趙安,韓云峰,張宏鑫,劉偉信,金寧德(天津大學(xué)電氣與自動(dòng)化工程學(xué)院,天津 300072)
?
氣液兩相流段塞流持氣率快關(guān)閥法優(yōu)化設(shè)計(jì)
趙安,韓云峰,張宏鑫,劉偉信,金寧德
(天津大學(xué)電氣與自動(dòng)化工程學(xué)院,天津 300072)
摘要:快關(guān)閥法(quick closing valve,QCV)是氣液兩相流流動(dòng)實(shí)驗(yàn)中常用持氣率標(biāo)定手段。特別是由于段塞流中氣塞與液塞表現(xiàn)為隨機(jī)可變流動(dòng)特性,不合理的快關(guān)閥間距及截取次數(shù)選擇將會(huì)導(dǎo)致持氣率測(cè)量誤差增大。提出了一種持氣率快關(guān)閥法優(yōu)化設(shè)計(jì)方案。首先,采用環(huán)形電導(dǎo)傳感器上下游陣列信號(hào)計(jì)算流體相關(guān)流速,根據(jù)相關(guān)測(cè)速結(jié)果提取上游傳感器信號(hào)對(duì)應(yīng)流動(dòng)工況的氣塞與液塞間隔長(zhǎng)度序列,采用Maxwell方程提取液塞中含泡持氣率;在此基礎(chǔ)上,再依氣塞在管道內(nèi)占比模擬計(jì)算不同快關(guān)閥間距時(shí)捕獲的持氣率波動(dòng)序列。通過(guò)分析持氣率序列波動(dòng),從統(tǒng)計(jì)學(xué)角度指出了95%置信度及5%允許誤差情況下所需最低截取次數(shù)。最后,在快關(guān)閥門間距為1.55 m的條件下對(duì)段塞流所需截取次數(shù)進(jìn)行了實(shí)驗(yàn)驗(yàn)證。通過(guò)對(duì)快關(guān)閥法持氣率測(cè)量誤差進(jìn)行統(tǒng)計(jì)分析,證明了設(shè)置兩個(gè)快關(guān)閥門間距的充分條件。
關(guān)鍵詞:氣液兩相流;段塞流;持氣率;快關(guān)閥法
2015-08-12收到初稿,2015-10-09收到修改稿。
聯(lián)系人:金寧德。第一作者:趙安(1990—),男,博士研究生。
Received date: 2015-08-12.
Foundation item: supported by the National Natural Science Foundation of China (51527805,11572220) and the National Science and Technology Major Project (2011ZX05020-006).
段塞流經(jīng)常發(fā)生在熱能及水動(dòng)力氣液兩相流系統(tǒng)中。其中,持氣率是描述兩相流流動(dòng)行為、建立流動(dòng)模型及預(yù)測(cè)質(zhì)量、動(dòng)量及能量傳遞的重要參數(shù)。由于段塞流中氣塞及液塞流動(dòng)結(jié)構(gòu)沿管道軸向方向隨機(jī)多變,段塞流持氣率難以測(cè)量,故在氣液兩相流實(shí)驗(yàn)系統(tǒng)中提供可靠的段塞流標(biāo)定手段具有重要學(xué)術(shù)價(jià)值及實(shí)際意義。
通常采用電學(xué)法、聲學(xué)法、光學(xué)法等測(cè)量持氣率。電學(xué)法具有響應(yīng)速度快及易于測(cè)量等特點(diǎn),通過(guò)測(cè)量混合流體電學(xué)性質(zhì)變化(電導(dǎo)和電容),被廣泛應(yīng)用于兩相流持氣率參數(shù)檢測(cè)[1-11]。由于氣相與水相之間顯著的密度差異特性,采用聲學(xué)法和光學(xué)法可取得較好的持氣率測(cè)量效果[12-14]。為了評(píng)價(jià)持氣率測(cè)量特性,通常需在兩相流實(shí)驗(yàn)裝置上設(shè)計(jì)持氣率標(biāo)定系統(tǒng)。快關(guān)閥(QCV)法因其操作簡(jiǎn)便已廣泛作為氣液兩相流實(shí)驗(yàn)裝置上的持氣率標(biāo)定手段[15-17]??