前的研究熱點集中在這些組裝因子是如何幫助結(jié)構(gòu)亞基插入到這些中間復(fù)合體而完成組裝的[20-22]?;谇捌谠诮湍钢械难芯?,目前在哺乳動物細胞中也取得了一定的進展,例如,多個與酵母同源的組裝因子被陸續(xù)發(fā)現(xiàn),且它們的功能均是保守的[23-24]。盡管如此,復(fù)合物III的組裝在哺乳動物中還沒有被完全解析,還有待于更深入的研究。
直到近年來,一系列與復(fù)合物III相關(guān)的基因突變陸續(xù)被報道,引起了人們對于復(fù)合物III和線粒體疾病的關(guān)注[25]。截至到目前,以下基因被報道其突變可引起線粒體疾?。杭毎豣(MTCYB),BCSlL,UQCRB,UQCRQ,UQCRC2,CYC1,TTC19,LYRM7,UQCC2和UQCC3[26]。以下,我們將進一步介紹這些基因突變誘發(fā)線粒體疾病的過程和臨床表現(xiàn)。
2 結(jié)構(gòu)亞基突變與線粒體疾病
大多數(shù)復(fù)合物III的結(jié)構(gòu)亞基對于其功能都是必需的,因此這些基因突變很可能導(dǎo)致非常嚴重的線粒體疾病。
2.1 MTCYB
MTCYB是酵母COB的同源基因,是復(fù)合物III中唯一由線粒體基因組編碼的基因。最近報道的Arg318Pro突變導(dǎo)致病人出現(xiàn)了嚴重的肌肉和腦的病變。這個位點位于MTCYB蛋白的保守序列位置,其突變不僅顯著地降低了復(fù)合物III活性,而且也降低了復(fù)合物I的穩(wěn)定性。這些數(shù)據(jù)也證明了在高等生物中,復(fù)合物I和復(fù)合物III是相互作用的,并且彼此相互依存。
2.2 細胞色素c1
細胞色素c1(Cyc1)是重要的核心催化亞基,它接受來自于UQCRFS1的電子,并傳遞給細胞色素c。CYC1位于染色體8q24上,CYC1突變體被獨立地在不同的病人上檢測出來[35],突變位點分別是288G>t和642C>T。序列分析表明,這兩個位點均是保守性非常強的,對于CYC1功能起著非常重要的作用。這些病人主要臨床表現(xiàn)包括代謝異常、乳酸積累。在這些病人肌肉組織中,細胞色素c1水平顯著降低,并伴有高血糖癥。在酵母中的異源表達實驗也驗證了這些位點在維持Cyc1結(jié)構(gòu)中的重要作用。
2.3 UQCRB
UQCRB是酵母QCR7的同源基因,與核心亞基細胞色素b相互作用,對于細胞色素b的成熟起著至關(guān)重要的作用[27-28]。UQCRB位于染色體8q22上,它的突變首先是從一個土耳其家庭中的女兒身上發(fā)現(xiàn)的[29]。這個女孩表現(xiàn)出了較大的肝臟,肝臟乳酸水平升高。同時,淋巴細胞和成纖維細胞均表現(xiàn)出了顯著降低的復(fù)合物III活性。測序分析表明,女孩UQCRB基因第4外顯子在位于338-341的位置有4個堿基缺失。結(jié)構(gòu)分析表明,這個位置的堿基編UQCRB C-末端高度保守的關(guān)鍵氨基酸,這可能解釋了致病的原因。
2.4 UQCRQ
UQCRQ是酵母QCR8的同源基因,與UQCRB亞基和核心亞基細胞色素b組成早期組裝復(fù)合物。UQCRB位于染色體5q31上,它編碼一個只有9.5kDa小分子蛋白[30-32]。UQCRQ的突變首先是從一個以色列家族中發(fā)現(xiàn)的[33-34],這個突變?yōu)?08C>T的點突變。在這個家族中,所有的基因突變?nèi)苏甙l(fā)育遲緩,同時伴有顯著的復(fù)合物III活性低下等癥狀。盡管這個突變導(dǎo)致了非常嚴重的臨床表現(xiàn),有些病人在不斷接受治療的情況下也生存了較長的時間。
3 組裝因子突變與線粒體疾病
復(fù)合物III的組裝因子在組裝過程中起著不同程度的作用。對于必需組裝因子的基因突變,其潛在的危害性類似于結(jié)構(gòu)亞基的突變;同時,非必需組裝因子的突變也可能造成比較明顯的危害。
3.1 BCS1L
