常文瑞 柳振峰
摘 要:當(dāng)今社會面臨著日益嚴(yán)重的能源危機(jī),隨著社會的發(fā)展和能源的不斷消耗,地球儲存的能源已日趨枯竭;大量使用化石能源已經(jīng)帶來了嚴(yán)重的環(huán)境與氣候問題,CO2濃度的持續(xù)升高,將會給人類社會帶來災(zāi)難性的后果。發(fā)展可再生的新型清潔能源是增加能源供給、保護(hù)生態(tài)環(huán)境、促進(jìn)可持續(xù)發(fā)展的重要措施,也是解決上述問題的最根本途徑,具有重要的戰(zhàn)略意義。在眾多的可再生能源中,太陽能是最重要的基本能源,人類所需能量的絕大部分都直接或間接地來自太陽能。對太陽能加以利用將會為目前能源短缺和非再生能源消耗所引起的環(huán)境問題提供一個絕佳的解決途徑。光合作用是自然界中固定太陽能最有效的過程,對光合作用進(jìn)行模擬將成為利用太陽能生產(chǎn)清潔能源的一個重要方向。光合作用中的色素蛋白復(fù)合體的色素、蛋白和其他因子的協(xié)同作用與動態(tài)調(diào)節(jié)是實現(xiàn)光合作用高效傳能、轉(zhuǎn)能的前提。對這些相關(guān)蛋白的結(jié)構(gòu)研究有助于我們深入理解光合作用機(jī)理,并為在體外模擬光合作用過程提供理論依據(jù)?;诠夂献饔迷淼奶柲芄夥夹g(shù)可以提高光電轉(zhuǎn)換效率,降低太陽能電池的制造成本及減少生產(chǎn)過程的污染,使太陽能電池成為真正高效、清潔的能源。另外利用太陽能和CO2生產(chǎn)生物能源的微生物是人類開發(fā)可持續(xù)、可再生能源的另一個熱點。通過基因工程方法改造藍(lán)細(xì)菌,使之能夠高效定向合成優(yōu)質(zhì)生物液體燃料脂肪烴,實現(xiàn)在單一生物體內(nèi)直接利用太陽能和CO2高效制備新型優(yōu)質(zhì)生物液體燃料的目標(biāo)。此外,整合非光合產(chǎn)油菌與光合細(xì)菌,獲得高效率的光合產(chǎn)油菌,將為最終提高太陽能轉(zhuǎn)化效率,建立可持續(xù)的太陽能燃料人工轉(zhuǎn)換系統(tǒng)開辟一條可能的途徑。綜上所述,闡明光合作用能量吸收、傳遞和轉(zhuǎn)化的分子機(jī)理,模擬光合作用,探索太陽能利用的不同技術(shù)方法,開發(fā)最清潔、簡便、高效的光合作用模擬器,具有重大的科學(xué)意義和潛在的應(yīng)用前景,符合國家重大戰(zhàn)略需求。
關(guān)鍵詞:清潔能源 光合作用 膜蛋白 太陽能電池 產(chǎn)油藍(lán)細(xì)菌
Abstract: Along with the rapid development of society, continually increasing demand of energy source, the energy will be used up and we are facing serious energy crisis now. Meanwhile, the use of fossil fuel results in environmental pollution and climate change owing to the increasing of the CO2 concentration that can have disastrous consequences for human society. As conventional energy sources shortages and the problems of environmental pollution are becoming more and more severe, renewable energy technology, such as clean solar energy, is attracting enormous attentions nowadays. Developing the technology of utilizing solar power is an important move which will contribute to improving the energy structure, reducing environment pollution and protecting the environment. Solar energy is the most important basic energy form of all sorts of renewable ones. Photosynthesis is the most efficient biochemical processes in converting solar energy on Earth. Simulation of photosynthesis is becoming a major trend to produce clean energy resources. The synergistic operation and dynamic adjustment among membrane proteins, photosynthetic pigments and other factors in chlorophyll-protein complexes is prerequisite of efficient transmission and transformation of available energy. The structural data of the key photosynthetic complexes will not only provide key information for studying the mechanism of photosynthesis, but also promote the studies on simulating photosynthesis in vitro. Photovoltaic technology based on photosynthesis was proposed to enhance the photovoltaic conversion efficiency of solar cell, cost less and reduce pollution in production. It has become a hot point of exploitation of biological energy to use microbes which produce fuel by using solar energy and CO2. We can now genetically engineer these microorganisms for the simple and direct conversion of photo energy to biofuels. In conclusion, the research is focusing on elaboration the mechanism of photosynthesis and then exploring photosynthetic simulation, which has significant scientific meaning and the application will be promising in the coming future.
Key Words: Clean renewable energy; Photosynthesis; Membrane protein; Solar cell; Oil-producing cyanobacteria
閱讀全文鏈接(需實名注冊):http://www.nstrs.cn/xiangxiBG.aspx?id=51066&flag=1