国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于感應(yīng)腔支路和角向線LTD新型觸發(fā)技術(shù)

2016-06-03 08:40孫鳳舉曾江濤梁天學(xué)姜曉峰王志國尹佳輝邱愛慈
現(xiàn)代應(yīng)用物理 2016年1期

孫鳳舉,曾江濤,梁天學(xué),魏 浩,姜曉峰,王志國,尹佳輝,邱愛慈

(西北核技術(shù)研究所,西安 710024;強脈沖輻射環(huán)境模擬與效應(yīng)國家重點實驗室,西安 710024)

?

基于感應(yīng)腔支路和角向線LTD新型觸發(fā)技術(shù)

孫鳳舉,曾江濤,梁天學(xué),魏浩,姜曉峰,王志國,尹佳輝,邱愛慈

(西北核技術(shù)研究所,西安710024;強脈沖輻射環(huán)境模擬與效應(yīng)國家重點實驗室,西安710024)

摘要:提出一種利用感應(yīng)腔1個支路和角向傳輸線實現(xiàn)直線型變壓器驅(qū)動源(linear transformer driver,LTD)開關(guān)同步觸發(fā)閉合的新方法,觸發(fā)支路與LTD感應(yīng)腔其他支路具有相同工作電壓和氣壓,觸發(fā)支路不包圍磁芯。當(dāng)觸發(fā)支路開關(guān)被外施1路脈沖觸發(fā)閉合后,產(chǎn)生快前沿高電壓脈沖并沿角向線傳輸,觸發(fā)感應(yīng)腔其他支路開關(guān)。該觸發(fā)方式在20支路并聯(lián)500 kA LTD感應(yīng)腔和34支路并聯(lián)0.1 Hz重頻800 kA LTD感應(yīng)腔上證明可行?;谠撚|發(fā)方式感應(yīng)腔,又給出了從上游感應(yīng)腔觸發(fā)支路引出脈沖觸發(fā)下游相應(yīng)位置感應(yīng)腔的次級為水介質(zhì)傳輸線多級串聯(lián)LTD驅(qū)動源的同步觸發(fā)方法,可顯著降低Z箍縮驅(qū)動源的外觸發(fā)脈沖數(shù)量。

關(guān)鍵詞:Z箍縮ICF/IFE;直線型變壓器驅(qū)動源;感應(yīng)腔;觸發(fā)支路;角向線

直線型變壓器驅(qū)動源(linear transformer driver,LTD)通過徑向均勻排列的多個低LC值支路并聯(lián),利用電磁感應(yīng)實現(xiàn)單級多支路電流疊加和多級串聯(lián)感應(yīng)腔電壓疊加,直接獲得前沿60~200 ns高功率脈沖[1-5],在Z箍縮慣性約束聚變(inertial confinement fusion,ICF)/聚變能源(inertial fusion energy,IFE)[6-12]、閃光照相[13-18]、強激光[19-20]等領(lǐng)域具有重要應(yīng)用。

要實現(xiàn)Z箍縮ICF/IFE,驅(qū)動源電流要達(dá)40~60 MA[11]。美國圣地亞國家實驗室(Sandia National Laboratory,SNL)提出了次級采用水線和真空磁絕緣傳輸線(magnetic insulation transmission line,MITL)的60 MA LTD型驅(qū)動源概念設(shè)計[21-24],次級采用水線方案共210路并聯(lián),每路60級1 MA感應(yīng)腔串聯(lián);次級采用MITL方案需要70路并聯(lián),每路70級串聯(lián)。目前,國內(nèi)外Z箍縮ICF/IFE LTD驅(qū)動源概念設(shè)計多數(shù)以俄羅斯大電流所(Institute of High Current Electronics,IHCE)研制的1MA LTD感應(yīng)腔為基礎(chǔ)[1],每級需4路觸發(fā)脈沖,因此,60 MA LTD型脈沖源需要數(shù)萬路觸發(fā)脈沖,而且要求按一定時序到達(dá)各級感應(yīng)腔,這對觸發(fā)系統(tǒng)提出了嚴(yán)峻的技術(shù)挑戰(zhàn)。