BCS1L是酵母中BCS1的同源基因,位于染色體2q35上。BCS1L的功能已經(jīng)十分清晰,它主要負責(zé)UQCRFS1的跨膜轉(zhuǎn)運,參與復(fù)合物III的最終成熟過程,是組裝的必需因子。BCS1L是已知復(fù)合物III相關(guān)疾病中突變最多的基因[36-37],這些突變導(dǎo)致了多種臨床表現(xiàn),主要相關(guān)疾病包括:GRACILE綜合癥,肝臟疾病,腦病和Bjornstad綜合癥[38]。這些突變的共同特征是UQCRFS1蛋白水平下降和復(fù)合物III前體累積。BCS1L基因相對較大,其致病突變幾乎分布在其蛋白的各個區(qū)域,而且這些突變的分布和疾病的嚴重程度并沒有顯著關(guān)系。有些BCS1L病人不僅有復(fù)合物III的缺陷,也表現(xiàn)出了復(fù)合物IV的臨床表現(xiàn),這些表型和BCS1L可以調(diào)節(jié)ATP合成效率的功能是完全相符的[39-40]。
3.2 TTC19
TTC19是首先在病人身上發(fā)現(xiàn)的參與復(fù)合物III組裝的蛋白,只存在于高等生物中,而不存在于植物和酵母中[41]。TTC19突變多導(dǎo)致腦病和神經(jīng)性疾病[42]。盡管每個病人癥狀的表現(xiàn)型不同,他們的共同特點是有嚴重的復(fù)合物III缺陷[43]。TTC19的功能目前未知,但有證據(jù)表明在TTC19突變體中UQCRC1和UQCRC2以單體的形式存在,證明其參與UQCRC1和UQCRC2的組裝,但其參與的具體組裝步驟還有待于進一步研究。
3.3 MZM1L
MZM1L,又稱為LYRM7,是酵母MZM1的同源蛋白[44-45]。MZM1L位于染色體5q23.3上。現(xiàn)有證據(jù)表明,Mzm1L是功能非常保守的蛋白,它在復(fù)合物III的最后成熟過程中起著非常重要的作用[46]。Mzm1L作為UQCRFS1的分子伴侶,穩(wěn)定UQCRFS1的結(jié)構(gòu),避免其降解或形成蛋白聚集體[47]。Mzm1L的突變首先是在一個摩洛哥家庭中的女孩身上發(fā)現(xiàn)的[48],不過其父母都是健康人群。這個病人在20個月之前都是健康的,之后其伴有貧血和缺鐵的癥狀。隨后,誘發(fā)了嚴重的腦病和代謝性疾病,并于28個月時由嚴重的呼吸衰竭而死亡??梢姡M管MZM1L在酵母中是非必需組裝因子,其突變?nèi)栽谌梭w中產(chǎn)生了很大的危害。
3.4 UQCC2
UQCC2是新發(fā)現(xiàn)的參與復(fù)合物III組裝的蛋白因子,它于UQCC1相互作用而促進催化蛋白細胞色素b的合成和組裝。UQCC2突變導(dǎo)致體內(nèi)低水平的細胞色素b,從而嚴重的影響細胞的呼吸水平。UQCC2突變病人首先也是在嬰幼兒身上發(fā)現(xiàn)的[49-51],在幼兒時期這個病人表現(xiàn)出了嚴重的神經(jīng)系統(tǒng)發(fā)育遲緩、聽力受損嚴重和自閉癥。急性代謝性疾病發(fā)病后12小時后,病人死亡。作為必需組裝因子,UQCC2在酵母中的作用較為清晰,這也為疾病的診斷和治療提供了一定的借鑒。
4 總結(jié)
鑒于復(fù)合物III在電子傳遞中的重要的作用,其突變往往導(dǎo)致十分嚴重的發(fā)育性及代謝性疾病。過往的經(jīng)驗表明,早期的醫(yī)學(xué)的診斷和干預(yù)能減少患者的痛苦以及延長患者的壽命。隨著技術(shù)手段的不斷完善,尤其是基因組測序成本的大幅度降低和蛋白質(zhì)學(xué)技術(shù)的不斷應(yīng)用,為線粒體疾病早期的診斷提供了可能性。其次,對于線粒體疾病的發(fā)病機理是建立在人們對線粒體復(fù)合物組裝機制的認知的基礎(chǔ)之上的。盡管哺乳動物有其專一的組裝因子和組裝步驟,但其大體上是和低等生物的組裝機制是保守的。截止目前,人們對酵母線粒體復(fù)合物III的早期和晚期組裝過程的了解是基本清晰,這也直接幫助解釋了以上基因突變和線粒體疾病的關(guān)系,也體現(xiàn)了基礎(chǔ)生物學(xué)對于醫(yī)學(xué)的貢獻。在今后的研究中,科學(xué)家應(yīng)該在加強對病人的診斷和治療的同時,也應(yīng)該繼續(xù)加大對組裝過程的研究,以期能在不講的將來繪制出整個復(fù)合物III的組裝過程。
【參考文獻】
[1]Atkinson A, Smith P, Fox JL, Cui TZ, Khalimonchuk O, Winge DR. The LYR protein Mzm1 functions in the insertion of the Rieske Fe/S protein in yeast mitochondria[J].Mol Cell Biol 2011;31:3988-96.
