国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

金沙江上游雪隆囊古滑坡堰塞湖潰壩堆積物粒度特征

2016-06-18 07:12:38陳松陳劍劉超馬俊學(xué)
中國水土保持科學(xué) 2016年1期
關(guān)鍵詞:堆積物金沙江

陳松, 陳劍, 劉超, 馬俊學(xué)

(中國地質(zhì)大學(xué)工程技術(shù)學(xué)院,100083,北京)

?

金沙江上游雪隆囊古滑坡堰塞湖潰壩堆積物粒度特征

陳松, 陳劍?, 劉超, 馬俊學(xué)

(中國地質(zhì)大學(xué)工程技術(shù)學(xué)院,100083,北京)

摘要:金沙江上游地質(zhì)災(zāi)害頻發(fā),地質(zhì)環(huán)境演化相對復(fù)雜。為研究堰塞湖潰壩后堆積物的來源與壩體物質(zhì)、沉積環(huán)境的關(guān)系,以金沙江上游雪隆囊古滑坡堰塞湖潰壩堆積物為主要研究對象,通過野外實地調(diào)查取樣和室內(nèi)粒度篩分試驗,對雪隆囊滑坡堰塞湖潰壩堆積物的粒度進(jìn)行測試,并分別對滑坡堰塞湖潰壩堆積物的上、中、下游3段的粒度特征進(jìn)行研究。結(jié)果表明:從潰壩堆積體的上游到下游,粒度分布曲線分別為單峰、多峰、雙峰;上游粒度組成主要以礫石為主,中游和下游主要以細(xì)砂和極細(xì)砂為主,粒度從上游到下游依次有明顯的細(xì)化趨勢,平均粒度由粗變細(xì),分選性整體上較差和差。以上這些特點綜合反映出潰壩堆積體的上游段到下游段的水動力條件在逐漸減弱,其中堆積體上游段礫石部分來自壩體物質(zhì),而中、下游段細(xì)粒部分既可能來自壩體,又可能來自堰塞湖潰壩前的上游湖相沉積層。

關(guān)鍵詞:雪隆囊; 古滑坡; 堆積物; 粒度特征; 金沙江

沉積物粒度分布特征分析已經(jīng)廣泛應(yīng)用于沉積環(huán)境領(lǐng)域,對地質(zhì)環(huán)境演化的研究影響很大[1-3]?,F(xiàn)今,粒度特征分析已在深海、黃土、古土壤、湖泊、冰川、泥石流等沉積物研究中廣泛應(yīng)用[4-9],也有將粒度分析與分形理論同工程性質(zhì)相結(jié)合的研究[10-12],然而,關(guān)于堰塞湖潰壩的研究,國外最早主要是針對冰川及冰磧堰塞湖潰壩堆積體的研究[13-16];國內(nèi)由地震誘發(fā)的滑坡堰塞湖也屢見不鮮[17-18],崔之久等[19]對各種類型的堰塞湖及潰壩后的堆積體做了初步論述。有的學(xué)者只對產(chǎn)生堰塞湖上游的湖相沉積物進(jìn)行粒度研究[20-21];有的學(xué)者[22-26]主要是對滑坡產(chǎn)生的堰塞壩潰壩過程進(jìn)行數(shù)值模擬或穩(wěn)定性計算。而這些學(xué)者基本上研究的是冰川、冰磧潰壩后的堆積物特點或堰塞湖上游湖相沉積物的特征,有的把重點放在研究堆積體現(xiàn)狀評價、堆積體本身力學(xué)性質(zhì)的研究,缺乏對堆積體成因過程的系統(tǒng)把握。目前,關(guān)于滑坡堰塞湖潰壩堆積方面的研究甚少,基本未涉及潰壩堆積體的粒度特征與沉積環(huán)境、堰塞壩物質(zhì)組成關(guān)系方面的研究。關(guān)于金沙江上游古滑坡堰塞湖潰壩堆積沉積物的粒度分析這方面的研究工作缺乏,目前只有陳劍等[27]對該區(qū)堰塞湖潰壩堆積體的發(fā)現(xiàn)做了初步論述;因此,為對金沙江上游水土地質(zhì)災(zāi)害的環(huán)境進(jìn)行治理與預(yù)測,筆者在野外考察的基礎(chǔ)上,對雪隆囊古滑坡堰塞壩潰決后沿程堆積物粒度進(jìn)行采樣分析,揭示該堆積物的粒度特征及變化規(guī)律,對研究堰塞湖潰壩后堆積物的來源與壩體物質(zhì)組成及沉積環(huán)境的關(guān)系具有重要意義,可為今后金沙江上游流域水土保持的治理提供參考。

