翁曉敏,高揚(yáng),許旭東,莊大偉,胡海濤,丁國(guó)良(上海交通大學(xué)制冷與低溫工程研究所,上海 200240)
?
濕工況下泡沫金屬內(nèi)換熱和壓降的數(shù)值模擬和實(shí)驗(yàn)驗(yàn)證
翁曉敏,高揚(yáng),許旭東,莊大偉,胡海濤,丁國(guó)良
(上海交通大學(xué)制冷與低溫工程研究所,上海 200240)
摘要:泡沫金屬應(yīng)用到換熱器空氣側(cè)有望提高析濕工況下的換熱性能。為了了解濕空氣在泡沫金屬內(nèi)的熱質(zhì)傳遞和壓降特性,建立了泡沫金屬內(nèi)液滴形成、生長(zhǎng)和運(yùn)動(dòng)特性的數(shù)值模型?;谝旱纬珊藬?shù)目和成核臨界半徑得出液滴形成過(guò)程的傳質(zhì)率模型;通過(guò)建立液滴與濕空氣相界面附近濕空氣中水蒸氣的組分守恒方程,得出液滴生長(zhǎng)過(guò)程的傳質(zhì)率模型;通過(guò)對(duì)不同孔棱柱表面液滴的受力分析,建立在重力和風(fēng)力的共同作用下的液滴接觸角模型。將液滴形成及生長(zhǎng)的傳質(zhì)率模型和接觸角模型分別作為質(zhì)量源項(xiàng)和表面張力源項(xiàng),加入連續(xù)性方程、動(dòng)量方程和能量方程組中,實(shí)現(xiàn)對(duì)泡沫金屬內(nèi)液滴生長(zhǎng)、形成和運(yùn)動(dòng)過(guò)程模擬。模型的實(shí)驗(yàn)驗(yàn)證結(jié)果表明,換熱量預(yù)測(cè)值與實(shí)驗(yàn)結(jié)果的最大偏差為11.9%,壓降預(yù)測(cè)值與實(shí)驗(yàn)結(jié)果的最大偏差為17.7%。
關(guān)鍵詞:泡沫金屬;濕工況;傳熱;數(shù)值模型;實(shí)驗(yàn)驗(yàn)證
2015-07-13收到初稿,2015-08-26收到修改稿。
聯(lián)系人:胡海濤。第一作者:翁曉敏(1990—),女,碩士研究生。
Received date: 2015-07-13.
Foundation item: supported by the National Natural Science Foundation of China(51576122) and the Natural Science Foundation of Shanghai (15ZR1422000).
泡沫金屬是一種結(jié)構(gòu)復(fù)雜的多孔介質(zhì),具有較大的比表面積和熱導(dǎo)率,可以有效地提高換熱效率[1],復(fù)雜的泡沫金屬結(jié)構(gòu)有利于流體充分混合,可以通過(guò)破壞邊界層增強(qiáng)流體和固體的換熱[2]。因此泡沫金屬用于替代翅片作為制冷空調(diào)換熱器強(qiáng)化換熱結(jié)構(gòu),有望提高換熱器的性能。實(shí)際制冷空調(diào)運(yùn)行過(guò)程中,蒸發(fā)器內(nèi)會(huì)發(fā)生濕空氣析濕現(xiàn)象,從而影響換熱器的性能。因此,將泡沫金屬應(yīng)用于空調(diào)換熱器,必須了解析濕工況下泡沫金屬內(nèi)的換熱和壓降特性。
已有關(guān)于換熱器空氣側(cè)析濕工況的研究主要集中在常規(guī)翅片[3-8]。研究結(jié)果表明,翅片在析濕工況下的換熱和壓降均大于在干工況;在全濕工況下,百葉窗片的翅片間距對(duì)換熱的影響相對(duì)較小,對(duì)摩擦因子的影響隨著翅片間距的增大而增大[5-6]。這些研究主要針對(duì)析濕工況下翅片的傳熱傳質(zhì)等特性。由于泡沫金屬結(jié)構(gòu)與翅片存在很大差異,已有研究成果不能直接拓展到泡沫金屬。