[2]Hayashi K, Cui TZ, Kawamukai M. Multiple roles of coenzyme Q in mitochondrial function, sulfide metabolism and life span[C].5th international fission yeast meeting 2009;Tokyo, Japan.
[3]DiMauro S, Schon EA, Carelli V, Hirano M. The clinical maze of mitochondrial neurology[J].Nat Rev Neurol 2013;9:429-44.
[4]Plaza Davila M, Martin Munoz P, Tapia JA, Ortega Ferrusola C, Balao da Silva CC, Pena FJ. Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility[J].PLoS One 2015;10:e0138777.
[5]Cui TZ, Kawamukai M. Analysis of CoQ10 gene in fission yeast[C].5th Conference of International Coenzyme Q10 Association 2007;Kobe, Japan.
[6]于雪穎,殷峻.2型糖尿病骨骼肌和肝臟線粒體功能障礙的研究進展[J].中國糖尿病雜志,2015:11:46-52.Yu XY, Yin J. Research progress of mitochondrial dysfunction in skeletal muscle and liver in type 2 diabetes[J].Chinese Journal of Diabetes, 2015;11:46-52.
[7]Antoun G, McMurray F, Thrush AB, Patten DA, Peixoto AC, Slack RS, et al. Impaired mitochondrial oxidative phosphorylation and supercomplex assembly in rectus abdominis muscle of diabetic obese individuals[J].Diabetologia 2015;58:2861-6.
[8]Orr AL, Vargas L, Turk CN, Baaten JE, Matzen JT, Dardov VJ, et al. Suppressors of superoxide production from mitochondrial complex III[J].Nat Chem Biol 2015;11:834-6.
[9]Cui TZ, Conte A, Fox JL, Zara V, Winge DR. Modulation of the respiratory supercomplexes in yeast: enhanced formation of cytochrome oxidase increases the stability and abundance of respiratory supercomplexes[J].J Biol Chem 2014;289:6133-41.
[10]李潔,王玉俠,張耀斌,邢良美.補充輔酶Q10及遞增負荷跑臺運動訓(xùn)練對大鼠心肌和腦線粒體電子傳遞鏈酶復(fù)合體活性的影響[J].體育科學(xué),2008;1:24-49.
[11]Borek A, Kuleta P, Ekiert R, Pietras R, Sarewicz M, Osyczka A. Mitochondrial Disease-related Mutation G167P in Cytochrome b of Rhodobacter capsulatus Cytochrome bc1(S151P in Human) Affects the Equilibrium Distribution of[2Fe-2S] Cluster and Generation of Superoxide[J].J Biol Chem 2015;290:23781-92.
[12]Bonke E, Zwicker K, Drose S. Manganese ions induce H2O2 generation at the ubiquinone binding site of mitochondrial complex II[J].Arch Biochem Biophys 2015;580:75-83.
[13]Cui TZ, Katayama S, Kawamukai M. Analysis of coq10 gene in Schizosaccharomyces pombe[C].Annual conference of Japan society for bioscience, biotechnology, and agrochemistry 2007;Tokyo, Japan.
[14]Akarsu S, Torun D, Erdem M, Kozan S, Akar H, Uzun O. Mitochondrial complex I and III mRNA levels in bipolar disorder[J].J Affect Disord 2015;184:160-3.
[15]李鳳杰,沈麗君,方合志.線粒體呼吸鏈復(fù)合體I[J].中國細胞生物學(xué)學(xué)報,2014;36:1-9.