1研究區(qū)概況

位于西藏芒康縣金沙江上游,E 98°05′~98°55′N 29°20′~29°36′。金沙江上游雪隆囊至王大龍河段,區(qū)內(nèi)河水位與最高點相對高差約為3 800 m,溝谷河流海拔2 300 m左右,峽谷寬100~200 m,沿江溝谷地形坡度25°~60°,有的地段坡度>70°。金沙江斷裂帶的主斷裂雄松—蘇哇龍活動斷裂在其東部附近穿過(圖1)。沿江河谷裸露巖石的巖性主要為二疊系片巖、火山巖和大理巖等。該區(qū)巖層節(jié)理較發(fā)育受金沙江活動斷裂帶的影響,崩塌現(xiàn)象頻發(fā)[27]。

圖2 雪隆囊古滑坡堰塞湖潰壩堆積體的分布范圍Fig.2 Distribution of the dam-break deposits of dammed lake caused by Xuelongnang ancient landslide

經(jīng)過野外調(diào)查發(fā)現(xiàn),滑坡壩堰塞湖潰壩后將堰塞壩及堰塞湖內(nèi)沉積物沖向下游,最終導(dǎo)致被沖下的物質(zhì)堆積在金沙江河道兩側(cè)(圖2),根據(jù)堆積物的位置不同,將這段河段分為潰壩堆積體的上、中、下3段,并將堆積體進(jìn)行編號(圖2中I~VI號)以便分析。經(jīng)陳劍等[27]對金沙江上游雪隆囊古滑坡堰塞湖潰壩堆積體的研究初步判斷,滑坡堰塞體是由礫石,砂和少量黏土組成的混雜堆積物。

2研究方法

2.1樣品采集與粒度的測量

在野外調(diào)查基礎(chǔ)上,對雪隆囊地區(qū)潰壩堆積體的上游段、中游段、下游段等分布區(qū)域進(jìn)行采樣,每個采樣點的取樣量為25 cm×25 cm×20 cm。共計采集樣品21個并編號,將樣品在實驗室用一套標(biāo)準(zhǔn)的振篩機(4~0.065 mm)進(jìn)行篩分實驗。采樣點位置如圖2所示。采樣的編號、顆粒級配以及堆積物的室內(nèi)顆粒分析成果見表1、表2和表3。由于數(shù)據(jù)量較大只給出部分原始數(shù)據(jù)。

2.2粒度特征及形狀分析

采用克魯賓(Krumbein)粒級標(biāo)準(zhǔn)劃分粒度公式[28]

表1 堆積物上游段顆粒

注:φ為粒度的對數(shù)值;w為各粒度所占比例;SY1-1~SY1-7為上游各采樣點的編號。下同。Note:φ: the logarithm of granularity;w: the percentage of each particle size; SY1-1~SY1-7: the No. of sample points in the upstream section. The same as below.

表2 堆積物中游段顆粒

注:ZY2-1~ZY2-7表示中游各采樣點的編號。Note: ZY2-1~ZY2-7: the No. of sample points in the middle section.

(1)

式中:φ為粒度的對數(shù)值;d為顆粒的直徑,mm。

3結(jié)果與討論

3.1堰塞湖潰壩堆積物的粒度組成

整個研究區(qū)域的粒度主要由礫石、砂粒、粉粒和極少量的黏粒組成。從表4中得出,上游段潰壩堆積體堆積物粒度組成以φ值為-2~-1為主,由礫石構(gòu)成,其他比例不足7%;中游段粒度組成以φ值為2~3和3.4~4為主,主要由細(xì)砂和極細(xì)砂構(gòu)成,其他的不足8%;下游段粒度組成以φ值為2.4和3.5為主,主要由細(xì)砂和極細(xì)砂構(gòu)成,但比中游段有所增長,平均比例分別高達(dá)37%和22%,其他的不足3%。

表3 堆積物下游段顆粒

注:XY3-1~XY3-7表示下游各采樣點的編號。Note: XY3-1~XY3-7: the No. of sample points in the downstream section.