我國也在探索LTD驅(qū)動源大規(guī)模開關(guān)的新型觸發(fā)方法,如尹佳輝等探討了多級串聯(lián)LTD觸發(fā)電路拓?fù)浣Y(jié)構(gòu)和多路快前沿、140 kV觸發(fā)脈沖的產(chǎn)生方法[25];劉鵬等電路仿真研究了開關(guān)閉合時序?qū)TD脈沖源輸出脈沖的影響[26],提出了一種基于次級感應(yīng)過電壓自動觸發(fā)LTD設(shè)想[27],該觸發(fā)方法受磁芯在超快前沿脈沖下的時間響應(yīng)特性、氣體開關(guān)在直流疊加次級耦合過電壓下的擊穿閉合時間等因素制約。邱劍等提出基于感應(yīng)變壓器原理的多路開關(guān)同步觸發(fā)方法[28],并在LTD 感應(yīng)腔磁環(huán)加繞副繞組同步產(chǎn)生高壓快脈沖,引入下游LTD 感應(yīng)腔[29],但沒有考慮氣體開關(guān)從施加觸發(fā)到閉合存在約30~40 ns延時,而且副繞組感應(yīng)電脈沖受與副繞組并聯(lián)的磁芯等效損耗電阻、次級阻抗等因素影響,前沿較緩。

本文提出一種利用感應(yīng)腔1個支路和角向傳輸線實現(xiàn)LTD開關(guān)同步閉合的新型觸發(fā)方法,1 MA LTD感應(yīng)腔僅需1路外觸發(fā),次級為MITL的LTD型驅(qū)動源,觸發(fā)脈沖數(shù)降至1/4;次級為水線60 MA LTD驅(qū)動源,每路只需外觸發(fā)前8級,顯著降低了Z箍縮ICF/IFE 大型LTD驅(qū)動源對觸發(fā)系統(tǒng)要求。

1基于內(nèi)部支路和角向線的LTD觸發(fā)原理

基于內(nèi)部1個支路和角向傳輸線實現(xiàn)同步觸發(fā)的LTD感應(yīng)腔結(jié)構(gòu),如圖1所示。

(a) Internal brick and azimuthal line

(b) Sectional view of the induction cavity

圖1(a)為去掉上蓋板和絕緣子的內(nèi)部觸發(fā)支路和角向傳輸線;圖1(b)為感應(yīng)腔剖視圖,對稱線右側(cè)支路為觸發(fā)支路。核心思想是利用LTD感應(yīng)腔內(nèi)的電容CT1、CT2和開關(guān)ST支路,該支路電容CT1一端接地,當(dāng)觸發(fā)支路開關(guān)ST被來自感應(yīng)腔外部的1路脈沖觸發(fā)閉合后,CT1、CT2和開關(guān)ST串聯(lián),高壓端H通過高阻值隔離電感或電阻與感應(yīng)腔殼體連接,同時輸出到置于感應(yīng)腔中間絕緣子的角向傳輸線7,沿圓周方向分別傳輸1/4圓周到A、C兩點,再各自分別沿圓周方向傳輸1/8圓周,到達(dá)B1、B2、D1、D24點,連接到中間絕緣子外側(cè)的金屬觸發(fā)環(huán)5,通過隔離電感或電阻連接到感應(yīng)腔其余支路開關(guān)觸發(fā)電極,實現(xiàn)同級LTD感應(yīng)腔開關(guān)同步觸發(fā)。

