巫小倩,劉辰東,堵晶晶,羅 嘉,朱 礪,張順華
(四川農(nóng)業(yè)大學動物科技學院,成都 611130)
?
microRNA調(diào)控動物毛色和膚色的研究進展
巫小倩,劉辰東,堵晶晶,羅嘉,朱礪*,張順華*
(四川農(nóng)業(yè)大學動物科技學院,成都 611130)
黑色素細胞對于毛色和膚色的形成具有至關重要的作用。黑色素細胞由胚胎時期的神經(jīng)嵴干細胞分化而來,在成熟黑色素細胞內(nèi)通過一系列復雜的酶催化反應最終生成黑色素,從而決定動物的毛色和膚色。黑色素的生成過程復雜,受到一些轉錄因子、激素、信號通路分子協(xié)同調(diào)控。microRNA(miRNA)是一類長約22 nt的內(nèi)源性非編碼RNA,主要通過抑制轉錄后的翻譯過程來調(diào)控基因表達。越來越多的研究表明,miRNA與黑色素生成相關。本文對黑色素沉積相關的miRNAs的挖掘和鑒定工作以及miRNAs調(diào)控毛色和膚色的研究進展進行綜述。
microRNA;黑色素細胞;黑色素;毛色;膚色
毛色和膚色是脊椎動物最容易被觀察到的重要表型特征,可用于區(qū)分動物亞種(或品種)[1]。一般哺乳動物毛色和膚色與吸引異性、躲避天敵、通訊交流等相關[2-4]。而對于羊駝、綿羊等毛用動物而言,毛色則是最重要的經(jīng)濟性狀[5-6]。因此,動物表皮色素沉積一直受到人們的廣泛關注,對膚色和毛色形成研究具有重要的經(jīng)濟價值。 miRNA是廣泛存在于真核細胞的進化高度保守的單鏈非編碼RNA,可以在轉錄后水平調(diào)控靶基因表達,從而參與細胞增殖、分化、凋亡等多種生物學過程。大量研究表明,miRNA可以作為一種重要的調(diào)控因子參與黑色素形成。迄今為止,鑒定出大量miRNAs參與調(diào)控脂肪沉積、心肌纖維化以及細胞衰老等過程[7-9],而miRNA調(diào)控毛色和膚色的研究卻十分欠缺。亟待持續(xù)挖掘與黑色素形成相關的miRNA。
miRNA是一類長約22 nt的內(nèi)源非編碼RNA,可以在轉錄后水平調(diào)控基因表達[10]。R.C.Lee等[11]發(fā)現(xiàn)第一個miRNA—lin-4,它可以調(diào)節(jié)秀麗隱桿線蟲幼蟲階段性發(fā)育。目前已經(jīng)有超過28 645個miRNA被發(fā)現(xiàn)和鑒定(http://www.mirbase.org/)。miRNA參與調(diào)控細胞增殖、分化、凋亡等多種生物學過程,對維持機體正常的生理功能有至關重要的作用[12-13]。miRNA基因在RNA聚合酶II作用下形成初級轉錄物pri-miRNA,隨后Drosha酶和伴侶蛋白DGCR8組成的復合物將pri-miRNA剪切成為具有莖環(huán)結構的前體pre-miRNA,pre-miRNA被轉運蛋白Exportin-5轉運到胞質(zhì)中并由Dicer酶加工形成長約20 nt的雙鏈miRNA,然后解鏈產(chǎn)生成熟的miRNA和其互補鏈miRNA*[14]。早期對于miRNA*的功能知之甚少,近年來研究發(fā)現(xiàn),miRNA*能與AGO2形成RISC復合體發(fā)揮類似siRNA的作用[15-16]。在無脊椎動物中存在一種新的miRNA合成機制,稱為 “mitron”途徑,它形成具有套索結構的中間體,不依賴Dicer酶的剪切作用,最終產(chǎn)生成熟的miRNA[17-18]。在哺乳動物體內(nèi),miRNA可以與核糖核蛋白AGO結合生成沉默復合體 (RNA-induced silencing complex,RISC),miRNA的2~8位種子序列與mRNA的3′-UTR區(qū)或ORF互補結合,隨后RISC介導mRNA降解或抑制翻譯從而抑制靶基因表達[10,14]。有研究發(fā)現(xiàn),let-7、miR-125b可以加速mRNA脫腺苷,降低細胞內(nèi)mRNA有效含量[19-20]。而某些植物中,miRNA可以介導自身基因座或靶基因甲基化,在表觀水平調(diào)控基因表達[21-22]。
2.1黑色素細胞的起源
