楊立濱,張海寧,李春來(lái),楊 軍,鄭 晨,王 平
(1.國(guó)網(wǎng)青海省電力公司電力科學(xué)研究院,青海 西寧 810008;2.輸配電裝備及系統(tǒng)安全與新技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室(重慶大學(xué)),重慶 400044)
基于虛擬導(dǎo)納的大型光伏電站諧波抑制策略研究
楊立濱1,張海寧1,李春來(lái)1,楊 軍1,鄭 晨2,王 平2
(1.國(guó)網(wǎng)青海省電力公司電力科學(xué)研究院,青海 西寧 810008;2.輸配電裝備及系統(tǒng)安全與新技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室(重慶大學(xué)),重慶 400044)
在建立大型光伏電站諾頓等效模型基礎(chǔ)上通過(guò)阻抗分析法分析了大型光伏電站與電網(wǎng)之間以及光伏電站內(nèi)逆變器之間的耦合作用,揭示了大型光伏電站諧波產(chǎn)生機(jī)理,即電網(wǎng)阻抗與逆變器等效輸出導(dǎo)納相互作用對(duì)某一頻率處的諧波產(chǎn)生了放大作用。提出在逆變器輸出端增加一條虛擬的導(dǎo)納通路來(lái)消除系統(tǒng)對(duì)諧波的放大作用。將并網(wǎng)點(diǎn)電壓通過(guò)由一階慣性環(huán)節(jié)和二階陷波器復(fù)合而成的系統(tǒng)反饋至控制器輸出端,實(shí)現(xiàn)對(duì)逆變器等效輸出導(dǎo)納的改善。經(jīng)該方法改善后的系統(tǒng)輸出導(dǎo)納對(duì)諧波具有濾除作用,且對(duì)基波無(wú)衰減。仿真及實(shí)驗(yàn)驗(yàn)證了理論分析的正確性。
大型光伏電站;電網(wǎng)阻抗;虛擬導(dǎo)納;諧波治理
隨著能源危機(jī)的加劇和環(huán)境問(wèn)題的突出,近年來(lái)以大型光伏電站為代表的光伏產(chǎn)業(yè)得到迅猛發(fā)展[1-5]。大電網(wǎng)的非理想特性使得電網(wǎng)阻抗與光伏電站等效輸出阻抗之間產(chǎn)生交互影響,導(dǎo)致并網(wǎng)點(diǎn)電壓和電流的諧波含量增大,當(dāng)諧波超過(guò)一定量時(shí),光伏電站就會(huì)與系統(tǒng)解列[4-5]。因此有必要對(duì)大型光伏電站并網(wǎng)諧波抑制策略進(jìn)行研究。
目前已有相關(guān)文獻(xiàn)提出了針對(duì)大型光伏電站諧波治理的方法,文獻(xiàn)[6]提出一種電能質(zhì)量復(fù)合控制策略,該策略能夠使光伏電站同時(shí)具有無(wú)功補(bǔ)償和諧波抑制的功能,但該方法無(wú)法解決由于電網(wǎng)阻抗變化導(dǎo)致的諧波問(wèn)題;文獻(xiàn)[7]在系統(tǒng)并網(wǎng)公共連接點(diǎn)處添加一臺(tái)阻性有源阻尼器,對(duì)解決系統(tǒng)的諧波有一定的效果,但該方法需要另外添加硬件裝置,提高了系統(tǒng)成本,降低了可靠性。也有部分文獻(xiàn)提出了針對(duì)單臺(tái)逆變器并網(wǎng)諧波問(wèn)題的解決方案,文獻(xiàn)[8-9]通過(guò)檢測(cè)諧波頻率、電網(wǎng)阻抗等,在線(xiàn)調(diào)整控制器參數(shù),但該類(lèi)方法需要復(fù)雜的檢測(cè)與控制算法;文獻(xiàn)[10]采用無(wú)差拍控制對(duì)系統(tǒng)諧波進(jìn)行抑制,但該方法需要采用狀態(tài)觀察及對(duì)收斂性進(jìn)行設(shè)計(jì),控制器設(shè)計(jì)復(fù)雜,且通用性較差。因此,難以將上述針對(duì)單臺(tái)逆變器諧波問(wèn)題的解決方法借鑒到大型光伏電站中。