已有關(guān)于泡沫金屬的研究主要集中在泡沫金屬的熱導(dǎo)率[9]以及在干工況下的換熱和壓降的實(shí)驗(yàn)[10-14]和模擬[15-21]研究。已有研究結(jié)果表明,隨著孔隙率和孔密度增大,傳熱系數(shù)逐漸增大[10-12];壓降隨著孔密度的增大而增大[13-15];通過(guò)計(jì)算機(jī)掃描成像[16-17]和理想化結(jié)構(gòu)模型[18-21],可以模擬干空氣在泡沫金屬內(nèi)換熱和壓降特性。但是上述研究主要集中在干空氣,還沒有關(guān)于析濕工況下泡沫金屬內(nèi)換熱和壓降特性報(bào)道。
本文的主要目是提出建立析濕工況下泡沫金屬內(nèi)換熱和壓降特性的數(shù)學(xué)模型,并通過(guò)實(shí)驗(yàn)數(shù)據(jù)對(duì)模型進(jìn)行驗(yàn)證。
實(shí)際泡沫金屬如圖1(a)所示,孔棱柱相互交錯(cuò)。為了研究在析濕工況下液滴在孔棱柱表面的行為,需將其簡(jiǎn)化成規(guī)則幾何模型,根據(jù)表面能量最小和空間最小化原則,采用十四面體單元模型[19-21]作為泡沫金屬最小的單元結(jié)構(gòu),如圖1(b)所示。在析濕工況下,泡沫金屬上液滴的形成、生長(zhǎng)和運(yùn)動(dòng)過(guò)程就可以取一個(gè)單元進(jìn)行分析,如圖1(c)所示。
圖1 泡沫金屬模型示意圖Fig.1 Geometrical model of metal foam
空調(diào)換熱器在析濕工況下運(yùn)行時(shí),當(dāng)空氣溫度降低至露點(diǎn)溫度以下,濕空氣中的水蒸氣過(guò)飽和,會(huì)使水蒸氣在換熱器表面發(fā)生冷凝相變,形成液態(tài)小水滴附著在固體表面。壁面附近的水分子濃度低于主流濕空氣的水分子濃度,在這種濃度差的作用下主流濕空氣中的水分子不斷向壁面遷移形成液滴,并逐漸融合長(zhǎng)大。當(dāng)液滴的體積增長(zhǎng)到一定程度,在風(fēng)力、重力和表面黏附力的共同作用下,有開始運(yùn)動(dòng)的趨勢(shì)。重力、風(fēng)力和黏附力可以分別通過(guò)液滴形成和生長(zhǎng)時(shí)的傳質(zhì)量和表面接觸角求得。
本文通過(guò)理論分析建立析濕過(guò)程的數(shù)學(xué)模型,其中包括液滴形成、生長(zhǎng)和運(yùn)動(dòng)過(guò)程的模擬,然后通過(guò)實(shí)驗(yàn)數(shù)據(jù)對(duì)開發(fā)的模型進(jìn)行實(shí)驗(yàn)驗(yàn)證。
2.1控制方程
濕空氣下泡沫金屬內(nèi)換熱和壓降特性的描述,需要反映液滴的形成和增大過(guò)程,因此,在連續(xù)性方程、動(dòng)量方程和能量方程中添加質(zhì)量源項(xiàng)S和表面張力Fσ,如式(1)~式(4)所示。
式中,αw和αm分別為液態(tài)水和濕空氣的體積分?jǐn)?shù),滿足αw+αm=1。hfg是水的汽化潛熱;Fσ是表面張力,可以通過(guò)式(5)求得[22]
式中,σ是氣液相的表面張力系數(shù);κw是界面的曲率;S為質(zhì)量源項(xiàng),對(duì)于液滴形成過(guò)程,S等于在泡沫金屬表面冷凝的水蒸氣質(zhì)量mf;對(duì)于液滴成長(zhǎng)過(guò)程,S是相界面上水蒸氣的凝結(jié)量mg;表面張力Fσ與接觸角θ相關(guān),且隨著方位角φ的變化而變化。
建立濕空氣下泡沫金屬內(nèi)換熱和壓降數(shù)值模型的關(guān)鍵是得出液滴形成傳質(zhì)模型的冷凝水質(zhì)量mf、液滴成長(zhǎng)傳質(zhì)模型的相界面凝結(jié)量mg和接觸角θ的模型。下面對(duì)上述模型進(jìn)行詳細(xì)介紹。
