楊淑麗
中圖分類號(hào):G623.5 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1002-7661(2016)12-0039-02
小學(xué)數(shù)學(xué)是由許多概念、法則、性質(zhì)等組成的確定體系。每一個(gè)法則、性質(zhì)等實(shí)際上都是一個(gè)判斷,而且離不開概念。可以說,判斷是概念與概念的聯(lián)合。因此,要使小學(xué)生掌握所學(xué)的數(shù)學(xué)知識(shí)和計(jì)算技能,并且能夠?qū)嶋H應(yīng)用,首先要使他們掌握好所學(xué)的數(shù)學(xué)概念。按概念的抽象水平可以將概念分為描述性概念和定義性概念兩類。描述性概念是可以直接通過觀察獲得的概念,如“長方形”等;定義性概念的本質(zhì)性特征不能通過直接觀察獲得,必須通過下定義來揭示,如“偶數(shù)”就是通過定義“能被2整除的數(shù)叫做偶數(shù)”來揭示偶數(shù)的本質(zhì)特征的。不管是哪一類概念,都是小學(xué)生掌握數(shù)學(xué)基本知識(shí)和基本技能的基石,都將直接影響以后繼續(xù)學(xué)習(xí)及思維能力的發(fā)展。在實(shí)際教學(xué)過程中,我常常利用以下幾種方法進(jìn)行概念教學(xué)。
一、聯(lián)系生活,進(jìn)行概念引入
數(shù)學(xué)源于現(xiàn)實(shí)生活,小學(xué)生生活周圍處處有數(shù)學(xué),結(jié)合生活實(shí)際引入概念是一個(gè)有效的途徑。小學(xué)生從扳手指到簡(jiǎn)單的運(yùn)用計(jì)算機(jī),都是在生活中不斷總結(jié)而學(xué)習(xí)獲得的。要從生活實(shí)際出發(fā),深化小學(xué)生的概念基礎(chǔ),就必須熟悉小學(xué)生的生活環(huán)境。如在學(xué)習(xí)比較數(shù)值大小時(shí),“2”和“5”的大小,可以把“2顆花生”和“5顆花生”放在學(xué)生面前,讓學(xué)生選擇,當(dāng)學(xué)生選擇5顆花生時(shí),可以問為什么會(huì)選擇“5”,這樣讓他們?cè)趯?shí)際生活中真正體會(huì)到比較大小的概念。
其次,還可利用小學(xué)生在生活實(shí)際中比較熟悉的一些知識(shí),概括出新的概念。例如:在引入平行四邊形概念時(shí),先出示兩組不同長度的四根小木棒,教師進(jìn)行演示,讓學(xué)生觀察后,然后把這四根小棒釘成一個(gè)長方形。又讓學(xué)生觀察這個(gè)長方形,然后,教師又進(jìn)行演示,把它向其中一頭拉斜,讓學(xué)生觀察教師演示后的形狀,引導(dǎo)學(xué)生說說這時(shí)的長方形變形后有什么特點(diǎn)。這時(shí)學(xué)生可以說出:兩組對(duì)邊的木條長度相等,但四個(gè)角又不是直角,因此這樣就在小學(xué)生思維中形成了平行四邊形的概念。
例如,在教學(xué)互質(zhì)數(shù)時(shí),教師在引導(dǎo)學(xué)生對(duì)幾組數(shù),如“3和8”“10和9”“27和13”的公約數(shù)的觀察的基礎(chǔ)上,引入互質(zhì)數(shù)“公約數(shù)只有1的兩個(gè)數(shù)叫做互質(zhì)數(shù)”的概念。然后,老師要引導(dǎo)學(xué)生認(rèn)真推敲,對(duì)互質(zhì)數(shù)的這個(gè)概念要弄清:(1)它是兩數(shù)之間的一種關(guān)系。(2)它是從公約數(shù)的個(gè)數(shù)這個(gè)角度提出來的。(3)關(guān)鍵詞“只有”的含義。從這三個(gè)方面揭示出互質(zhì)數(shù)的本質(zhì)屬性。教學(xué)中只有抓住這些屬性,逐項(xiàng)剖析,才能使互質(zhì)數(shù)的特征活脫脫地展現(xiàn)出來。教師通過對(duì)“互質(zhì)數(shù)”的詳細(xì)解讀,既抽象概括出“互質(zhì)數(shù)”這個(gè)概念,又能為學(xué)生深刻理解掌握互質(zhì)數(shù)奠定了基礎(chǔ)。