基于上述分析,本文首先建立大型光伏電站諾頓等效模型,對(duì)大型光伏電站與電網(wǎng)之間的交互作用進(jìn)行分析,揭示出大型光伏電站諧波產(chǎn)生機(jī)理,然后根據(jù)該機(jī)理提出在逆變器輸出端添加一個(gè)能夠通過(guò)諧波阻基波的導(dǎo)納來(lái)實(shí)現(xiàn)對(duì)諧波的抑制,并給出了一種實(shí)現(xiàn)方案。最后通過(guò)仿真和實(shí)驗(yàn)驗(yàn)證了本文所提諧波抑制策略的有效性。
1.1 大型光伏電站建模
大型光伏電站通常由多臺(tái)帶 LCL 濾波器的并網(wǎng)逆變器組成,其等效電路結(jié)構(gòu)如圖1 所示。其中分別為逆變器 j的逆變器側(cè)電感、濾波電容及網(wǎng)側(cè)電感,為第 j 臺(tái)逆變器的三相并網(wǎng)電流,分別為逆變器 j的逆變橋輸出三相電壓、電流,為并網(wǎng)點(diǎn)三相電壓,為等效電網(wǎng)阻抗,主要包含中低壓輸電線(xiàn)路和升壓變壓器的感性分量和阻性分量,系統(tǒng)的諧波主要由感性分量引起,因此本文只考慮感性分量,記對(duì)應(yīng)的導(dǎo)納
圖1 大型光伏電站拓?fù)浣Y(jié)構(gòu)Fig. 1 Topology of LSPV plants
對(duì)于大型光伏系統(tǒng),為了提高效率,盡量降低在電能變換過(guò)程中的能量損耗,其控制結(jié)構(gòu)多選為單級(jí)式結(jié)構(gòu)。逆變器 j 在兩相靜止坐標(biāo)系下的控制結(jié)構(gòu)如圖2 所示,為電容電流有源阻尼系數(shù)。并網(wǎng)參考電流由MPPT產(chǎn)生的功率參考值和并網(wǎng)點(diǎn)電壓經(jīng)瞬時(shí)功率理論合成,以實(shí)現(xiàn)功率控制。
圖2 兩相靜止坐標(biāo)系下并網(wǎng)逆變器控制策略Fig. 2 Control strategy of the grid-connected inverter in two-phase stationary coordinate system
準(zhǔn) PR 控制器在基波頻率處具有很高的增益,對(duì)正弦交流量能夠?qū)崿F(xiàn)無(wú)靜差控制,采用準(zhǔn) PR控制器對(duì)并網(wǎng)電流進(jìn)行控制,其數(shù)學(xué)模型如式(1)所示。由于在兩相靜止坐標(biāo)系下 α、β軸是對(duì)稱(chēng)的,因此僅以α軸為例進(jìn)行分析,系統(tǒng)在s域下的控制結(jié)構(gòu)如圖3所示。
圖3 系統(tǒng)復(fù)頻域數(shù)學(xué)模型Fig. 3 System model in complex frequency domain
根據(jù)疊加原理,在圖3中分別讓參考電流和并網(wǎng)點(diǎn)電壓?jiǎn)为?dú)作用可以得到大型光伏電站α軸下的諾頓等效模型,如圖4所示。圖中:
在經(jīng)濟(jì)上,要想實(shí)現(xiàn)可持續(xù)發(fā)展,要尊重自然、愛(ài)護(hù)自然,確保經(jīng)濟(jì)活動(dòng)的合理性。通過(guò)加強(qiáng)環(huán)保工程運(yùn)行的管理和控制,必須要積極推進(jìn)工程項(xiàng)目,嚴(yán)格監(jiān)管整個(gè)環(huán)保工程的實(shí)施過(guò)程,確保良好的工程成效。
圖4 a軸下大型光伏電站諾頓等效模型Fig. 4 LSPV equivalent Norton model in α axis
1.2 大型光伏電站諧波產(chǎn)生機(jī)理
根據(jù)圖4中的大型光伏電站諾頓等效模型可以得到電站中逆變器 j的并網(wǎng)電流如式(2)所示。