礻P(guān)閥法持氣率測(cè)量是通過(guò)快速截取兩閥門間的氣液兩相流,待氣相及液相因重力分離后測(cè)出相應(yīng)體積,進(jìn)而換算得到持氣率。為保證持氣率測(cè)量精度,實(shí)驗(yàn)時(shí)需對(duì)每種流動(dòng)工況多次重復(fù)測(cè)量。實(shí)驗(yàn)表明,氣液兩相流流動(dòng)結(jié)構(gòu)及快關(guān)閥門間距是影響QCV法持氣率測(cè)量精度的主要因素。對(duì)于尺度較小的流動(dòng)結(jié)構(gòu)(如泡狀流、混狀流及環(huán)狀流),較短的快關(guān)閥門間距及較少的快關(guān)閥截取次數(shù)即可獲得滿意的持氣率測(cè)量精度;但是,對(duì)于尺度較大的段塞流,由于氣塞及液塞流動(dòng)結(jié)構(gòu)沿管道軸向方向隨機(jī)多變,不合理的快關(guān)閥門間距及截取次數(shù)選擇會(huì)導(dǎo)致較大的持氣率測(cè)量誤差。
快關(guān)閥法是目前氣液兩相流實(shí)驗(yàn)系統(tǒng)中常規(guī)的持氣率標(biāo)定手段,但是,尚未見文獻(xiàn)中對(duì)快關(guān)閥間距及截取次數(shù)優(yōu)化設(shè)計(jì)的報(bào)道。為此,本文首先在垂直上升氣液兩相流20 mm管徑中采用環(huán)形電導(dǎo)傳感器陣列測(cè)取段塞流中氣塞及液塞長(zhǎng)度序列,然后,由Maxwell方程分別計(jì)算得到段塞流中含泡液塞及氣塞的持氣率,進(jìn)而模擬計(jì)算得到段塞流流動(dòng)結(jié)構(gòu)的持氣率波動(dòng)序列,最后從統(tǒng)計(jì)學(xué)角度分析指出95%置信度及5%允許誤差情況下所需最低快關(guān)閥截取次數(shù)及設(shè)置快關(guān)閥間距的充分條件。
圖1 垂直上升氣液兩相流實(shí)驗(yàn)裝置Fig.1 Experimental facility for vertical upward gas-liquid two-phase flow
垂直上升管中氣液兩相流實(shí)驗(yàn)裝置如圖1所示。實(shí)驗(yàn)中水相從管道最下方通入,其流量計(jì)量采用工業(yè)級(jí)蠕動(dòng)泵(WT300F)。實(shí)驗(yàn)氣體是由空氣壓縮機(jī)產(chǎn)生,并從管道下端側(cè)部進(jìn)入。為防止流體回流進(jìn)入氣路管道,在管道下端側(cè)部氣相出口處安裝有止回閥。實(shí)驗(yàn)測(cè)試段采用內(nèi)徑為20 mm的有機(jī)玻璃管。實(shí)驗(yàn)時(shí),氣相表觀流速范圍為0.055~0.479m·s-1,液相表觀流速范圍為0.037~0.884 m·s-1。實(shí)驗(yàn)共配比了63組氣液兩相流流動(dòng)工況,在垂直上升管段中觀察到的實(shí)驗(yàn)流型有段塞流(slug)、混狀流(churn)和泡狀流(bubble),關(guān)于流型描述見文獻(xiàn)[18]。
實(shí)驗(yàn)中,首先固定氣相表觀速度,逐漸增加水相表觀速度,依次循環(huán)完成。待每個(gè)氣液兩相流流動(dòng)工況配比穩(wěn)定后,再進(jìn)行測(cè)試段的環(huán)形電導(dǎo)傳感器信號(hào)測(cè)量,選用NI公司PXI 4472數(shù)據(jù)采集卡,并結(jié)合圖形化編程語(yǔ)言 LABVIEW 7.1實(shí)現(xiàn)數(shù)據(jù)實(shí)時(shí)采集、存儲(chǔ)及波形顯示。考慮待測(cè)流體運(yùn)動(dòng)頻率基本在50 Hz以內(nèi)[18],同時(shí)為了保證對(duì)氣液兩相流相關(guān)流速的有效跟蹤測(cè)量,本次實(shí)驗(yàn)電導(dǎo)傳感器采樣頻率設(shè)置為2000 Hz。此外,每個(gè)流動(dòng)工況采樣時(shí)間設(shè)置為30 s。環(huán)形電導(dǎo)傳感器陣列測(cè)量系統(tǒng)如圖2所示。