[16]Kolossov VL, Beaudoin JN, Ponnuraj N, DiLiberto SJ, Hanafin WP, Kenis PJ, et al. Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III[J].Am J Physiol Cell Physiol 2015;309:C81-91.
[17]Cui TZ, Kawamukai M. Analysis of CoQ10 gene in fission yeast[C].Annual conference of Japanese coenzyme Q society 2008;Tokyo, Japan.
[18]Markevich NI, Hoek JB. Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain[J].Biochim Biophys Acta 2015;1847:656-79.
[19]Belskie KM, Van Buiten CB, Ramanathan R, Mancini RA. Reverse electron transport effects on NADH formation and metmyoglobin reduction[J].Meat Sci 2015;105:89-92.
[20]Smith P, Aaron E, Cui TZ, Fox J. Khalimonchuk O, Winge DR. Discerning the Role of Mzm1: a novel bc1complex assembly factor[C].Gordon Conference of Cell Biology of Metals 2011;Rhode Island, US.
[21]Singh N, Hroudova J, Fisar Z. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria[J].J Mol Neurosci 2015;56:926-31.
[22]Zhu X, Zhang M, Liu J, Ge J, Yang G. Ametoctradin is a potent Qo site inhibitor of the mitochondrial respiration complex III[J].J Agric Food Chem 2015;63:3377-86.
[23]Cui TZ, Kawamukai M. Coq10, a mitochondrial coenzyme Q binding protein, is required for proper respiration in Schizosaccharomyces pombe[J].FEBS J 2009;276:748-59.
[24]van Rahden VA, Fernandez-Vizarra E, Alawi M, Brand K, Fellmann F, Horn D, et al. Mutations in NDUFB11, encoding a complex I component of the mitochondrial respiratory chain, cause microphthalmia with linear skin defects syndrome[J].Am J Hum Genet 2015;96:640-50.
[25]Akarsu S, Torun D, Bolu A, Erdem M, Kozan S, Ak M, et al. Mitochondrial complex I and III gene mRNA levels in schizophrenia, and their relationship with clinical features[J].J Mol Psychiatry 2014;2:6.
[26]Cui TZ, Kaino T, Kawamukai M. A subunit of decaprenyl diphosphate synthase stabilizes octaprenyl diphosphate synthase in Escherichia coli by forming a high-molecular weight complex[J].FEBS Lett 2010;584:652-6.
[27]Fox JL, Atkinson A, Smith P, Cui TZ, Khalimonchuk O, Winge DR. Mzm1 is an assembly factor for Rieske iron-sulfur protein insertion into ubiquinol-cytochrome c reductase[C].FASEB Conference: Mitochondrial Assembly and Dynamics in Health, Disease and Aging 2011;Colorado, USA.
[28]Stickles AM, de Almeida MJ, Morrisey JM, Sheridan KA, Forquer IP, Nilsen A, et al. Subtle changes in endochin-like quinolone structure alter the site of inhibition within the cytochrome bc1 complex of Plasmodium falciparum[J]. Antimicrob Agents Chemother 2015;59:1977-82.
[29]Haut S, Brivet M, Touati G, Rustin P, Lebon S, Garcia-Cazorla A, et al. A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis[J].Hum Genet 2003;113:118-22.
[30]Fox JL, Cui TZ, Smith PM, Khalimonchuk O, Winge DR. Role of the Assembly Factor Mzm1 in the Biogenesis of the Mitochondrial Cytochrome bc1 Complex[C].Bioenergetics Gordon Research Conference: Molecular Mechanisms and Fundamental Principles to Cellular Energetics in Health and Disease 2013;Andover, NH, US, June 23-28, .
[31]Desmurs M, Foti M, Raemy E, Vaz FM, Martinou JC, Bairoch A, et al. C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization[J].Mol Cell Biol 2015;35:1139-56.
[32]Shrotriya S, Deep G, Lopert P, Patel M, Agarwal R, Agarwal C. Grape seed extract targets mitochondrial electron transport chain complex III and induces oxidative and metabolic stress leading to cytoprotective autophagy and apoptotic death in human head and neck cancer cells[J].Mol Carcinog 2015;54:1734-47.
[33]Cui TZ, Kawamukai M. Coenzyme Q binding proteins[C].Annual conference of Japanese isoprenoids society 2008;Sendai, Japan.
[34]Barel O, Shorer Z, Flusser H, Ofir R, Narkis G, Finer G, et al. Mitochondrial complex III deficiency associated with a homozygous mutation in UQCRQ[J].Am J Hum Genet 2008;82:1211-6.