工程實(shí)際中大型光伏電站的所有逆變器通常采用相同的電路結(jié)構(gòu)和參數(shù)可以認(rèn)為每臺(tái)逆變器的閉環(huán)傳遞函數(shù)、等效輸出導(dǎo)納相同,記為:,因此根據(jù)大型光伏電站的諾頓等效模型,可以將每臺(tái)逆變器的并網(wǎng)電流轉(zhuǎn)化為
通常情況下逆變器自身對(duì)諧波電流具有衰減作用,且電網(wǎng)阻抗對(duì)諧波也具有衰減作用,因此逆變器并網(wǎng)電流中所含諧波量主要取決于:
當(dāng)電網(wǎng)阻抗不存在時(shí),每臺(tái)逆變器的輸出電流與自身參數(shù)以及電網(wǎng)電壓有關(guān),各逆變器之間不存在相互作用。以 3 MW 大型光伏電站為例,系統(tǒng)參數(shù)如表1 所示,系統(tǒng)時(shí)域仿真波形如圖5(a)所示,可以看出并網(wǎng)電流及并網(wǎng)點(diǎn)電壓良好,滿(mǎn)足并網(wǎng)要求。但實(shí)際電網(wǎng)中均存在一定的阻抗,且該阻抗隨電網(wǎng)運(yùn)行方式的變化而變化,使得電站中各逆變器之間會(huì)存在相互耦合,且電網(wǎng)對(duì)每臺(tái)逆變器并網(wǎng)電流的影響更加復(fù)雜。當(dāng)|Gx(jω)|在某一頻率處大于 1時(shí),該頻率處的電流將被放大,系統(tǒng)中將會(huì)出現(xiàn)大量該頻率處的諧波。
表1 系統(tǒng)參數(shù)Table 1 System parameters
圖5 原始系統(tǒng)時(shí)域仿真波形Fig. 5 Simulated waveforms of original system in time domain
圖6 原始系統(tǒng)的伯德圖Fig. 6 Bode diagram offor original system
由前面的分析可知,大型光伏電站的諧波是由于逆變器輸出阻抗與等效電網(wǎng)阻抗相互作用的結(jié)果,可以采用改變電網(wǎng)阻抗參數(shù)或者逆變器輸出阻抗的方法來(lái)避免系統(tǒng)對(duì)諧波的放大作用,進(jìn)而達(dá)到抑制系統(tǒng)諧波的目的。
改變電網(wǎng)阻抗參數(shù)可以通過(guò)安裝可控串聯(lián)補(bǔ)償器(TCSC)或者其他無(wú)源元件來(lái)實(shí)現(xiàn),但這種方法增加了成本、降低了可靠性,不利于系統(tǒng)的經(jīng)濟(jì)運(yùn)行。另外由于電網(wǎng)阻抗是實(shí)時(shí)變化的,改變電網(wǎng)阻抗的方法并不能從根本上消除系統(tǒng)諧波。
抑制系統(tǒng)諧波更有效的方法是通過(guò)一定的控制算法,實(shí)現(xiàn)對(duì)逆變器輸出阻抗的改善,使得式(4)對(duì)諧波具有衰減作用,進(jìn)而達(dá)到抑制諧波電流的目的。本文提出在逆變器輸出端增加一條諧波通路的方法來(lái)對(duì)諧波進(jìn)行抑制。在每臺(tái)逆變器輸出端增加一條諧波通路后大型光伏電站諾頓等效模型如圖7所示。為了抑制諧波,所添加的諧波通路導(dǎo)納應(yīng)滿(mǎn)足以下特性:
圖7 增加虛擬導(dǎo)納后的諾頓等效模型Fig. 7 LSPV equivalent Norton model in α axis with virtual admittance
根據(jù)以上特性本文選擇式(5)作為在逆變器輸出端所添加的虛擬導(dǎo)納,該式等號(hào)右邊前兩項(xiàng)主要用來(lái)調(diào)節(jié)幅值,使得在基波頻率處的幅值很小,而在其他頻率處的幅值很大,達(dá)到濾除諧波的目的;等號(hào)右邊第三項(xiàng)主要用來(lái)調(diào)節(jié)相位,以使相位裕度滿(mǎn)足要求。
圖8 增加虛擬導(dǎo)納后系統(tǒng)的伯德圖Fig. 8 Bode diagram offor original system after adding virtual admittance