圖2 環(huán)形電導(dǎo)傳感器陣列測(cè)量系統(tǒng)Fig.2 Measurement system of ring shape conductance probe array
圖3為段塞流環(huán)形電導(dǎo)傳感器陣列上下游信號(hào)及其互相關(guān)函數(shù)計(jì)算結(jié)果。段塞流典型流動(dòng)特征表現(xiàn)為氣塞與液塞沿管軸向交替運(yùn)動(dòng)。根據(jù)電導(dǎo)傳感器測(cè)量電路原理,當(dāng)激勵(lì)電極與檢測(cè)電極之間流體的導(dǎo)電性增強(qiáng)時(shí),傳感器輸出電壓值較低;當(dāng)流體導(dǎo)電性減弱時(shí),傳感器測(cè)量電壓值較高,即當(dāng)段塞流中的氣塞經(jīng)過(guò)傳感器時(shí),傳感器測(cè)量電壓幅值在2 V左右;此外,由于氣塞周圍液膜厚度變化或液塞中分散氣泡作用,電導(dǎo)傳感器輸出信號(hào)具有一定的波動(dòng)性。
圖3 段塞流電導(dǎo)傳感器上下游信號(hào)及互相關(guān)函數(shù)Fig.3 Signals between upstream and downstream conductance probes and its cross-correlation function under slug flow(Usg=0.055 m·s-1,Usw=0.037 m·s-1)
本文采用互相關(guān)算法[19-20]計(jì)算延遲時(shí)間。假設(shè)上游傳感器輸出為x(t),下游傳感器輸出為y(t),下
游傳感器輸出相對(duì)x(t)在時(shí)間上滯后t0。x(t)和y(t)的互相關(guān)函數(shù)Rxy(t)可表示為
當(dāng)t= t0時(shí),Rxy(t)達(dá)到最大值。已知上下游傳感器間距L,則氣液兩相流相關(guān)流速為
其中,上下游傳感器間距L=0.03 m。圖4是氣相表觀流速Usg分別為0.055、0.074、0.147、0.221、0.295 m·s-1時(shí),隨液相表觀流速Usw逐漸增大的上游電導(dǎo)傳感器測(cè)量信號(hào)變化。可以看出,隨著水相表觀速度增大,由于液相湍動(dòng)作用增強(qiáng),氣塞長(zhǎng)度趨于變短,氣塞與液塞交替頻率也趨于增大。
快關(guān)閥截取段塞流持氣率數(shù)值模擬流程如圖5所示。
其持氣率波動(dòng)序列具體計(jì)算步驟如下。
(1)含泡液塞持氣率模擬計(jì)算。首先,從環(huán)形電導(dǎo)傳感器上游信號(hào)中判斷氣塞與液塞。根據(jù)實(shí)驗(yàn)測(cè)量數(shù)據(jù),選取判別閾值為1.2 V,當(dāng)測(cè)量電壓大于1.2 V時(shí),判定為氣塞經(jīng)過(guò)傳感器;當(dāng)測(cè)量電壓小于1.2 V時(shí),判定為液塞經(jīng)過(guò)傳感器,進(jìn)而將段塞流測(cè)量信號(hào)劃分為氣塞與液塞交替序列。然后,提取液塞部分測(cè)量電壓的平均值,根據(jù)液塞部分測(cè)量電壓及全水時(shí)測(cè)量電壓,再利用Maxwell方程估算含泡液塞部分的持氣率值。由Maxwell方程可得含泡液塞持氣率與混合電導(dǎo)率關(guān)系為
圖4 上游電導(dǎo)傳感器信號(hào)隨水相表觀流速變化Fig.4 Signals of upstream conductance probe versus superficial water velocity
式中,sw和sm分別為全水及含泡液塞電導(dǎo)率,Ys為液塞持氣率,則持水率Yw=1-Ys,將其代入式(3)可得持水率Yw與含泡液塞電導(dǎo)率之間關(guān)系