表4 堆積物各段的粒度比例

從以上各段粒度組成來看,潰壩堆積體的上游段主要是以粗大礫石堆積為主,水動力條件很強,導(dǎo)致粗大的礫石快速堆積下來而非礫石組分的粒度被迅速沖走。結(jié)合野外實地考察,上游段堆積物粒度較大,松散破碎,磨圓度較差,說明在潰決時沒有經(jīng)過長距離的搬運就快速沉積下來。離潰壩口較遠(yuǎn)的堆積體中游段和下游段出現(xiàn)細(xì)粒部分,說明這些物質(zhì)在潰決時強水動力條件下,沒來得及沉積就被沖下來,隨后隨著搬運距離延長,水動力條件逐漸變?nèi)?,?dǎo)致部分才開始沉積,而這些細(xì)粒部分的沉積物質(zhì)有可能來自不同的物源,一部分可能來源于壩體本身,有的可能來源于未潰決前上游的湖相沉積層,而這些松散、雜亂等大的粒度應(yīng)該來自壩體本身的物質(zhì)。

3.2粒度分布曲線

上游段粒度組成分布曲線圖呈現(xiàn)明顯的單峰型(圖3),曲線為正偏的非對稱分布,堆積物的眾值粒度出現(xiàn)在φ值為-1.2附近,斜率很大,說明粒度比較集中。φ值為-2附近的粒度比例最高,達(dá)65%,其他比例均<8%,說明此段主要以礫石為主。

圖3表明當(dāng)時潰決時水動力條件極強,導(dǎo)致粗大的礫石快速堆積下來而非礫石組分的粒度被迅速沖走,沉積分選出來的物質(zhì)比較單一,說明當(dāng)時受單一穩(wěn)定的水動力條件影響;將這些沉積細(xì)粒物質(zhì)與壩體物質(zhì)比較,得出這些礫石主要來源于壩體。

中游段粒度組成分布曲線圖呈現(xiàn)明顯的多峰型(圖4),堆積物的眾值粒度主要出現(xiàn)在φ值為2.5附近,φ值為3.5附近的次之,而砂粒部分比例高達(dá)32%,主要由細(xì)砂和極細(xì)砂為主,其他粒度比例均<10%,說明此段主要以細(xì)砂和極細(xì)砂為主,同時伴有少量的礫石及粗砂。

圖4表明當(dāng)時從堆積物上游段未沉積完的部分礫石還在沉積,細(xì)粒也開始有所沉積,細(xì)粒部分只是較潰壩堆積體上游段有所增加,但比下游段沉積較少。總的來說,中游段較上游段的水動力強度弱了,其中沉積的細(xì)粒并非全部來自壩體本身,有些可能來自堰塞湖潰壩前的上游湖相沉積。

下游段粒度組成分布曲線圖呈現(xiàn)明顯的雙峰型(圖5),堆積物的眾值粒度主要出現(xiàn)在φ值為2.5附近,以φ值為2.5附近的粒度比例最高,高達(dá)37%,φ值為3.6附近的次之,主要由細(xì)砂和極細(xì)砂為主,其他區(qū)間的粒度礫石比例不足5%,說明此段主要以細(xì)砂和極細(xì)砂為主。雖然此段與中游段物質(zhì)組成上相似,但細(xì)砂與極細(xì)砂的比例比中游段分別提高6%,同時少量的礫石及粗砂的比例比中游段減少6%。

以上對圖5的粒度分布曲線分析可知,頻率曲線屬于雙峰型且沉積物主要是細(xì)粒,并且細(xì)粒部分的含量較堆積體中游段部分增加很多??偟膩碚f潰壩堆積體下游段的水動力強度較上游段和中游段更弱;但從這些沉積細(xì)粒物質(zhì)與壩體物質(zhì)關(guān)系角度來看,并非全部來自壩體本身,有可能這些細(xì)粒物質(zhì)來自于堰塞湖潰壩前的上游湖相沉積。