2.2液滴形成的傳質(zhì)模型
已有基于液膜假說(shuō)[23]的模型,不適用于泡沫金屬,本文基于液滴經(jīng)典成核理論,將液滴形成的傳質(zhì)速率mf表示為液滴的成核速率I和團(tuán)聚體質(zhì)量的乘積,如式(6)所示
其中,水滴成核速率I可由式(7)計(jì)算[24];rc為液滴形成的臨界半徑,如式(8)所示
式中,nc為臨界團(tuán)聚體的數(shù)目;β為團(tuán)聚體分子的擴(kuò)散率;N為單位容積內(nèi)潛在的成核數(shù)目;KB為玻耳茲曼常數(shù);T為溫度;ΔGc為臨界自由能改變量[25]。
2.3液滴生長(zhǎng)的傳質(zhì)模型
液滴的生長(zhǎng)過(guò)程是,在原來(lái)形成的小液滴上,水蒸氣不斷地通過(guò)相的界面液化,使液滴集聚長(zhǎng)大。液滴生長(zhǎng)過(guò)程的傳質(zhì)量可用式(9)得到[23]
式中,Scv是界面的傳質(zhì)量;Vcv是控制體積單元;ws是飽和含濕量;wm,v為濕空氣中水蒸氣的質(zhì)量濃度;n為翅片表面的法相矢量;ρm為濕空氣的密度;D為二元混合物的擴(kuò)散率。
2.4接觸角模型
為了確定不同位置上泡沫金屬孔棱柱上的液滴的接觸角,首先需要對(duì)孔棱柱上的液滴進(jìn)行受力分析。本文建立以風(fēng)速方向?yàn)閅軸、以重力方向?yàn)閆軸的坐標(biāo)系,受力分析如圖2(a)所示。
對(duì)于任意位置,液滴均受到重力、風(fēng)力和黏附力的作用,受力平衡如式(10)~式(12)所示。
式中,F(xiàn)g和Fa分別為重力和風(fēng)力;ρw、ρm分別為水和濕空氣的密度;g為重力加速度;Vd為水滴體積,可由水滴形成過(guò)程的傳質(zhì)模型進(jìn)行計(jì)算;Um為主流濕空氣速度;CD為阻尼系數(shù);Ap為水滴側(cè)面投影的面積,可以通過(guò)水滴側(cè)面輪廓線方程計(jì)算[26]。
圖2 液滴的受力分析及坐標(biāo)變換關(guān)系Fig.2 Force analysis of droplet and coordinate transformation
為了求出重力和風(fēng)力在不同表面上的分量,需要引入坐標(biāo)變換,如圖2(b)所示。轉(zhuǎn)換后的坐標(biāo)系Oxqyqzq相對(duì)于原坐標(biāo)系Oxpypzp的位置可由3個(gè)歐拉角χ,ψ,ω確定。對(duì)于給定的任意歐拉角χ,ψ,ω,坐標(biāo)軸之間的關(guān)系為式(13)所示。三維坐標(biāo)的轉(zhuǎn)換矩陣如式(14)所示。
對(duì)于不同位置孔棱柱面上的液滴受力,將重力和風(fēng)力的大小投影到液滴所處平面上,將偏移角度和液滴輪廓線的方位角,引入平面上的接觸角[27],就能求出泡沫孔棱柱上液滴不同方位的接觸角
3.1計(jì)算區(qū)域
采用十四面體作為泡沫金屬最小的單元,根據(jù)泡沫金屬結(jié)構(gòu)的兩個(gè)重要衡量參數(shù)孔隙率ε和孔密度PPI確定孔棱柱的粗細(xì)和單元的大小。本文對(duì)孔密度為5PPI,孔隙率為85%的泡沫銅進(jìn)行模擬計(jì)算。根據(jù)泡沫金屬的孔密度和孔隙率的計(jì)算公式[19],得到泡沫金屬單元結(jié)構(gòu)尺寸dps為5.08 mm、孔棱柱直徑dfd為0.762 mm。計(jì)算區(qū)域如圖3所示。
圖3 泡沫金屬的幾何模型Fig.3 Diagram of geometrical model of metal foam
3.2邊界條件