該觸發(fā)方式的特點:1)每個LTD感應(yīng)腔僅需1路外部脈沖,觸發(fā)感應(yīng)腔內(nèi)1個觸發(fā)支路,觸發(fā)支路工作電壓和開關(guān)充氣氣壓與感應(yīng)腔其他支路相同,通過角向傳輸線分配為4點,連接到感應(yīng)腔中間絕緣子觸發(fā)環(huán);2)該觸發(fā)方式與感應(yīng)腔引入4路觸發(fā)脈沖效果基本相同,而且當(dāng)感應(yīng)腔工作電壓大于±40 kV時,觸發(fā)支路輸出脈沖電壓幅值將高于常規(guī)外觸發(fā)脈沖電壓幅值,利于開關(guān)同步觸發(fā);3)該方法采用“化整為零”的思想,將龐大復(fù)雜的觸發(fā)系統(tǒng)分散到各級感應(yīng)腔內(nèi)1個不包圍磁芯的支路中。

2水介質(zhì)次級多級串聯(lián)LTD驅(qū)動源的觸發(fā)

對Z箍縮ICF/IFE 大型LTD驅(qū)動源,每路一般需要40支路1 MA LTD感應(yīng)腔60~70級串聯(lián),假定采用70級1 MA感應(yīng)腔串聯(lián),每級4路觸發(fā)脈沖,則單路共需280路觸發(fā)脈沖。

基于上述感應(yīng)腔1個觸發(fā)支路和角向傳輸線實現(xiàn)同級感應(yīng)腔開關(guān)同步觸發(fā)的原理和結(jié)構(gòu),提出了一種新型觸發(fā)方法,可實現(xiàn)LTD基本按IVA標(biāo)準(zhǔn)時序觸發(fā)(所謂標(biāo)準(zhǔn)IVA時序,即電脈沖傳輸?shù)侥囊患?,該級感?yīng)腔開關(guān)剛好觸發(fā)閉合),如圖2所示。 LTD串聯(lián)感應(yīng)腔采用圖1所示結(jié)構(gòu),從每級感應(yīng)腔觸發(fā)支路引出1路脈沖。LTD感應(yīng)腔常用多間隙串聯(lián)氣體開關(guān)觸發(fā),閉合延時約40 ns[32-34],1 MA LTD感應(yīng)腔軸向長度約為22 cm,次級為水介質(zhì)時的電氣長度約為6.6 ns,相同長度聚乙烯高壓電纜傳輸延時約為1.1 ns,為了使多級串聯(lián)LTD按IVA標(biāo)準(zhǔn)時序觸發(fā),上游需1路外觸發(fā)的感應(yīng)腔數(shù)量為40 ns/(6.6-1.1) ns≈7.3,因此,數(shù)十級串聯(lián)LTD僅需觸發(fā)前8級,每級引入1路外觸發(fā)脈沖。LTD每級感應(yīng)腔觸發(fā)支路引出1路脈沖,觸發(fā)下游相應(yīng)位置感應(yīng)腔。例如,上游第1級感應(yīng)腔觸發(fā)支路引出脈沖觸發(fā)第9級感應(yīng)腔;上游第2級感應(yīng)腔觸發(fā)支路引出脈沖觸發(fā)第10級感應(yīng)腔。依次類推,實現(xiàn)LTD按IVA標(biāo)準(zhǔn)時序觸發(fā)。

觸發(fā)LTD上游感應(yīng)腔的多路快前沿脈沖發(fā)生器也可通過LTD多個支路產(chǎn)生[35-36],如圖3所示,多個支路軸對稱布置,中間共用1只低電感、低抖動氣體開關(guān),開關(guān)兩端分別充正負(fù)極性電壓,每個支路連接阻抗50 Ω高壓同軸電纜4根。

圖2 基于內(nèi)部支路和角向傳輸線的次級為水介質(zhì)多級LTD驅(qū)動源的觸發(fā)原理Fig.2 Schematic of triggering cavities based on an internal brick and azimuthal linefor LTDs with water-insulated transmission line

圖3 多支路共用氣體開關(guān)產(chǎn)生多路觸發(fā)脈沖原理Fig.3 Schematic for producing multi-output trigger pulses