[35]Gaignard P, Menezes M, Schiff M, Bayot A, Rak M, Ogier de Baulny H, et al. Mutations in CYC1, encoding cytochrome c1 subunit of respiratory chain complex III, cause insulin-responsive hyperglycemia[J].Am J Hum Genet 2013;93:384-9.
[36]Cui TZ, Smith P, Atkinson A, Fox J, Winge DR. Mzm1 collaborates with AAA ATPase Bcs1 for the maturation and translocation of the Rieske Fe/S protein Rip1[C].FASEB Conference: Trace Elements in Biology &Medicine 2012 Colorado, USA.
[37]Ezgu F, Senaca S, Gunduz M, Tumer L, Hasanoglu A, Tiras U, et al. Severe renal tubulopathy in a newborn due to BCS1L gene mutation: effects of different treatment modalities on the clinical course[J].Gene 2013;528:364-6.
[38]李潔,汪浩.不同強度急性疲勞運動對大鼠心肌線粒體電子傳遞鏈酶復(fù)合體活性的影響[J].中國運動醫(yī)學(xué)雜志,2007;3:112-8.
[39]Cui TZ, Kawamukai M. Stabilization of octaprenyl diphosphate synthase in E. coli by formation of a high-molecular complex with other diphosphate synthases[C]. TERPNET 2009 Meeting, 2009;Tokyo, Japan.
[40]Bhattacharya K, Bag AK, Tripathi R, Samanta SK, Pal BC, Shaha C, et al. Mahanine, a novel mitochondrial complex-III inhibitor induces G0/G1 arrest through redox alteration-mediated DNA damage response and regresses glioblastoma multiforme[J].Am J Cancer Res 2014;4:629-47.
[41]崔鐵忠,冷平,李寶.柿子果酒酵母菌的篩選研究[J].中國釀造,2005;24:21-3. Cui TZ, Leng P, Li B. Screen fo yeast for persimmon wine[J]. China Brewing 2005;24:21-3.
[42]Ghezzi D, Arzuffi P, Zordan M, Da Re C, Lamperti C, Benna C, et al. Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies[J].Nat Genet 2011;43:259-63.
[43]李紅智,劉丹慧,呂建新.線粒體電子傳遞系統(tǒng)的組裝及其生物學(xué)意義[J].生命科學(xué),2011;23:1042-51.
[44]Cui TZ, Smith PM, Fox JL, Khalimonchuk O, Winge DR. Late-stage maturation of the Rieske Fe/S protein: Mzm1 stabilizes Rip1 but does not facilitate its translocation by the AAA ATPase Bcs1[J].Mol Cell Biol 2012;32:4400-9.
[45]Beutner G, Eliseev RA, Porter GA, Jr. Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes[J].PLoS One 2014;9:e113330.
[46]Park JH, Lee HJ, Park HH, Rhee WJ, Park TH. Stabilization of cellular mitochondrial enzyme complex and sialyltransferase activity through supplementation of 30Kc19 protein[J].Appl Microbiol Biotechnol 2014;99:2155-63.
[47]Fox J, Atkinson A, Smith P, Cui TZ, Khalimonchuk O, Winge D. Biogenesis of Mitochondrial Electron Transport Chain Complex III: Role of the Assembly Factor Mzm1,[C].64th Southeastern Regional Meeting of the American Chemical Society 2012;Raleigh, NC, November 14-17.
[48]Invernizzi F, Tigano M, Dallabona C, Donnini C, Ferrero I, Cremonte M, et al. A homozygous mutation in LYRM7/MZM1L associated with early onset encephalopathy, lactic acidosis, and severe reduction of mitochondrial complex III activity[J].Hum Mutat 2013;34:1619-22.
[49]Calvo SE, Compton AG, Hershman SG, Lim SC, Lieber DS, Tucker EJ, et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing[J].Sci Transl Med 2012;4:118ra10.
[50]Ge SQ, Zheng HZ, Cui TZ, et al. Small non-coding RNAs in mammalian male germ cells and their implications for male infertility[J].Andrology,2015,4(150):1-8.
[51]崔鐵忠,李銀霞,王燕,等.線粒體電子傳遞鏈復(fù)合物III的組裝及其研究進展[J].醫(yī)學(xué)研究與教育,2016[已接受].Cui TZ, Li YX, Wang Y, et al. Assembly of complex III of mitochondrial electron transport chain and its progress[J].Med Research and Education, 2016,[Epub ahead of print].
[責(zé)任編輯:王楠]