仿真對(duì)象為泡沫銅,上下兩個(gè)面設(shè)為對(duì)稱面,有一個(gè)冷卻壁面,溫度為6℃。進(jìn)口為溫度27℃的濕空氣,壓力出口。在Fluent軟件中,將材料選取為銅材料,孔棱柱銅壁面設(shè)為流固耦合面,將泡沫銅孔棱柱表面張力和接觸角等參數(shù)嵌入模型中。用ICEM劃分網(wǎng)格,由于結(jié)構(gòu)的復(fù)雜性,采用非結(jié)構(gòu)化的網(wǎng)格,網(wǎng)格的數(shù)量為230萬(wàn),如圖4所示。
圖4 泡沫金屬的網(wǎng)格示意圖Fig.4 Schematic diagram of grid for computational domain of metal foam
采用FLUENT軟件對(duì)建立的模型進(jìn)行計(jì)算,計(jì)算過(guò)程中存在兩相(濕空氣-液相水),組分傳輸由自行編寫的UDF實(shí)現(xiàn)相變傳質(zhì)。時(shí)間步長(zhǎng)的選取為時(shí)變步長(zhǎng)(10-5~10-7s),每個(gè)時(shí)間步進(jìn)行一次迭代,以保證計(jì)算結(jié)果收斂。
圖5 泡沫金屬上凝結(jié)水形成過(guò)程的模擬Fig.5 Simulation of condensate water formation process
以孔密度為5PPI,孔隙率為85%的泡沫銅為對(duì)象,將析濕模型應(yīng)用到模擬中。以入口空氣溫度為27℃,相對(duì)濕度為90%,冷卻壁面的溫度為6℃為例,觀察液滴在泡沫金屬上形成、生長(zhǎng)和運(yùn)動(dòng)的情況,如圖5所示。
圖6 模型預(yù)測(cè)值與實(shí)驗(yàn)結(jié)果的對(duì)比Fig.6 Comparison between predicted values and experimental data
從圖5可知,隨著時(shí)間增長(zhǎng),凝結(jié)水的體積分?jǐn)?shù)不斷增大。當(dāng)時(shí)間為0.01 s時(shí),液體的析濕量較少,且液滴廣泛分布在出口的孔棱柱上。這是由于入口的空氣溫度較高,在相對(duì)濕度一定的情況下,飽和度較小。經(jīng)過(guò)冷卻面和孔棱柱的導(dǎo)熱和傳熱,濕空氣溫度逐漸降低,使靠近泡沫金屬出口處空氣中的水蒸氣更易飽和,從而在孔棱柱上析出液滴。隨著時(shí)間增長(zhǎng),析濕凝結(jié)液滴不斷增多,凝結(jié)水開始流動(dòng)并聚集成大的液滴,如圖5(b)所示。泡沫金屬入口處的孔棱柱被不斷冷卻,使進(jìn)出口的溫度梯度變小,入口處的水蒸氣開始接近飽和,并出現(xiàn)冷凝現(xiàn)象。因此在0.2 s時(shí),入口段也開始出現(xiàn)了液膜,如圖5(c)所示。0.3 s時(shí),水分子不斷凝結(jié),流動(dòng)合并成較大的液滴[圖5(d)]。
為了驗(yàn)證析濕模型的正確性,在泡沫金屬析濕特性測(cè)試實(shí)驗(yàn)臺(tái)上進(jìn)行實(shí)驗(yàn)研究[28],將模擬結(jié)果和實(shí)驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比,如圖6所示。結(jié)果表明,換熱量預(yù)測(cè)值與實(shí)驗(yàn)結(jié)果的最大偏差為11.9%,壓降預(yù)測(cè)值與實(shí)驗(yàn)結(jié)果的最大偏差為17.7%。