電纜末端為高阻,經(jīng)反射產(chǎn)生的脈沖電壓幅值約為支路電容串聯(lián)充電電壓的2倍。改變電纜長度調(diào)節(jié)輸出脈沖延時,使之與被觸發(fā)感應(yīng)腔位置對應(yīng)。共用開關(guān)的每個支路放電回路電感基本不變,增加支路數(shù),可擴展輸出脈沖路數(shù)。當(dāng)2個支路并聯(lián),采用與LTD支路相同的四間隙氣體開關(guān),每個支路連接4根阻抗為50 Ω的高壓同軸電纜,在電容器充電±40 kV、負(fù)載1 kΩ時,輸出8路觸發(fā)脈沖波形,如圖4所示。脈沖波形前沿25 ns,幅值約140 kV,可滿足觸發(fā)1路次級為水線的LTD脈沖源需要。

圖4 2個支路連接8路電纜時典型觸發(fā)脈沖波形Fig.4 Typical output waveform with 8 cables

基于LTD支路共用1只開關(guān)的多路快前沿脈沖發(fā)生器特點:改變開關(guān)充電電壓極性可方便改變輸出觸發(fā)脈沖極性,輸出脈沖電壓幅值調(diào)節(jié)范圍大;采用文獻(xiàn)[19]電路結(jié)構(gòu),可同時輸出雙極性脈沖。支路也可采用單極性充電,中心共用1只低電感、低抖動開關(guān),開關(guān)一端接地,一端與電容器高壓電極連接。單極性充電支路可采用低觸發(fā)閾值(小于10 kV)的偽火花氣體開關(guān),偽火花開關(guān)通流約數(shù)百千安,可并聯(lián)更多支路,產(chǎn)生數(shù)百路觸發(fā)脈沖?;趥位鸹ㄩ_關(guān)和多支路并聯(lián)產(chǎn)生多路快前沿觸發(fā)脈沖的方法可望滿足Z箍縮IFE的LTD觸發(fā)系統(tǒng)要求。

3新觸發(fā)方法實驗驗證

利用研制的500 kA LTD感應(yīng)腔對上述觸發(fā)方法進(jìn)行驗證。500 kA LTD感應(yīng)腔共20支路并聯(lián),直徑2 m,高度22 cm,支路由2只80 nF/100 kV雙端引出電極電容器和1只四間隙串聯(lián)氣體開關(guān)組成,如圖5所示。

圖5 20支路500 kA LTD感應(yīng)腔Fig.5 500 kA LTD cavity with 20 bricks

將其中1個支路80 nF電容換成20 nF,該支路不包圍磁芯,支路一端與腔體下底板連接,輸出端利用沒有金屬編織網(wǎng)的高壓電纜,如圖1所示。角向傳輸線連接到絕緣子內(nèi)的觸發(fā)銅環(huán),觸發(fā)支路開關(guān)觸發(fā)電極通過約6 μH隔離電感接至感應(yīng)腔外觸發(fā)電纜。采用4路外觸發(fā)和基于內(nèi)部單支路觸發(fā)時,500 kA LTD感應(yīng)腔典型短路波形,如圖6所示。

圖6 兩種觸發(fā)方式短路輸出電流Fig.6 Output current waveforms fortwo triggering methods

兩種觸發(fā)方式下感應(yīng)腔充電電壓及開關(guān)氣壓相同,4路外觸發(fā)方式下短路電流周期為731 ns,新觸發(fā)方式下短路電流周期為743 ns。實驗表明,引入一路觸發(fā)脈沖,觸發(fā)感應(yīng)腔內(nèi)部1個支路產(chǎn)生的高電壓脈沖經(jīng)過角向傳輸線傳輸?shù)狡渌烽_關(guān)觸發(fā)電極,可實現(xiàn)本級感應(yīng)腔開關(guān)同步觸發(fā)。