根據(jù)本文電導(dǎo)傳感器測(cè)量電路原理,傳感器輸出電壓與混合流體電導(dǎo)率呈反比,即
式中,Vw和Vm分別為全水及液塞的傳感器輸出電壓平均值。將式(4)及式(5)聯(lián)立可得液塞持氣率表達(dá)式
式中,Y*g,liquid為段塞流液塞部分持氣率,Y*=1-Y。
g,liquidw
圖5 快關(guān)閥截取持氣率數(shù)值模擬流程Fig.5 Flow chart of QCV’s gas holdup acquisition by numerical simulation
(2)氣塞與液塞長(zhǎng)度模擬計(jì)算?;诃h(huán)形電導(dǎo)傳感器陣列上下游信號(hào)提取兩相流相關(guān)流速。為減小相關(guān)流速測(cè)量誤差,本文選取30000點(diǎn)數(shù)據(jù)長(zhǎng)度進(jìn)行互相關(guān)函數(shù)計(jì)算,以1000點(diǎn)為步長(zhǎng),逐步計(jì)算不同時(shí)間段內(nèi)互相關(guān)函數(shù)的延遲時(shí)間,計(jì)算結(jié)果表明所有流動(dòng)工況下延遲時(shí)間序列標(biāo)準(zhǔn)差均小于0.002,說(shuō)明采用該方法計(jì)算的傳感器上下游信號(hào)延遲時(shí)間較為穩(wěn)定。最后基于延遲時(shí)間序列平均值及式(2)計(jì)算兩相流相關(guān)速度。
根據(jù)兩相流相關(guān)速度,結(jié)合步驟(1)得到的氣塞和液塞交替時(shí)間序列,可得到流體流過(guò)上游傳感器時(shí)對(duì)應(yīng)的氣塞與液塞交替的長(zhǎng)度序列。圖6列出了不同段塞流流動(dòng)工況計(jì)算所得的氣塞與液塞交替的長(zhǎng)度序列,所有序列的持續(xù)時(shí)間均為25 s。
如圖6所示,同一流動(dòng)工況下氣塞與液塞交替出現(xiàn)的長(zhǎng)度均存在一定程度波動(dòng),表現(xiàn)為復(fù)雜的段塞流空間流動(dòng)結(jié)構(gòu)擬周期運(yùn)動(dòng)現(xiàn)象。當(dāng)固定氣相表觀流速時(shí),隨著水相表觀流速逐漸增加,液相湍動(dòng)作用增強(qiáng),長(zhǎng)氣塞被擊碎為較短氣塞,氣塞的平均長(zhǎng)度減小,相同時(shí)間內(nèi)氣塞個(gè)數(shù)增加,相應(yīng)的液塞個(gè)數(shù)也增多,液塞平均長(zhǎng)度也具有減小趨勢(shì),但沒(méi)有氣塞長(zhǎng)度變化明顯。當(dāng)固定水相表觀流速時(shí),隨著氣相表觀流速增加,氣塞長(zhǎng)度逐漸增大,而液塞長(zhǎng)度增加較少,此時(shí)氣塞長(zhǎng)度明顯大于液塞長(zhǎng)度。
(3)快關(guān)閥門間距對(duì)截取持氣率影響的模擬計(jì)算。以一定步長(zhǎng)(本文設(shè)定步長(zhǎng)為氣塞平均長(zhǎng)度的0.1倍)逐步移動(dòng)快關(guān)閥截取流體序列的位置,計(jì)算每次截取得到的氣塞和液塞長(zhǎng)度占比,按比重加權(quán)計(jì)算持氣率,氣塞權(quán)值設(shè)為1,液塞權(quán)值為步驟(1)中所得液塞部分的視持氣率Y*g,liquid。由此得到該快關(guān)閥門間距下模擬截取持氣率的序列。
(4)快關(guān)閥門間距及截取次數(shù)對(duì)持氣率影響的模擬計(jì)算。改變快關(guān)閥門間距,重復(fù)步驟(3)可得不同快關(guān)閥門間距時(shí)模擬持氣率序列。根據(jù)簡(jiǎn)單隨機(jī)抽樣中重復(fù)抽樣原則,樣本容量計(jì)算公式如下[21]