(1)本文建立了泡沫金屬內(nèi)液滴形成、生長(zhǎng)和運(yùn)動(dòng)特性的數(shù)值模型。通過(guò)液滴的成核數(shù)目和成核臨界半徑得到液滴形成過(guò)程的傳質(zhì)率模型;通過(guò)建立液滴與濕空氣相界面附近濕空氣中水蒸氣的組分守恒方程,得到液滴生長(zhǎng)過(guò)程的傳質(zhì)率模型;通過(guò)對(duì)不同孔棱柱表面液滴的受力情況,建立在重力和風(fēng)力的共同作用下的液滴在不同方位的接觸角模型。
(2)模型的實(shí)驗(yàn)驗(yàn)證結(jié)果表明,換熱量預(yù)測(cè)值與實(shí)驗(yàn)結(jié)果的最大偏差為11.9%,壓降預(yù)測(cè)值與實(shí)驗(yàn)結(jié)果的最大偏差為17.7%。
符號(hào)說(shuō)明
A——面積,m2
a——邊長(zhǎng),m
CD——阻尼系數(shù)
D——二元混合物擴(kuò)散率
F——力,N
G——Gibbs自由能
g——重力加速度,9.81 m·s-2
L——長(zhǎng)軸,m
n——單位向量
R——摩爾氣體常數(shù),J·(mol·K)-1
Re——Reynolds數(shù)
r——半徑
T——溫度,K
u——速度,m·s-1
V——體積,m3
W——短軸,m
a——體積分?jǐn)?shù)
β——擴(kuò)散率
ε ——孔隙率
η ——偏移角
q ——接觸角
κ ——表面曲率
μ ——?jiǎng)恿︷ざ龋琍a·s
r ——密度,kg·m-3
σ ——表面張力
φ ——方位角
χ,ψ,ω ——?dú)W拉角
下角標(biāo)
a ——空氣(氣相)
c ——臨界
co ——泡沫銅
d ——液滴
f ——形成
fd ——孔棱柱直徑
g ——生長(zhǎng)
inlet ——入口
max ——最大值
min ——最小值
p ——原坐標(biāo)
q ——轉(zhuǎn)化后的坐標(biāo)
w ——水(液相)
x,y,z ——坐標(biāo)
References
[1] ZHAO C Y. Review on thermal transport in high porosity cellular metal foams with open cells [J]. International Journal of Heat and Mass Transfer,2012,55(13): 3618-3632.
[2] SULEIMAN A S,DUKHAN N. Forced convection inside metal foam: simulation over a long domain and analytical validation [J]. International Journal of Thermal Sciences,2014,86: 104-114.
[3] MA X,DING G,ZHAGN Y,et al. Effects of hydrophilic coating on air side heat transfer and friction characteristics of wavy fin and tube heat exchangers under dehumidifying conditions [J]. Energy Conversion and Management,2007,48(9): 2525-2532.
[4] MA X,DING G,ZHANG Y,et al. Airside characteristics of heat,mass transfer and pressure drop for heat exchangers of tube-in hydrophilic coating wavy fin under dehumidifying conditions [J]. International Journal of Heat and Mass Transfer,2009,52(19): 4358-4370.