圖3 上游粒度頻率曲線Fig.3 Frequency curves of grain sizes in the upstream section

圖4 中游段粒度頻率曲線Fig.4 Frequency curves of grain sizes in the middle section

圖5 下游粒度頻率曲線Fig.5 Frequency curves of grain sizes in the downstream section

4結(jié)論與討論

1)從金沙江上游雪隆囊潰壩堆積物粒度組成及其各段的頻率分布曲線可以得出:上游段頻率曲線為單峰,以礫石為主,潰決時水動力條件極強,且受單一穩(wěn)定的水動力條件的影響,其中這些礫石主要來自壩體;中游段頻率曲線為多峰型,主要以細(xì)砂和極細(xì)砂為主,水動力強度較上游有所減弱;下游段頻率曲線為雙峰型,主要以細(xì)砂和極細(xì)砂為主,相比中游比例增多,水動力強度比中游更弱了。其中中游段與下游段沉積的細(xì)粒部分并非全部來自壩體本身,有些可能來自于堰塞湖潰壩前的上游湖相沉積。

2)總體而言,水動力條件由上到下在逐漸減弱。就堆積體與堰塞湖壩體的物質(zhì)關(guān)系來說,礫石部分來自壩體物質(zhì),而細(xì)粒部分可能部分來自壩體,部分來自堰塞湖潰壩前上游的湖相沉積層。

3)金沙江上游潰壩堆積物的粒度分布曲線與前人所研究的風(fēng)成砂丘—海(湖)灘砂—河道砂—冰川和沖積扇等特點進(jìn)行對比,更趨向于河道堆積物的粒度分布曲線。

5參考文獻(xiàn)

[1]孫有斌,高抒,李軍. 邊緣海陸緣物質(zhì)中環(huán)境敏感粒度組分的初步分析[J]. 科學(xué)通報,2003,48(1):83.

Sun Youbin, Gao Shu, Li Jun. Preliminary analysis of environmental sensitive grain size group edge material sea margin[J]. Science Bulletin,2003,48(1):83.(in Chinese)

[2]肖景義,陳建強,孫剛,等. 河北邯鄲HZ- S孔第四紀(jì)沉積物粒度特征分析[J]. 干旱區(qū)資源與環(huán)境,2009,23(1):54.

Xiao Jingyi, Chen Jianqiang, Sun Gang, et al. Grain-size characteristics of HZ-S core Quaternary sediments in Handan city, Hebei province[J]. Journal of Arid Land Resources and Environment, 2009,23(1):54. (in Chinese)

[3]呂連清,方小敏,鹿化煜,等. 青藏高原東北緣黃土粒度記錄的末次冰期千年尺度氣候變化[J].科學(xué)通報,2004,49(11):1091.

Lü Lianqing, Fang Xiaomin, Lu Huayu, et al. Grain size records of loess grain size of millennium scale climate change in the northeastern margin of the Tibet Plateau during the last glacial period[J]. Science Bulletin,2004,49(11):1091. (in Chinese)

[4]殷志強,秦小光.中國北方部分地區(qū)黃土、沙漠沙、湖泊、河流、細(xì)粒沉積物粒度多組分分布特征研究[J].沉積學(xué)報,2009,27(2):344.

Yin Zhiqiang, Qin Xiaoguang. The multimodal grain-size distribution characteristics of loess, desert, lake and river sediments areas of Northern China[J]. Acta Sedimentologica Sinica,2009,27(2):344.(in Chinese)

[5]李昌志,王裕宜.泥石流、冰磧和河湖沉積物的粒度特征及判別[J].山地學(xué)報,1999,17(1):50.

Li Changzhi, Wang Yuyi. Prelimilary exploration on grain characteristic and discrimination of debris flow deposit, moraine and river & lake deposit[J]. Journal of Mountain Science,1999,17(1):50.(in Chinese)

[6]劉富剛.魯西北地表沉積物粒度特征及分布成因研究[J].人民黃河,2008,30(7):12.

Liu Fugang. Study on grain size characteristics and distribution of surface sediments in the northwest of Shandong Province[J].Yellow River,2008,30(7):12.(in Chinese)

[7]董智,王麗琴,楊文斌,等.額濟納盆地戈壁沉積物粒度特征分析[J].中國水土保持科學(xué),2013,11(1):32.

Dong Zhi, Wang Liqin, Yang Wenbin, et al. Grain size characteristics of gobi sediment in Ejina Basin[J]. Science of Soil and Water Conservation,2013,11(1):32.(in Chinese)

[8]史興民,萬正耀,師靜.渭河咸陽段近代洪水沉積物粒度特征分析[J].水土保持通報,2008,28(3):71.