為了進(jìn)一步驗證基于1個支路及角向傳輸線的感應(yīng)腔觸發(fā)方式可行性,對34支路并聯(lián)的0.1 Hz重頻800 kA LTD感應(yīng)腔采用上述觸發(fā)方法。該感應(yīng)腔可以放置36個支路,其中1個支路位置為磁芯復(fù)位隔離電感占用,1個支路為觸發(fā)支路,其電容為12 nF/100 kV,氣體開關(guān)工作電壓、氣壓與其他支路完全相同。其余34個支路為主放電支路,支路電容為2只40 nF/100 kV的雙端引出電極電容和1只帶電暈針均壓的四間隙串聯(lián)氣體開關(guān)。圖7(a)紅色電纜為角向傳輸線,圖7(b)為觸發(fā)支路,經(jīng)過200 Ω水溶液電阻到觸發(fā)支路開關(guān)。

(a) The triggering brick

(b) The azimuthal line

實驗表明:0.1 Hz重頻800 kA LTD感應(yīng)腔,充電±(50~80)kV,感應(yīng)腔其余34個支路都能夠可靠觸發(fā),充電±80 kV連接匹配負(fù)載,電流峰值達(dá)到850 kA,前沿約95 ns,如圖8所示,證明了基于內(nèi)部1個支路和角向傳輸線實現(xiàn)感應(yīng)腔同步觸發(fā)的可行性。

圖8 充電±80 kV匹配負(fù)載電流波形Fig.8 Output waveforms of 0.1 Hz 800 kA LTD cavity

4小結(jié)

面向聚變能源的60 MA超大型LTD脈沖源,數(shù)十萬只氣體開關(guān)的同步觸發(fā)是嚴(yán)峻的技術(shù)挑戰(zhàn)。本文提出的方法,基于感應(yīng)腔1個支路和角向傳輸線實現(xiàn)同級感應(yīng)腔同步觸發(fā),同時,從觸發(fā)支路引出1路脈沖,觸發(fā)下游相應(yīng)位置感應(yīng)腔,采用LTD“化整為零”的思想,將龐大的觸發(fā)系統(tǒng)分散為各感應(yīng)腔內(nèi)1個不包圍磁芯的支路。500 kA 感應(yīng)腔和0.1 Hz 重頻800 kA LTD感應(yīng)腔的實驗表明,該觸發(fā)方式簡單、高效、可靠。對次級為水介質(zhì)傳輸線的N級串聯(lián)LTD驅(qū)動源,每路LTD僅需外觸發(fā)上游8級感應(yīng)腔,且每級僅需1路觸發(fā)脈沖,下游感應(yīng)腔1路觸發(fā)脈沖來自上游相應(yīng)位置感應(yīng)腔的觸發(fā)支路,即可實現(xiàn)LTD基本按IVA標(biāo)準(zhǔn)時序觸發(fā)。本文還給出了基于LTD多支路并聯(lián)共用氣體開關(guān)產(chǎn)生上百路快前沿觸發(fā)脈沖的方法,2支路并聯(lián)共用1只四間隙氣體開關(guān),實驗結(jié)果表明,連接8路50 Ω高壓同軸電纜,輸出脈沖前沿約25 ns,幅值140 kV。本文提出的基于感應(yīng)腔1個支路和角向傳輸線的觸發(fā)方法將顯著減少面向聚變能源的電流60 MA超大型LTD脈沖源對觸發(fā)系統(tǒng)脈沖數(shù)量和時序的要求,尤其適合次級采用水介質(zhì)傳輸線的LTD驅(qū)動源。

參考文獻(xiàn)

[1]KIM A A, MAZARAKIS M G, SINEBRYUKHOV V A, et al. Development and tests of fast 1-MA linear transformer driver stages[J]. Phys Rev S T Accel Beams, 2009, 12(5): 050402.

[2]LECHIEN K, MAZARAKIS M G, FOWLER W E, et al. A 1-MV, 1-MA, 0.1-Hz linear transformer driver utilizing an internal water transmission line[C]// 17th IEEE International Pulsed Power Conference, Washington DC,2009: 1 186-1 191.

[3]WOODWORTH J R, STYGAR W A, BENNETT L F, et al. New low inductance gas switches for linear transformer drivers[J]. Phys Rev S T Accel Beams, 2010, 13(8): 080401.