采用并網(wǎng)點(diǎn)電壓反饋的方式來(lái)實(shí)現(xiàn)在逆變器輸出端增加一個(gè)虛擬導(dǎo)納,其控制結(jié)構(gòu)如圖9所示。
圖9 虛擬導(dǎo)納實(shí)現(xiàn)的控制結(jié)構(gòu)框圖Fig. 9 Structure diagram of realizing virtual admittance
可以看出,本文所提出的諧波抑制策略只需要在逆變器中增加一個(gè)并網(wǎng)點(diǎn)電壓前饋環(huán)節(jié)即可,工程中易于實(shí)現(xiàn)。
為了驗(yàn)證本文理論分析的正確性,根據(jù)圖1、圖2 所示的原理圖在 Matlab 中搭建額定功率為 3 MW的大型光伏電站仿真模型,逆變器參數(shù)如表1所示。電網(wǎng)采用三相交流理想電壓源模擬,電網(wǎng)阻抗采用集中參數(shù)電感模擬,光伏電池采用文獻(xiàn)[12]中的數(shù)學(xué)模型搭建。
可以看出兩種電網(wǎng)阻抗情況下,在逆變器輸出端添加一個(gè)虛擬導(dǎo)納后,系統(tǒng)中的諧波均得到了很好的抑制,并網(wǎng)電流和并網(wǎng)點(diǎn)電壓波形恢復(fù)良好,諧波含量降低,滿(mǎn)足并網(wǎng)要求。
圖10 時(shí)的仿真結(jié)果Fig. 10 Simulation results with
圖11 時(shí)的仿真結(jié)果Fig. 11 Simulation results with
為進(jìn)一步驗(yàn)證本文所提諧波抑制策略的有效性,并考慮到實(shí)驗(yàn)條件的限制,僅以?xún)膳_(tái)完全相同的逆變器為例進(jìn)行實(shí)驗(yàn)分析。每臺(tái)逆變器輸入功率為 5 kW,控制策略采用 TMS320F28335 控制器實(shí)現(xiàn),實(shí)驗(yàn)主要參數(shù)如表2所示。由于兩臺(tái)逆變器完全相同,因此僅以其中一臺(tái)逆變器的實(shí)驗(yàn)結(jié)果為例進(jìn)行分析。
表2 實(shí)驗(yàn)系統(tǒng)電路參數(shù)Table 2 Circuit parameters of experiment system
(1) 兩臺(tái)逆變器均不采用諧波抑制策略,當(dāng)電網(wǎng)阻抗分別取 1 mH、2 mH 時(shí)分別運(yùn)行兩臺(tái)逆變器,1#逆變器的并網(wǎng)電流波形如圖12 所示。
由圖12 可以看出,在不添加任何諧波抑制策略的情況下,隨著電網(wǎng)阻抗的增加,系統(tǒng)諧波含量增加,并網(wǎng)電流及并網(wǎng)點(diǎn)電壓波形均變差,不滿(mǎn)足并網(wǎng)要求。
(2) 兩臺(tái)逆變器均加入本文所提諧波抑制策略,當(dāng)電網(wǎng)阻抗分別取 1 mH、2 mH 時(shí)分別運(yùn)行兩臺(tái)逆變器,1#逆變器的并網(wǎng)電流波形如圖13 所示。
圖12 無(wú)抑制策略時(shí)實(shí)驗(yàn)結(jié)果Fig. 12 Experimental results without harmonic suppression strategy
圖13 添加虛擬導(dǎo)納后實(shí)驗(yàn)結(jié)果Fig. 13 Experimental results with virtual admittance
對(duì)比圖12 和圖13 可以看出,在采用本文所提諧波抑制策略后,隨著電網(wǎng)阻抗的增加,系統(tǒng)并網(wǎng)電流波形始終良好,諧波含量較小,滿(mǎn)足并網(wǎng)要求。