[5] WANG C C,LIAW J S. Air-side performance of herringbone wavy fin-and-tube heat exchangers under dehumidifying condition-data with larger diameter tube [J]. International Journal of Heat and Mass Transfer,2012,55(11): 3054-3060.
[6] WANG C C,LIN Y T,LEE C J. Heat and momentum transfer for compact louvered fin-and-tube heat exchangers in wet conditions [J]. International Journal of Heat and Mass Transfer,2000,43(18): 3443-3452.
[7] PHAN T L,CHANG K S,KWON Y C,et al. Experimental study on heat and mass transfer characteristics of louvered fin-tube heat exchangers under wet condition [J]. International Communications in Heat and Mass Transfer,2011,38(7): 893-899.
[8] VAHABZADEH A,GANJI D D,ABBASI M. Analytical investigation of porous pin fins with variable section in fully-wet conditions [J]. Case Studies in Thermal Engineering,2015,5: 1-12.
[9] MANCIN S,ZILIO C,CAVALLINI A,et al. Heat transfer during air flow in aluminum foams [J]. International Journal of Heat and Mass Transfer,2010,53(21): 4976-4984.
[10] HSIEH W H,WU J Y,SHIH W H,et al. Experimental investigation of heat-transfer characteristics of aluminum-foam heat sinks [J]. International Journal of Heat and Mass Transfer,2004,47: 5149-5157
[11] DAI Z,NAWAZ K,PARK Y,et al. A comparison of metal-foam heat exchangers to compact multilouver designs for air-side heat transfer applications [J]. Heat Transfer Engineering,2012,33 (1): 21-30
[12] ZHAO CY,KIM T,LU T J,et al. Thermal transport in high porosity metal foams [J]. Thermophysics Heat Transfer,2004,18 (3): 309-317 [13] BHATTACHARYA A,MAHAJAN R L. Metal foam and finned metal foam heat sinks for electronics cooling in buoyancy- induced convection [J]. Journal of Electronic Packaging,2006,128(3): 259-266.
[14] HUTTER C,BüCHI D,ZUBER V,et al. Heat transfer in metal foams and designed porous media. [J]. Chemical Engineering Science,2011,66(17): 3806-3814.
[15] MANCIN S,ZILIO C,DIANI A,et al. Experimental air heat transfer and pressure drop through copper foams [J]. Experimental Thermal and Fluid Science,2012,36: 224-232
[16] BOLLA K K,MURTHY J Y,GARIMELLA S V. Microtomography-based simulation of transport through open-cell metal foams [J]. Numerical Heat Transfer,Part A: Applications,2010,58(7): 527-544.
[17] RANUT P,NOBILE E,MANCINI L. High resolution X-ray microtomography-based CFD simulation for the characterization of flow permeability and effective thermal conductivity of aluminum metal foams [J]. Experimental Thermal and Fluid Science,2015,67: 30-36.
[18] LU T J,STONE H A,ASHBY M F. Heat transfer in open-cell metal foams [J]. Acta Materialia,1998,46(10): 3619-3635.
[19] BOOMSMA K,POULIKAKOS D,VENTIKOS Y. Simulations of flow through open cell metal foams using an idealized periodic cell structure [J]. International Journal of Heat and Fluid Flow,2003,24(6): 825-834.
[20] KOPANIDIS A,THEODORAKAKOS A,GAVAISES E,et al. 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam [J]. International Journal of Heat and Mass Transfer,2010,53(11): 2539-2550.
[21] CONTENTO G,OLIVIERO M,BIANCO N,et al. The prediction of radiation heat transfer in open cell metal foams by a model based on the Lord Kelvin representation [J]. International Journal of Heat and Mass Transfer,2014,76: 499-508.
[22] SAHA A A,MITRA S K. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow [J]. Journal of Colloid and Interface Science,2009,339(2): 461-480.