Shi Xingmin, Wan Zhengyao, Shi Jing. Grain-size characteristics of recent flood sediment of Weihe River in Xianyang section[J]. Bulletin of Soil and Water Conservation,2008,28(3):71.(in Chinese)

[9]李柏,高甲榮,胡封兵,等.北京王虎溝泥石流堆積物粒度參數(shù)分析[J].中國水土保持科學(xué),2011,9(4):7.

Li Bai, Gao Jiarong, Hu Fengbing, et al. Granularity parameter of debris flow deposit in Wanghugou Gully,Beijing City[J]. Science of Soil and Water Conservation, 2011, 9(4): 7.(in Chinese)

[10] 易順民,唐輝明. 凍土粒度成分的分形結(jié)構(gòu)特征及其意義[J]. 冰川凍土,1994,16(4):314.

Yi Shunmin, Tang Huiming. Fractal structure features of granulometric composition in frozen soil and its significance[J]. Journal of Glaciolgy and Geocryolong, 1994, 16(4): 314. (in Chinese)

[11] 柏春廣,王建. 一種新的粒度指標(biāo):沉積物粒度分維值及其環(huán)境意義[J]. 沉積學(xué)報,2003,21(2):234.

Bai Chungunag, Wang Jian. A new grain-size index: grain-size fractal dimension of sediment and its environmental signif icance[J]. Acta Sedimentologica Sinica, 2003, 21(2): 234. (in Chinese)

[12] 張宏,柳艷華,杜東菊. 渤海灣西岸沉積物粒度參數(shù)特征及其工程性質(zhì)分析[J]. 天津城市建設(shè)學(xué)院學(xué)報,2007,13(2):104.

Zhang Hong, Liu Yanhua, Du Dongju. Analysis of characters of granularity parameters and engineering properties of sediments in western coast of Bohai Bay[J]. Journal of Tianjin Institute of Urban Construction, 2007, 13(2): 104. (in Chinese)

[13] Evans S G.The maximum discharge of outburst floods caused by the breaching of man-made and natural dams[J].Canadian Geotechnical Journal,1986,23:385.

[14] Cutler P M,Colgan P M,Mickelson D M.Sedimentologic evidence for outburst floods from the Laurentide Ice Sheet margin in Wisconsin,USA: implications for tunnel-channel formation[J].Quaternary International,2002,90(1):23.

[15] Benn D I,Owen L A,F(xiàn)inkel R C, et al.Pleistocene lake outburst floods and fan formation along the eastern Sierra Nevada,California: implications for the interpretation of intermontane lacustrine records[J].Quaternary Science Reviews,2006,25(21/22):2729.

[16] Lord M L, Kehew A E.Sedimentology and paleohydrology of glacial-lake outburst deposits in southeastern Saskatchewan and northwestern North Dakota[J].Geological Society of American Bulletin,1987,99(5):663.

[17] Dai F C,Lee C F,Deng J H,et al.The 1786 earthquake triggered landside dam and subsequent dam-break flood on the Dadu River,Southwestern China[J].Geomorphology,2005,65(3/4):205.

[18] 吳慶龍,張培震,張會平,等.黃河上游積石峽古地震堰塞潰決事件與喇家遺址異常古洪水災(zāi)害[J].中國科學(xué)(D輯):地球科學(xué),2009,39(8):1148.

Wu Qinglong, Zhang Peizhen, Zhang Huiping, et al. The Jishixia ancient earthquake damming outburst on the upper reaches of the Yellow River and the Lajia ancient abnormal flood disaster[J]. Science in China (Series D: Earth Sciences), 2009, 39(8): 1148. (in Chinese)

[19] 崔之久,張梅,崔鵬,等. 初論堰塞湖潰壩沉積相特征[J]. 山地學(xué)報,2015,33(2):129

Cui Zhijiu, Zhang Mei, Cui Peng, et al. Discussion on characteristics of sedimentary facies of dammed-lakes outburst deposit[J]. Mountain Research, 2015, 33(2): 129. (in Chinese)

[20] 王蘭生,楊立錚,王小群,等.岷江疊溪古堰塞湖的發(fā)現(xiàn)[J].成都理工大學(xué)學(xué)報:自然科學(xué)版,2005,32(1):1.

Wang Lansheng, Yang Lizheng, Wang Xiaoqun, et al. Discovery of huge ancient dammed lake on upstream of Minjiang River in Sichuan, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2005, 32(1): 1. (in Chinese)

[21] 王小群,王蘭生,沈軍輝.岷江上游疊溪古堰塞湖沉積物粒度特征及環(huán)境意義[J].工程地質(zhì)學(xué)報,2010,18(5):677.