式中,n是需要樣本量,即本文中快關(guān)閥截取次數(shù);Za/2表示1-a置信水平下的Z統(tǒng)計(jì)量,如本文選取95%置信水平的Z統(tǒng)計(jì)量為1.96;s表示總體的標(biāo)準(zhǔn)差;D是允許誤差,本文設(shè)置為5%。圖7所示為Usg=0.055 m·s-1和Usw=0.037 m·s-1時(shí),快關(guān)閥間距從0.5 m增加到4.0 m時(shí)模擬得到的持氣率序列。隨著快關(guān)閥間距增大,模擬持氣率序列的波動(dòng)逐漸減小,其序列標(biāo)準(zhǔn)差亦減小。
由式(7)計(jì)算各段塞流下不同閥門間距所需的截取次數(shù)結(jié)果如圖8所示。結(jié)果表明隨著快關(guān)閥門間距增大,所需截取次數(shù)逐漸減小。當(dāng)閥門間距較小時(shí),截取次數(shù)隨著閥門間距增大迅速減小,減小速率隨著閥門間距增大逐漸降低。在95%置信水平、允許誤差為5%情況下,如果截取次數(shù)選為3,則需要快關(guān)閥門間距至少大于1 m,且隨著氣相表觀流速的增大,所需閥門間距呈現(xiàn)逐漸增大的趨勢(shì)。具體而言,當(dāng)水相表觀流速為0.037 m·s-1時(shí),隨著氣相表觀流速?gòu)?.055 m·s-1增加到0.295 m·s-1,采用3次快關(guān)閥截取所需的快關(guān)閥門間距從1.3 m增大到1.8 m左右。當(dāng)水相表觀流速為0.074 m·s-1和0.147 m·s-1時(shí),隨著氣相表觀流速增大,采用3次快關(guān)閥截取所需的快關(guān)閥門間距從小于1.5 m增大到2.0 m左右。這是由于相同水相表觀速度下,增大氣相表觀速度導(dǎo)致氣塞變長(zhǎng),使得流體結(jié)構(gòu)在時(shí)間尺度上更加不均勻,快關(guān)閥截取到氣塞或液塞所占比重具有明顯差異,從而模擬計(jì)算的持氣率序列標(biāo)準(zhǔn)差增大,相同截取次數(shù)所需的快關(guān)閥間距增大。
圖6 不同段塞流氣塞和液塞交替長(zhǎng)度序列Fig.6 Length series of alternant gas and liquid slugs under different slug flow conditions
反之,當(dāng)氣相表觀流速固定,增加水相表觀流速,氣塞長(zhǎng)度變短,使得氣塞與液塞交替時(shí)間變短,流體結(jié)構(gòu)在時(shí)間尺度上更加均勻,最終導(dǎo)致相同截取次數(shù)所需的快關(guān)閥間距減小。如當(dāng)氣相表觀流速為0.055 m·s-1時(shí),隨著水相表觀流速?gòu)?.037 m·s-1增加到0.147 m·s-1,采用3次快關(guān)閥截取所需的快關(guān)閥門間距從1.3 m減小到1.1 m左右。當(dāng)氣相表觀流速分別為0.074、0.147、0.211、0.295 m·s-1時(shí),隨著水相表觀流速增大,采用3次快關(guān)閥截取所需的快關(guān)閥門間距呈現(xiàn)不同程度的減小。
圖7 段塞流下快關(guān)閥間距變化時(shí)的持氣率波動(dòng)序列Fig.7 Gas holdup fluctuation series of slug flow with changes of spacing between valves(Usg=0.055 m·s-1,Usw=0.037 m·s-1)
為了驗(yàn)證快關(guān)閥法模擬計(jì)算結(jié)果可行性,本文選取Usg=0.221 m·s-1、Usw=0.037 m·s-1和Usg=0.074 m·s-1、Usw=0.074 m·s-1兩個(gè)段塞流流動(dòng)工況進(jìn)行快關(guān)閥截取實(shí)驗(yàn)。本次驗(yàn)證實(shí)驗(yàn)在圖1實(shí)驗(yàn)裝置上進(jìn)行改裝,在距離入口0.75 m處安裝上游快關(guān)閥,上下游快關(guān)閥間距設(shè)置為1.55 m。對(duì)每個(gè)流動(dòng)工況,待流體流動(dòng)穩(wěn)定后同時(shí)關(guān)閉上下游快關(guān)閥。通過(guò)引流管將快關(guān)閥間液體導(dǎo)入量筒中測(cè)量體積,根據(jù)快關(guān)閥間總體積計(jì)算持水率,進(jìn)而獲得持氣率。每個(gè)流動(dòng)工況下分別截取快關(guān)閥50次,以獲得足夠樣本數(shù)據(jù)。驗(yàn)證實(shí)驗(yàn)所得持氣率數(shù)據(jù)如圖9所示。