[4]WOODWORTH J R, FOWLER W E, STOLTZFUS B S, et al. Compact 810 kA linear transformer driver cavity[J]. Phys Rev S T Accel Beams, 2011, 14(4): 040401.

[5]周良驥,鄧建軍,陳林,等. 快脈沖直線變壓器驅(qū)動源模塊的原理及實驗[J]. 強激光與粒子束, 2006, 18(10): 1 749-1 752.(ZHOU Liang-ji, DENG Jian-jun, CHEN Lin, et al. Design and experiment of linear transformer driver stage[J]. High Power Laser and Particle Beams, 2006, 18(10): 1 749-1 752.)

[6]MAZARAKIS M G, STRUVE K W. Conceptual design for a linear transformer driver (LTD)-based refurbishment and upgrade of the Saturn accelerator pulsed power system[R]. SAND 2006-5811, Scandia National Labs, 2006.

[7]OLSON C L, MAZARAKIS M G, FOWLER W E, et al. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield[R]. SAND 2007-0059, Scandia National Labs, 2007.

[8]彭先覺,華欣生. 快Z箍縮——有前途的聚變能源新途徑[J]. 中國工程科學(xué), 2008, 10(1): 47-53.(PENG Xian-jue, HUA Xin-sheng. Fast Z-pinch——a new approach for promising fusion energy[J]. Engineering Science, 2008, 10(1): 47-53.)

[9]邱愛慈,孫鳳舉. Z箍縮和閃光照相用快脈沖功率源技術(shù)的發(fā)展[J]. 強激光與粒子束, 2008, 20(12): 1 937-1 946.(QIU Ai-ci, SUN Feng-ju. Development of fast pulsed power driver for radiography and Z-pinch[J]. High Power Laser and Particle Beams, 2008, 20(12): 1 937-1 946.)

[10]MATZEN M K, MAZARAKIS M G, BAILEY J E,et al. The science, technology, and applications of terawatt-class pulsed power drivers at Sandia National Laboratories[C]//IEEE International Power Modulator and High Voltage Conference, Atlanta, 2010:1-16.

[11]彭先覺,王真. Z箍縮驅(qū)動聚變裂變混合能源堆總體概念研究[J]. 強激光與粒子束, 2014, 26(9): 090201 (PENG Xian-jue, WANG Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid energy reactor[J].High Power Laser and Particle Beams, 2014,9, 26(9): 090201.)

[12]李正宏,黃洪文,王真, 等. Z箍縮驅(qū)動聚變-裂變混合堆總體概念研究進(jìn)展[J]. 強激光與粒子束, 2014, 26(10): 100202. (LI Zheng-hong, HUANG Hong-wen, WANG Zhen, et al. Conceptual design of Z-pinch driven fusion-fission hybrid power reactor[J]. High Power Laser and Particle Beams, 2014, 26(10): 100202.)

[13]BAYOL F, CUBAYNES F, DELPLANQUE R, et al. Development of 1 MV ultra-fast LTD generator design[C]//18th IEEE International Pulsed Power Conference,Chicago, 2011: 619-624.

[14]LECKBEE J J, CORDOVA S, OLIVER B V, et al. Linear transformer driver (LTD) research for radiographic applications[C]// 18th IEEE International Pulsed Power Conference, Chicago, 2011: 614-618.

[15]LECKBEE J J, OLIVER B V, BRUNER N, et al. Design of a 7-MV linear transformer driver (LTD) for down-hole flash X-ray radiography[R]. SAND 2008-6142, Scandia National Labs, 2008.

[16]OLIVER B V, LECKBEE J, JOHNSON D, et al. Option study of an orthogonal X-ray radiography axis for pRad at LANSCE area C, Los Alamos[R]. SAND 2010-7261, Scandia National Labs, 2010.

[17]TOURY M, VERMARE C, ETCHESSAHAR B, et al. IDERIX:An 8 MV flash X-rays machine using a LTD design[C]//16th IEEE International Pulsed Power Conference,Albuquerque, 2007: 599-602.