本文針對(duì)大型光伏電站與電網(wǎng)之間的交互作用,首先根據(jù)工程實(shí)際中常用的大型光伏電站拓?fù)浣Y(jié)構(gòu)建立了諾頓等效模型;然后對(duì)光伏電站與電網(wǎng)之間的相互影響進(jìn)行分析,并揭示出光伏電站產(chǎn)生諧波的機(jī)理;最后根據(jù)該機(jī)理提出在逆變器輸出端添加一個(gè)虛擬導(dǎo)納的方法來(lái)抑制諧波,通過(guò)一定的設(shè)計(jì)方法使得該虛擬導(dǎo)納在諧波頻率處的值很大,在基波頻率處的值很小,因此具有通諧波阻基波的特性,實(shí)現(xiàn)了對(duì)光伏電站中諧波的抑制。該方法只需要在逆變器中增加一個(gè)并網(wǎng)點(diǎn),電壓前饋環(huán)節(jié)即可,工程中易于實(shí)現(xiàn)。
[1]孔令國(guó), 蔡國(guó)偉. 大規(guī)模并網(wǎng)光伏電站的逆變器控制方 法 研 究 [J]. 電 力 系 統(tǒng) 保 護(hù) 與 控 制 , 2013, 41(22): 57-63. KONG Lingguo, CAI Guowei. Research on control method of inverters for large-scale grid-connected photovoltaic power system[J]. Power System Protection and Control, 2013, 41 (22): 57-63.
[2]周林, 曾意, 郭珂, 等. 具有電能質(zhì)量調(diào)節(jié)功能的光伏并網(wǎng)系統(tǒng)研究進(jìn)展 [J]. 電力系統(tǒng)保護(hù) 與控制, 2012, 40(9): 137-145. ZHOU Lin, ZENG Yi, GUO Ke, et al. Development of photovoltaic grid-connected system with power quality regulatory function[J]. Power System Protection and Control, 2012, 40(9): 137-145.
[3]RUBéN I, TAKESHI S, YOSUKE F, et al. Parallel connection of grid-connected LCL inverters for MW-scaled photovoltaic systems[C]// International Power Electronics Conference. Sapporo, Japan, 2010: 1988-1993.
[4]楊明, 周林, 張東霞, 等. 考慮電網(wǎng)阻抗影響的大型光伏電站并網(wǎng)穩(wěn)定性分析[J]. 電工技術(shù)學(xué)報(bào), 2013, 28(9): 214-223. YANG Ming, ZHOU Lin, ZHANG Dongxia, et al. Stability analysis of large-scale photovoltaic power plants for the effect of grid impedance[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 214-223.
[5]周林, 張密, 居秀麗, 等. 電網(wǎng)阻抗對(duì)大型并網(wǎng)光伏系統(tǒng) 穩(wěn) 定 性 影 響 分 析 [J]. 中 國(guó) 電 機(jī) 工 程 學(xué) 報(bào) , 2013, 33(34): 34-41. ZHOU Lin, ZHANG Mi, JU Xiuli, et al. Stability analysis of large-scale photovoltaic plants due to grid impedances[J]. Proceedings of the CSEE, 2013, 33(34): 34-41.