在Usg=0.221 m·s-1、Usw=0.037 m·s-1流動(dòng)工況下,實(shí)驗(yàn)獲得的持氣率序列標(biāo)準(zhǔn)差為0.0296;在Usg=0.074 m·s-1、Usw=0.074 m·s-1流動(dòng)工況下,實(shí)驗(yàn)獲得的持氣率序列標(biāo)準(zhǔn)差為0.0213。根據(jù)式(7)計(jì)算的兩個(gè)流動(dòng)工況在95%置信度及5%允許誤差情況下需要的快關(guān)閥截取次數(shù)分別為2次和1次。如果按照前面快關(guān)閥持氣率模擬計(jì)算方法,上述兩個(gè)流動(dòng)工況在快關(guān)閥間距為1.55 m時(shí)所需截取次數(shù)分別為6次和3次,其實(shí)驗(yàn)所得最低截取次數(shù)小于模擬計(jì)算得到的次數(shù)。分析二者之間差異的來(lái)源,一方面是由于實(shí)驗(yàn)中在人工快關(guān)閥關(guān)斷時(shí)可能產(chǎn)生不同步關(guān)斷誤差,另一方面模擬計(jì)算方法也存在一定偏差。在模擬計(jì)算中,假設(shè)氣塞持氣率為1,由于忽略了氣塞周圍液膜及液滴存在,在模擬計(jì)算中會(huì)導(dǎo)致持氣率序列存在一定誤差。此外,在采用Maxwell方程計(jì)算含泡液塞持氣率時(shí),氣液兩相流分散相非均勻分布及泡徑大小變化也會(huì)導(dǎo)致模擬的持氣率序列存在一定誤差。
以下對(duì)氣塞與液塞權(quán)系數(shù)影響進(jìn)行分析。假設(shè)對(duì)于序列中一段時(shí)間,從t1到t2,計(jì)算得到的氣塞占比為a,液塞占比為b,從而a+b=1。設(shè)氣塞和液塞平均持氣率分別為yg,slug和yg,liquid,則該時(shí)間段內(nèi)持氣率為
對(duì)于整個(gè)時(shí)間序列,計(jì)算每一次截取所得的氣液比例,假設(shè)比例序列分別為[a1,a2,…,an]和[b1,b2,…,bn],對(duì)應(yīng)ai+bi=1,i=1,2,…,n。設(shè)持氣率序列為[Y*g1,Y*g2,…,
Y*
gn],其中,Y*gi=aiyg,slug+biyg,liquid,結(jié)合ai+bi=1,可表示為Y*gi= yg,liquid+ai(yg,slug-yg,liquid)。則持氣率序列的平均值和標(biāo)準(zhǔn)差分別為
圖8 段塞流情況下快關(guān)閥截取次數(shù)隨快關(guān)閥間距變化趨勢(shì)Fig.8 Trend of trapping numbers with changes of spacing between valves under slug flows
需要說(shuō)明的是,對(duì)混狀流持氣率快關(guān)閥優(yōu)化設(shè)計(jì)時(shí),需對(duì)混狀流流經(jīng)傳感器測(cè)量部分的氣塊設(shè)置合適權(quán)值,一般氣塊流經(jīng)傳感器的輸出電壓較段塞流氣塞要低,使用權(quán)值1仍然是充分條件,但由此引入的誤差也較大。對(duì)于泡狀流,由于流體在時(shí)間和空間上分布都比較均勻,在保證快關(guān)閥同時(shí)關(guān)斷的前提下,所需的快關(guān)閥門間距明顯短于段塞流和混狀流情況。calibration method for measuring liquid film thickness [J]. Int. J. Multiphase Flow,1992,18(3): 423-437. DOI: 10.1016/0301-9322(92)90026-D.