[18]TOURY M, CARTIER F, COMBES P, et al. Transfer and test of a 1 MV LTD generator at CEA[C]// 19th IEEE International Pulsed Power Conference, San Francisco, 2013: 766-769.

[19]KOVALCHUK B M, KHARLOV A V, KUMPYAK E V, et al. Capacitor blocks for linear transformer driver stages[J].Rev Sci Instrum, 2014,85(1):013501.

[20]KOVALCHUK B M, KHARLOV A V, KUMPYAK E V, et al. Pulse generators based on air-insulated linear-transformer-driver stages[J]. Phys Rev S T Accel Beams, 2013,16(5):050401.

[21]STYGAR W A, CUNEO M E, HEADLEY D I, et al. Architecture of petawatt-class Z-pinch accelerators[J]. Phys Rev S T Accel Beams, 2007, 10(3): 030401.

[22]STYGAR W A, FLOWER M E, LECHIEN K R, et al. Shaping of output pulse of a linear-transformer-driver module[J]. Phys Rev S T Accel Beams, 2009, 12(3): 030402.

[23]MAZARAKIS M G, FOWLER W E, LECHIEN K L, et al. High-current linear transformer driver development at Sandia National Laboratories[J]. IEEE Trans Plasma Sci,2010, 38(4) :704-713.

[24]MAZARAKIS M G, FOWLER W E, MCDANIEL H. et al. A 1-MA LTD cavities building blocks for next generation ICF/IFE[C]// IEEE International Corference on Inegagauss Magnetic Field Generation and Related Topics, Santa Fe, NW, USA, 2006.

[25]尹佳輝,魏浩,孫鳳舉, 等. 快脈沖直線變壓器驅(qū)動源同步觸發(fā)系統(tǒng)[J]. 強激光與粒子束,2012, 24(4): 871-875. (YIN Jia-hui, WEI Hao, SUN Feng-ju, et al. Synchronized trigger system for fast linear transformer driver[J]. High Power Laser and Particle Beams, 2012, 24 (4) : 871-875.)

[26]LIU P, SUN F J, YIN J H, et al. Effect of cavity-triggering sequences on output parameters of LTD-based drivers [J]. IEEE Trans Plasma Sci, 2011, 39 (5): 1 247-1 953.

[27]YIN J H, LIU P, WEI H, et al. Trigger method based on secondary induced overvoltage for linear transformer drivers[J]. IEEE Trans Plasma Sci,2013, 41 (7):1 760-1 766.

[28]邱劍,劉克富,雷宇. 直線變壓器驅(qū)動源多路開關(guān)同步觸發(fā)技術(shù)[J]. 強激光與粒子束,2012, 24(4): 765-770. (QIU Jian, LIU Ke-fu, LEI Yu, et al. Multi-output synchronization trigger for linear transformer driver[J].High Power Laser and Particle Beams, 2012, 24 (4) : 765-770.)

[29]涂卓麟,邱劍,余瀾明, 等. 大規(guī)模LTD 自觸發(fā)驅(qū)動技術(shù)[C]// 第三屆全國脈沖功率會議論文集,長沙,2013.(TU Zhuo-lin, QIU Jian, YU Lan-ming, et al. Large scale LTD self-triggerimg method[C]//The 3rd China Pulsed Power Proceeding, Changsha, 2013.)

[30]王勐,周良驥,鄒文康,等. 混合模式直線型變壓器驅(qū)動源模塊[J]. 強激光與粒子束, 2012, 24(5): 1 239-1 243.(WANG Meng, ZHOU Liang-ji, ZOU Wen-kang, et al. Mixed-mode LTD module[J]. High Power Laser and Particle Beams, 2012, 24(5): 1 239-1 243.)

[31]鄧建軍,王勐,謝衛(wèi)平, 等. 面向Z箍縮驅(qū)動聚變能源需求的超高功率重復(fù)頻率驅(qū)動器技術(shù)[J]. 強激光與粒子束, 2014, 26(10): 100201. (DENG Jian-jun,WANG Meng, XIE Wei-ping, et al. Super-power repetitive Z-pinch driver for fusion-fission reactor[J]. High Power Laser and Particle Beams, 2014, 26(10): 100201.)