[23] 楊藝菲,莊大偉,胡海濤,等. 濕工況下平翅片平面凝水形成及運(yùn)動(dòng)過(guò)程的數(shù)值模擬與實(shí)驗(yàn)驗(yàn)證 [J]. 化工學(xué)報(bào),2014,65(S2): 140-147. DOI: 10.3969/j.issn.0438-1157.2014.z2.021. YANG Y F,ZHUANG D W,HU H T,et al. Numerical simulation and experimental validation of water condensing and moving on plain-fin surface under dehumidifying conditions [J]. CIESC Journal,2014,65(S2): 140-147. DOI: 10.3969/j.issn.0438-1157.2014.z2.021.
[24] MITROVIC J. Phase equilibrium of a liquid droplet formed on a solid particle [J]. Chemical Engineering Science,2006,61(18): 5925-5933.
[25] 熊偉,莊大偉,胡海濤,等. 濕工況下翅片管換熱器空氣側(cè)熱質(zhì)傳遞動(dòng)態(tài)模擬 [J].制冷技術(shù),2013,33(1):1-5. DOI: 10.3969/j.issn. 2095-4468.2012.04.101. XIONG W,ZHUANG D W,HU H T,et al. Dynamic simulation of heat and mass transfer characteristics for tube-finned heat exchangers under dehumidifying conditions [J]. Chinese Journal of Refrigeration Technology,2013,33(1): 1-5.
[26] SOMMERS A D,YING J,EID K F. Predicting the onset of condensate droplet departure from a vertical surface due to air flow—applications to topographically-modified,micro-grooved surfaces [J]. Experimental Thermal and Fluid Science,2012,40: 38-49.
[27] ELSHERBINI A I,JACOBI A M. Liquid drops on vertical and inclined surfaces(Ⅰ): An experimental study of drop geometry [J]. Journal of Colloid and Interface Science,2004,273(2): 556-565.
[28] 翁曉敏,胡海濤,莊大偉,等. 濕空氣在泡沫金屬內(nèi)析濕過(guò)程的換熱與壓降特性影響因素分析 [J]. 化工學(xué)報(bào),2015,66(5):1649-1655. DOI:10.11949/j.issn.0438-1157.20141657. WENG X M,HU H T,ZHUANG D W,et al. Analysis of influence factors for heat transfer and pressure drop characteristics of moist air in metal foams during dehumidifying process [J]. CIESC Journal,2015,66(5): 1649-1655 DOI: 10.11949/j.issn.0438-1157.20141657.
Numerical simulation and experimental validation of heat transfer and pressure drop characteristics in metal foam under wet conditions
WENG Xiaomin,GAO Yang,XU Xudong,ZHUANG Dawei,HU Haitao,DING Guoliang
(Institute of Refrigeration and Cryogenics Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
Abstract:The application of metal foam in the airside of heat exchanger has the potential to improve the heat transfer performance under wet conditions. In order to know the heat,mass transfer and pressure drop characteristics of wet air in metal foam,numerical models for water droplet formation,growth and movement are developed. The mass transfer rate model for droplet formation is based on the heterogeneous nucleation rate and critical nucleation radius of droplet; the mass transfer rate model for droplet growth is based on the species conservation of water vapor on phase interface between the droplet and moist air; the contact angle model of the droplet under combined effects of gravity and air forces is based on the force analysis of droplets on the ligament. The models of mass transfer rate during water droplet formation and growth processes and the model of contact angle are reflected in the continuity,momentum and energy conservation equations as the mass source term and momentum term,which realizes the simulation for the water droplet formation,growth and movement processes in metal foam. The experimental validation of the proposed model shows that,the maximum deviations of the heat transfer rate and pressure drop between the simulation results and experimental data are 11.9% and 17.7%,respectively.
Key words:metal foam;wet condition; heat transfer; numerical model; experimental validation
DOI:10.11949/j.issn.0438-1157.20151122
中圖分類號(hào):TK 124
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0438—1157(2016)04—1193—07
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(51576122);上海市自然科學(xué)基金項(xiàng)目(15ZR1422000)。
Corresponding author:HU Haitao,huhaitao2001@sjtu.edu.cn