Wang Xiaoqun, Wang Lansheng, Shen Junhui. Granularity analysis of sediments in Diexi ancient dammed lake on the upstream of Minjiang River and its environmental significance[J]. Journal of Engineering Geology, 2010, 18(5): 677. (in Chinese)

[22] 王光謙,鐘德鈺,張紅武,等.汶川地震唐家山堰塞湖泄流過程的數(shù)值模擬[J].科學(xué)通報,2008,53(24):3127.

Wang Guangqian, Zhong Dejue, Zhang Hongwu, et al. The numerical simulation of discharge process of the Tangjiashan Quake Lake formed by the Wenchuan Eathquake[J]. Chinese Science Bulletin, 2008, 53(24): 3127. (in Chinese)

[23] 傅旭東,劉帆,馬宏博,等.基于物理模型的唐家山堰塞湖潰決過程模擬[J].清華大學(xué)學(xué)報(自然科學(xué)版),2010,50(12):1910.

Fu Xudong, Liu Fan, Ma Hongbo, et al. Physically based simulation of the breaching of the Tangjiashan Quake Lake[J]. Journal of Tsinghua University(Science and Technology), 2010, 50(12): 1910.(in Chinese)

[24] 王小群,王蘭生,崔杰.金沙江烏東德水電站岸坡槽谷堆積體成因分析[J].水文地質(zhì)工程地質(zhì),2008(5):7.Wang Xiaoqun,Wang Lansheng,Cui Jie.Causes analysis of slope accumulation in Wudongde hydropower station of Jinshajiang river valley[J].Hydrogeology & Engineering Geology,2008(5): 7.(in Chinese)

[25] 崔杰,王蘭生,徐進(jìn),等.金沙江中游滑坡堵江事件及古滑坡體穩(wěn)定性分析[J].工程地質(zhì)學(xué)報,2008,16(1):6.

Cui Jie,Wang Lansheng,Xu Jin,et al.Stability analysis of old landslide for a possible ancient landslide event blocking middle of Jinsha river[J].Journal of Engineering Geology,2008,16(1): 6.(in Chinese)

[26] 石豫川,等.金沙江上游某巨型復(fù)合型滑坡的基本特征及穩(wěn)定性分析[J].地質(zhì)災(zāi)害與環(huán)境保護(hù),2003,14(4):11.

Shi Yuchuan, et al. The basic characteristics and stability analysis to some giant and multiple landslide in upper course of Jinsha river[J].Journal of Geological Hazards and Environment Preservation,2003,14(4): 11.(in Chinese)

[27] 陳劍,崔之久.金沙江上游雪隆囊古滑坡堰塞湖潰壩堆積體的發(fā)現(xiàn)及其環(huán)境與災(zāi)害意義[J].沉積學(xué)報,2015,33(2):275.

Chen Jian, Cui Zhijiu. Discovery of outburst deposits induced by the Xuelongnang paleolandslide-dammed lake in the upper Jinsha River, China and its environmental and hazard significance[J]. Acta Sedimentologica Sinica, 2015, 33(2): 275. (in Chinese)

[28] Krumbein W C. Measurement and geological significance of shape and roundness of sedimentary particles[J].Journal of Sedimentany Research,1941,11(2):64.

(責(zé)任編輯:程云郭雪芳)

Granularity characteristics of deposits from the break of the dammed lake caused by Xuelongnang ancient landslide in the upper Jinsha River

Chen Song, Chen Jian, Liu Chao, Ma Junxue

(School of Engineering and Technology, China University of Geosciences, 100083, Beijing, China)