[32]魏浩,孫鳳舉,姜曉峰, 等. 直流疊加脈沖電壓下FLTD氣體開關(guān)擊穿特性實驗[J]. 強激光與粒子束,2014, 26(4): 045039.(WEI Hao, SUN Feng-ju, JIANG Xiao-feng, et al. Breakdown characteristics of gas spark switch for fast linear transformer driver under DC and pulse combined voltage[J]. High Power Laser and Particle Beams, 2014, 26(4): 045039.)

[33]LIANG T X,JIANG X F, WAND Z G, et al. Characteristics study of multi-gaps Gas switch with corona discharge for voltage balance[J]. IEEE Trans Plasma Sci, 2014, 42(2): 340-345.

[34]WOODWORTH J R, ALEXANDER J A, GRUNER F R, et al. Low-inductance gas switches for linear transformer drivers[J]. Phys Rev S T Accel Beams, 2009, 12(6): 060401.

[35]姜曉峰,孫鳳舉,王志國, 等. 多路輸出的高電壓納秒脈沖發(fā)生器:中國, 10379250.6[P]. 2013. (JIANG Xiao-feng, SUN Feng-ju, WANG Zhi-guo, et al. High voltage pulse generator with multi-output cables and several nanoseconds rise time:China, 10379250.6[P]. 2013.)

[36]孫鳳舉, 劉鵬, 邱愛慈, 等. 一種多級串聯(lián)直線型變壓器驅(qū)動源的同步觸發(fā)方法:中國, 0008747.8[P]. 2014.(SUN Feng-ju, LIU Peng, QIU Ai-ci, et al. A synchronization triggering method for multi cavities in series on linear transformer driver: China, 0008747.8[P]. 2014.)

A Novel Triggering Technique Based on an Internal Brick and Azimuthal Line in Cavities for Linear Transformer Drivers

SUN Feng-ju,ZENG Jiang-tao,LIANG Tian-xue,WEI Hao,JIANG Xiao-feng,WANG Zhi-guo,YIN Jia-hui,QIU Ai-ci

(Northwest Institute of Nuclear Technology,Xi’an710024,China;State Key Laboratory of Intense Pulsed Radiation Simulation and Effect,Xi’an710024, China)

Abstract:In this paper, a novel triggering technique based on an internal brick and azimuthal line in cavities is presented for LTDs. The triggered brick,which is similar to other bricks in cavities, has the same charge voltage and the switch gas pressure, but does not enclose magnetic cores. When the switch in the brick is triggered by an external pulse, a high voltage pulse is produced and transmitted to trigger the switches in other bricks. Therefore, only one external trigger pulse is necessary for a 1 MA LTD cavity. This novel triggering technique for a cavity has been verified in 500 kA LTD cavity with 20 bricks and 800 kA cavities with 34 bricks. Based on this novel triggering technique, only several upstream cavities are triggered by external trigger pulses, the other cavities are triggered by the high pulses from the triggering brick in the particularly located upstream cavities with multi-stage cavities stacked in series for LTDs with water-insulated transmission line. The novel triggering technique can reduce the number of external triggering pulses of Z-pinch LTD pulser remarkablely.

Key words:Z-pinch inertial confinement fusion (ICF)/ inertial fusion energy (IFE);linear transformer driver(LTD);induction cavity;triggering brick;azimuthal line

文獻(xiàn)標(biāo)志碼:A

文章編號:2095-6223(2016)010401(7)

中圖分類號:TL51,TM836

作者簡介:孫鳳舉(1967-),男,山東濟陽人,研究員,博士,主要從事LTD和IVA等脈沖源技術(shù)研究。E-mail:sunfengju@nint.ac.cn

基金項目:國家自然科學(xué)基金資助項目(51077111)

收稿日期:2015-04-16;修回日期:2015-11-06