[3] TSOCHATZIDIS N A,KARAPANTSIOS T D,KOSTOGLOU M V,et al. A conductance probe for measuring liquid fraction in pipes and
圖9 快關(guān)閥多次截取持氣率誤差波動(dòng)Fig.9 Error fluctuation of QCV’s gas holdup at multiple trapping number(slug flow,LQCV=1.55 m)
(1)本文運(yùn)用兩相流相關(guān)測(cè)速法對(duì)環(huán)形電導(dǎo)傳感器陣列信號(hào)進(jìn)行了處理,計(jì)算提取了段塞流中的氣塞與液塞軸向長(zhǎng)度序列,采用Maxwell方程計(jì)算了含泡液塞持氣率,根據(jù)氣塞與液塞在段塞流長(zhǎng)度序列中占比,加權(quán)計(jì)算得到了段塞流持氣率波動(dòng)序列,為氣液兩相段塞流快關(guān)閥法持氣率測(cè)量提供了理論分析基礎(chǔ)。
(2)對(duì)模擬計(jì)算獲得的段塞流持氣率波動(dòng)序列進(jìn)行了統(tǒng)計(jì)分析,對(duì)段塞流不同快關(guān)閥間距時(shí)獲得95%置信度及5%允許誤差所需的截取次數(shù)進(jìn)行了預(yù)測(cè),當(dāng)水相表觀速度一定時(shí),隨著氣相表觀速度增大,其相同截取次數(shù)所需的快關(guān)閥門間距呈增大趨勢(shì);當(dāng)氣相表觀流速一定時(shí),隨著水相表觀流速增大,其相同截取次數(shù)所需的快關(guān)閥門間距呈減小趨勢(shì)。該結(jié)論為提高快關(guān)閥法測(cè)量段塞流持氣率精度提供了實(shí)驗(yàn)設(shè)計(jì)依據(jù)。
References
[1] DYKESTEEN E,HALLANGER A,HAMMER E,et al. Non-intrusive three-component ratio measurement using an impedance sensor [J]. J. Phys. E.,1985,18(6): 540-544. DOI: 10.1088/0022-3735/18/6/017.
[2] KANG H C,KIM M H. The development of a flush-wire probe and packed beds [J]. Int. J. Multiphase Flow,1992,18(5): 653-667. DOI: 10.1016/0301-9322(92)90037-H.
[4] FOSSA M. Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows [J]. Flow Meas. Instrum.,1998,9(2): 103-109. DOI: 10.1016/S0955-5986(98)00011-9.
[5] LUCAS G P,CORY J C,WATERFALL R C. A six-electrode local probe for measuring solids velocity and volume fraction profiles in solids-water flows [J]. Meas. Sci. Technol.,2000,11(10): 1498-1509. DOI: 10.1088/0957-0233/11/10/311.
[6] LUCAS G P,JIN N D. A new kinematic wave model for interpreting cross correlation velocity measurements in vertically upward bubbly oil-in-water flows [J]. Meas. Sci. Technol.,2001,12(9): 1538-1545. DOI: 10.1088/0957-0233/12/9/321.
[7] ODDIE G,SHI H,DURLOFSKY L J,et al. Experimental study of two and three phase flows in large diameter inclined pipes [J]. Int. J. Multiphase Flow,2003,29(4): 527-558. DOI: 10.1016/S0301-9322(03)00015-6.
[8] YE J M,PENG L H,WANG W R,et al. Helical capacitance sensor-based gas fraction measurement of gas-liquid two-phase flow in vertical tube with small diameter [J]. IEEE Sens. J.,2011,11(8): 1704-1710. DOI: 10.1109/JSEN.2010.2095004.
[9] YE J M,PENG L H,WANG W R,et al. Optimization of helical capacitance sensor for void fraction measurement of gas-liquid two-phase flow in a small diameter tube [J]. IEEE Sens. J.,2011,11(10): 2189-2196. DOI: 10.1109/JSEN.2011.2116115.
[10] 張立峰,王化祥. 一種新的電容層析成像電極組合激勵(lì)測(cè)量模式[J]. 化工學(xué)報(bào),2012,63(3): 860-865. DOI: 10.3969/j.issn.0438-1157. 2012.03.026. ZHANG L F,WANG H X. A new combined-electrode exciting-measuring mode for electrical capacitance tomography [J]. CIESC Journal,2012,63(3): 860-865. DOI: 10.3969/j.issn.0438-1157. 2012.03.026.
[11] 羅琴,趙銀峰,葉茂,等. 電容層析成像在氣固流化床測(cè)量中的應(yīng)用 [J]. 化工學(xué)報(bào),2014,65(7): 2504-2512. DOI: 10.3969/j.issn. 0438-1157.2014.07.012. LUO Q,ZHAO Y F,YE M,et al. Application of electrical capacitance tomography for gas-solid fluidized bed measurement [J]. CIESC Journal,2014,65(7): 2504-2512. DOI: 10.3969/j.issn.0438-1157.2014.07.012.
[12] CARTELLIER A. Optical probes for local void fraction measurements: characterization of performance [J]. Rev. Sci. Instrum.,1990,61(2): 874-886. DOI: 10.1063/1.1141457.