[6]黃冬冬, 吳在軍, 竇曉波, 等. 光伏規(guī)?;⒕W(wǎng)的電能質(zhì)量復(fù)合控制策略研究[J]. 電力系統(tǒng)保護(hù)與控制, 2015, 43(3): 107-112. HUANG Dongdong, WU Zaijun, DOU Xiaobo, et al. A power quality composite control strategy based on largescale grid-connected photovoltaic power generation[J]. Power System Protection and Control, 2015, 43(3): 107-112.
[7]WANG X, BLAABJERG F, LISERRE M, et al. An active damper for stabilizing power electronics based AC systems[J]. IEEE Transactions on Power Electronics, 2014, 29(7): 3318-3329.
[8]PêNA-ALZOLA R, LISERRE M, BLAABJERG F, et al. A self-commissioning notch filter for active damping in a three-phase LCL-filter-based grid-tie converter[J]. IEEE Transactions on Power Electronics, 2014, 29(12): 6754-6761.
[9]CESPEDES M, SUN J. Adaptive control of gridconnected inverters based on online grid impedance measurements[J]. IEEE Transactions on SustainableEnergy, 2014, 5(2): 516-523.
[10]MOHAMED Y. Suppression of low- and high-frequency instabilities and grid-induced disturbances in distributed generation inverters[J]. IEEE Transactions on Power Electronics, 2011, 16(12): 3790-3803.
[12]胡文翠, 王明渝, 錢(qián)坤. LCL 型并網(wǎng)逆變器電流控制器設(shè)計(jì)[J]. 電力系統(tǒng)保護(hù)與控制, 2013, 41(8): 124-128. HU Wencui, WANG Mingyu, QIAN Kun. Design of current controller for grid-connected inverter with LCL filter[J]. Power System Protection and Control, 2013, 41(8): 124-128.
[13]王以笑, 張新昌, 路進(jìn)升, 等. 基于 DIgSILENT 的并網(wǎng)光伏發(fā)電系統(tǒng)的建模與仿真[J]. 電力系統(tǒng)保護(hù)與控制, 2014, 42(3): 49-55. WANG Yixiao, ZHANG Xinchang, LU Jinsheng, et al. Modeling and simulation of grid-connected PV system based on DIgSILEN software[J]. Power System Protection and Control, 2014, 42(3): 49-55.
Harmonic suppression strategy of large-scale photovoltaic plants based on virtual admittance
YANG Libin1, ZHANG Haining1, LI Chunlai1, YANG Jun1, ZHENG Chen2, WANG Ping2
(1. Electric Power Research Institute of State Grid Qinghai Electric Power Company, Xining 810008, China; 2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)
Based on the equivalent Norton model of large-scale photovoltaic (LSPV) plants, the coupling among inverters in LSPV plant and between LSPV plant and the grid are studied through impedance analysis. The study reveals the harmonic mechanism that coupling between grid impedance and equivalent admittance of inverter will amplify harmonics in the system. To remove the amplification to harmonics, the strategy of adding a virtual admittance to filter harmonics is proposed. The strategy is realized to improve inverter admittance by the voltage at the point of common coupling (PCC) feedback through the combination of a first-order process and a second-order notch filter. The system with the proposed strategy owns characteristics of making harmonic current through the virtual admittance and fundamental frequency current blocked. In the end, the result of simulation and experiment validates theoretical analysis.
LSPV plants; grid impedance; virtual admittance; harmonic suppression
10.7667/PSPC151696
:2015-11-24
楊立濱(1985-),男,碩士,高級(jí)工程師,從事風(fēng)電、太陽(yáng)能等新能源發(fā)電及并網(wǎng)技術(shù)領(lǐng)域的研究工作;
(編輯 姜新麗)
青海省光伏發(fā)電并網(wǎng)技術(shù)重點(diǎn)實(shí)驗(yàn)室(2014-Z-Y34A)
鄭 晨(1990-),男,通信作者,博士研究生,主要從事電網(wǎng)阻抗對(duì)光伏系統(tǒng)穩(wěn)定性影響方面的研究 。E-mail: zhengchen725@163.com