二、實(shí)物演示,深化數(shù)學(xué)概念
由于小學(xué)生認(rèn)識(shí)程度的限制,在教材中大部分概念沒有下準(zhǔn)確,但是這些概念對(duì)于解決實(shí)際數(shù)學(xué)問題又是非常重要的。因此,這就給教者留下了一項(xiàng)非常艱巨的任務(wù)。在概念教學(xué)難以入手時(shí),不妨嘗試?yán)弥庇^的具體形象,幫助學(xué)生認(rèn)識(shí)概念的本質(zhì)屬性。如小學(xué)生認(rèn)識(shí)“米”的概念時(shí),首先通過觀察米尺初步直觀認(rèn)識(shí)1米有多長,接著將米尺與鉛筆、身高、課桌面的長進(jìn)行比較,進(jìn)一步直觀認(rèn)識(shí)1米的大約長度,然后讓學(xué)生與同桌合作,用米尺量教室的長,這既是對(duì)米的概念的進(jìn)一步強(qiáng)化,又是對(duì)學(xué)生動(dòng)手能力的一次鍛煉。
對(duì)于小學(xué)生來說,數(shù)學(xué)概念還是抽象的,他們形成數(shù)學(xué)概念,一般都要有相應(yīng)的感性經(jīng)驗(yàn)為基礎(chǔ),而且要經(jīng)歷一番把感性材料在腦子里來回往復(fù)。從模糊到逐漸分明,從許多有一定聯(lián)系的材料中,通過自己操作,思維活動(dòng)逐步建立起事物的一般表象。在教學(xué)中,更要加強(qiáng)演示、操作。讓學(xué)生通過摸一摸、擺一擺、拼一拼來讓學(xué)生體會(huì)這些概念,理解概念和掌握概念。例如,在教學(xué)“長方體”表面積時(shí)讓學(xué)生動(dòng)手操作和觀察長方體實(shí)物,又拿出一個(gè)長方體紙盒,先讓學(xué)生觀察它的構(gòu)造。然后把紙盒沿著棱剪開,教師接著展開。讓學(xué)生注意,展開前長方體的每個(gè)面,在展開后是哪個(gè)面,為了便于對(duì)照,可以在展開前的每個(gè)面上,分別用“上”“下”“前”“后”“左”“右”標(biāo)明它們分別是原來長方體的哪個(gè)面。然后,提問:長方體有幾個(gè)面?哪些面的面積是相等的?引導(dǎo)學(xué)生把這些感性材料加以分析、整合,概括長方體6個(gè)面的總面積。這樣學(xué)生就能抓住長方體本質(zhì)特征,形成概念。
這樣教師借助于直觀教學(xué),運(yùn)用學(xué)生原有的基礎(chǔ)知識(shí),逐步抽象,環(huán)環(huán)緊扣,層次清楚,通過實(shí)物演示,使學(xué)生建立表象,從而解決了數(shù)學(xué)知識(shí)的抽象性與兒童思維形象性。
三、化抽象為具體,強(qiáng)化數(shù)學(xué)概念
在教學(xué)中有很多數(shù)量關(guān)系都是從具體生活中表現(xiàn)出來的,因此,在教學(xué)中要充分利用學(xué)生的生活實(shí)際,運(yùn)用恰當(dāng)?shù)姆绞竭M(jìn)行具體與抽象的連貫。把抽象的內(nèi)容轉(zhuǎn)變成具體的生活知識(shí),在學(xué)生思維過程中強(qiáng)化抽象概念。
如:在學(xué)習(xí)“體積”概念時(shí),教師可以取三個(gè)同樣的水杯,里面放適量的同樣多的水,把桃、荔枝、紅棗依次放在三個(gè)杯中,然后觀察三個(gè)水杯水的高度來展現(xiàn)桃、荔枝、紅棗體積的大小。這樣將抽象的體積概念就轉(zhuǎn)變?yōu)榱怂唧w的高度,對(duì)于尚未形成抽象思維方式的小學(xué)生來說就更容易掌握。
(責(zé)任編輯 陳 利)