Abstract:[Background] The upper reaches of Jinsha River is a geological disaster prone area, and the geological environment evolution is relatively complex. [Methods] To study the relationship among the source of deposits after the break of dammed lake, the materials in the dam-body and sedimentary environment, taking the dam-break deposits from the dammed lake caused by Xuelongnang ancient landslide in the upper Jinsha River as the main research object, through field survey sampling and indoor sieving test of particle size, the particle sizes were tested, the granularity characteristics in the upstream, middle, and downstream section of the deposits were studied, and the composition of grain size and the size distribution curve of the deposits were analyzed in detail. [Results] The results showed that the distribution curves of grain sizes in the dam-break deposits for the upstream, middle and the downstream sections were unimodal, multimodal and doublet respectively. The composition of the grain size in the upstream section mainly was gravel, the hydrodynamic intensity was very strong, and it was affected by the single stable hydrodynamic condition. In the middle section, the main ones were fine sand and extremely fine sand, hydrodynamic intensity weakened mainly in the lower reaches. Compared with middle section, also main sizes in downstream were also fine and extremely fine, and the proportion of them increased; moreover, hydrodynamic intensity was even weaker in general. Regarding the relationship between deposits and materials of dam-body, the gravels were from the material of dam-body, and the fine particles might be partly from the dam-body, and partly from the lacustrine sediment in the upper reaches before the break of dammed lake. The particle size presented the trend of obvious becoming thinner from the upstream to the downstream, and the average particle size changed from coarse to fine. The sorting feature of dam-break deposits was poorer and poor. These characteristics reflected the gradual weakening of hydrodynamic intensity from upstream to downstream of dam-break deposits. Contrast to the characteristics of the wind sand dune-sea (lake) beach sand - river sand-glacial and alluvial fan, etc. studied previously, the size distribution of dam-break deposits in the upstream of Jinsha River had high similarity with the grain size distribution curve of the river deposits. [Conclusions] Therefore, to reveal the granularity characteristics and change pattern of the deposits, studying the relationships among the sources of deposits from break of dammed lake, the material composition of dam-body and sedimentary environment is of great significance, which may provide reference value for the management of soil and water conservation in the upper reaches of Jinsha River in the future.

Keywords:Xuelongang; ancient landslide; deposits; granularity characteristics; Jinsha River

收稿日期:2015-09-13修回日期: 2016-01-11

第一作者簡介:陳松(1989—),男,碩士研究生。主要研究方向:工程地質(zhì)與地質(zhì)災(zāi)害防治。E-mail:chennsongg@163.com ?通信 陳劍(1975—),男,副教授。主要研究方向:災(zāi)害地貌學(xué)、工程地質(zhì)和地質(zhì)災(zāi)害防治。E-mail:jianchen@cugb.edu.cn

中圖分類號:P642.5

文獻(xiàn)標(biāo)志碼:A

文章編號:1672-3007(2016)01-0028-08

DOI:10.16843/j.sswc.2016.01.004

項目名稱: 國家自然科學(xué)基金重點項目“青藏高原第四紀(jì)冰磧旋回與構(gòu)造隆升藕合機制及過程研究”(41230743);國家自然科學(xué)基金面上項目“堰塞壩、湖及潰壩堆積地貌過程與沉積特征的綜合研究”(41571012);中央高校基本科研業(yè)務(wù)費專項資金資助項目“中國西南地區(qū)古滑坡壩的形成與演化過程”(2652015060)

猜你喜歡
堆積物金沙江
福島第一核電廠1號機組安全殼內(nèi)堆積物結(jié)構(gòu)復(fù)雜
國外核新聞(2022年9期)2022-12-16 12:20:32
福島第一核電廠1號機組發(fā)現(xiàn)新塊狀堆積物
國外核新聞(2022年4期)2022-02-08 14:20:36
綜合流量法在金沙江下段水文測報中的應(yīng)用
開掛的“金沙江”
鹽巖儲庫腔底堆積物空隙體積試驗與計算
行走金沙江
中國三峽(2016年6期)2017-01-15 13:59:00
勤奮
寫實與抽象:金沙江巖畫考古認(rèn)知
大眾考古(2015年2期)2015-06-26 07:21:44
化學(xué)腐蝕引起的損壞事故的分析
金沙江支流東川玉碑地遺址
大眾考古(2014年6期)2014-06-26 08:31:40
海原县| 钦州市| 会宁县| 左权县| 永昌县| 乾安县| 枣强县| 烟台市| 陇川县| 历史| 丰县| 新野县| 盐源县| 杂多县| 繁峙县| 平乡县| 韶山市| 江永县| 海宁市| 松桃| 六枝特区| 深圳市| 南安市| 融水| 唐海县| 钦州市| 玉树县| 黄浦区| 长武县| 黄骅市| 普陀区| 南江县| 庆元县| 镇雄县| 黄龙县| 新竹市| 浦东新区| 乌拉特后旗| 宁远县| 博爱县| 宝应县|