[13] MACCHI A,GRACE J R,BI H. Use of ultrasound for phase holdup measurements in multiphase systems [J]. Can. J. Chem. Eng.,2001,79(4): 570-578. DOI: 10.1002/cjce.5450790415.
[14] ZHENG Y,ZHANG Q K. Simultaneous measurement of gas and solid holdups in multiphase systems using ultrasonic technique [J]. Chem. Eng. Sci.,2004,59(17): 3505-3514. DOI: 10.1016/j.ces. 2004.05.016.
[15] JANA A K,DAS G,DAS P K. Flow regime identification of two-phase liquid-liquid upflow through vertical pipe [J]. Chem. Eng. Sci.,2006,61(5): 1500-1515. DOI: 10.1016/j.ces.2005.09.001.
[16] JIN N D,XIN Z,WANG J,et al. Design and geometry optimization of a conductivity probe with a vertical multiple electrode array for measuring volume fraction and axial velocity of two-phase flow [J]. Meas. Sci. Technol.,2008,19(4): 334-340. DOI: 10.1088/0957-0233/ 19/4/045403.
[17] CHENG W,LIU W H,HU B W,et al. Experimental study on gas-liquid two-phase flows in an areation tank by using image treatment method [J]. J. Hydrodyn.,2008,20(5): 650-655. DOI: 10.1016/S1001-6058(08)60108-0.
[18] 趙安,韓云峰,翟路生,等. 氣液兩相流電容傳感器相濃度測(cè)量特性 [J]. 化工學(xué)報(bào),2015,66(7): 2402-2410. DOI: 10.11949/j.issn. 0438-1157.20150166. ZHAO A,HAN Y F,ZHAI L S,et al. Characteristics of phase-concentration measurement for capacitance sensors in gas-liquid two-phase flow [J]. CIESC Journal,2015,66(7): 2402-2410. DOI: 10.11949/j.issn.0438-1157.20150166.
[19] BECK M S. Correlation in instruments: cross correlation flowmeters [J]. J. Phys. E.,1981,14(1): 7-19. DOI: 10.1088/0022-3735/14/1/001. [20] THORN R,BECK M S,GREEN R G. Non-intrusive methods of velocity measurement in pneumatic conveying [J]. J. Phys. E.,1982,15(11): 1131-1139. DOI: 10.1088/0022-3735/15/11/001.
[21] 陳克明,寧震霖. 市場(chǎng)調(diào)查中樣本容量的確定 [J]. 中國(guó)統(tǒng)計(jì),2005,3: 16-17. CHEN K M,NING Z L. Determination of sample size in market research [J]. China Statistics,2005,3: 16-17.
Optimal design for measuring gas holdup in gas-liquid two-phase slug flow using quick closing valve method
ZHAO An,HAN Yunfeng,ZHANG Hongxin,LIU Weixin,JIN Ningde
(School of Electrical Engineering and Automation,Tianjin University,Tianjin 300072,China)
Abstract:Quick closing valve (QCV) method is a common means of calibrating gas holdup in gas-liquid two-phase flow test. Unreasonable selections of spacing between valves and trapping times in QCV could bring about large error in gas holdup measurement,particularly since the gas slug and liquid slug in slug flow present flow characteristics with random variability. In this study,an optimal design was proposed for measuring gas holdup using QCV method. The cross-correlation velocity of gas-liquid two-phase slug flow was measured based on the signals between axially upstream and downstream probes. Then,the lengths of gas slug and liquid slug were extracted from the upstream probe signals under different flow conditions. Also,the gas holdup in liquid slugs was calculated by using Maxwell equation. On that basis,the gas holdup series was simulated at different spacing between valves based on the gas slug ratio in pipe. By analyzing the fluctuation of gas holdup series,the floor level of trapping times was indicated under the condition of 95% confidence coefficient and 5% permissible error at different spacing between valves. Finally,an experiment was conducted to assess the trapping times in QCV with the spacing setting at 1.55 m length. The measuring errors of gas holdup using QCV method was statistically analyzed,and it was proved that the design guideline provided a sufficient condition for setting up thespacing between valves.
Key words:gas-liquid two-phase flow;slug flow; gas holdup;QCV method
DOI:10.11949/j.issn.0438-1157.20151293
中圖分類號(hào):TP 212.9
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0438—1157(2016)04—1159—10
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(51527805,11572220);國(guó)家科技重大專項(xiàng)(2011ZX05020-006)。
Corresponding author:Prof. JIN Ningde,ndjin@tju.edu.cn