動物毛囊和皮膚基底層的黑色素細胞能夠合成黑色素,黑色素沉積的種類和含量共同決定動物的毛色和膚色。除視網(wǎng)膜色素細胞外,所有黑色素細胞起源于胚胎時期的軀干神經(jīng)嵴細胞[23]。神經(jīng)嵴細胞短暫存在于神經(jīng)胚形成期間,在神經(jīng)管閉合前后開始分散遷移,沿背側遷移的神經(jīng)嵴細胞分化為成黑色素細胞。成黑色素細胞繼續(xù)遷移至胚胎真皮,并隨著胚胎的發(fā)育漸布于全身,且穿過基膜到達表皮[24-25]。大多數(shù)成黑色素細胞聚集于發(fā)育的毛囊中,部分成黑色素細胞分化為Kit陽性細胞、多巴胺陽性細胞,最終分化為成熟的黑色素細胞[26]。另有少數(shù)成黑色素細胞分化為黑色素細胞存留于表皮基底層。
2.2黑色素生成
黑色素主要由黑色素細胞合成產(chǎn)生。黑色素小體是黑色素細胞特有的細胞器,它是合成黑色素的主要場所。黑色素的合成經(jīng)過4個階段[27]:Ⅰ、Ⅱ 階段在高爾基體-內(nèi)質(zhì)網(wǎng)-溶酶體復合體(GERL-complex)內(nèi)形成暫無活性的黑色素小體,此時的黑色素小體無法合成黑色素。酪氨酸酶由核糖體合成后經(jīng)高爾基體轉運活化進入黑色素小體,同時酪氨酸也通過膜的主動運輸進入黑色素小體,黑色素小體有產(chǎn)生黑色素的能力,黑色素合成進入Ⅲ、Ⅳ階段。在黑色素小體內(nèi),酪氨酸在活化的酪氨酸酶的作用下羥化為多巴,多巴進一步氧化生成高度活躍的中間產(chǎn)物多巴醌。當酪氨酸酶充足時,多巴醌經(jīng)過一系列氧化反應最終生成吲哚苯醌,形成真黑色素(Eumelanin);當酪氨酸酶缺乏時,由半胱氨酸或谷胱甘肽提供巰基使多巴醌轉化成半胱氨酰多巴,最終生成褐黑色素(Pheomelanin)[28]。黑色素小體內(nèi)形成的黑色素被黑色素細胞以胞突的方式釋放。動物的膚色和毛色主要由棕色或黑色的真黑色素和黃色或微紅棕色的褐黑色素的比例決定。
2.3黑色素生成重要轉錄因子——MITF
黑色素生成過程復雜,受到許多轉錄因子調(diào)控[29-31],其中,小眼畸形相關轉錄因子(Microphthalmia-associated transcription factor,MITF)對于黑色素形成非常重要[11]。MITF于1942年被發(fā)現(xiàn),且研究表明,MITF失活能夠?qū)е滦∈蟆唏R魚幾乎完全失去黑色素細胞[32]。MITF是黑色素細胞發(fā)育和功能的關鍵調(diào)控基因,對黑色素細胞的存活、遷移、增殖和分化都起著不可或缺的作用[33]。MITF能夠調(diào)控一些與色素形成相關基因的活性從而決定黑色素的種類與數(shù)量,如酪氨酸酶基因(Tyrosinase,Tyr)、酪氨酸酶相關蛋白1基因(Tyrosinase-related protein 1,Tyrp1)、酪氨酸酶相關蛋白2基因(Tyrosinase-related protein 2,Tyrp2)等[34]。某些轉錄因子可作用于MITF的啟動子區(qū)域,從而促進MITF的表達,如β連環(huán)蛋白(beta-catenin,β-catenin)、盒基因 3(Paired box 3,PAX3)、SOX10基因(SRY-box containing gene 10,SOX10)等[35]。研究表明,MITF的表達和活性與黑色素細胞的命運息息相關。
越來越多的研究表明,miRNA可以調(diào)控黑色素形成相關的基因、轉錄因子和重要的信號分子從而影響黑色素生成[36]。近年來,已經(jīng)有一些調(diào)控黑色素生成的miRNA被發(fā)現(xiàn),同時,miRNA調(diào)控黑色素生成的網(wǎng)絡正在逐步形成(圖1)。
圖1 miRNA調(diào)控黑色素生成網(wǎng)絡圖Fig.1 The network of miRNA regulates melanogenesis
3.1黑色素形成的miRNA表達譜測定
挖掘和鑒定與黑色素沉積相關miRNA是研究miRNA調(diào)控黑色素沉積的前提。高通量技術在挖掘miRNA上表現(xiàn)出巨大優(yōu)勢,能夠發(fā)現(xiàn)不同毛色或膚色表型動物中差異表達miRNA的種類和豐度,從而推動miRNA在色素沉積上的相關研究。近幾年,研究者對不同毛色、膚色的農(nóng)業(yè)經(jīng)濟動物進行miRNA測序,發(fā)現(xiàn)大量與黑色素形成相關的miRNA,為miRNA調(diào)控皮膚色素沉積奠定基礎。X.Tian等[37]利用Illumina 測序從棕色和白色羊駝皮膚中分別發(fā)現(xiàn)267和272個保守的miRNA(包含22個新鑒定出的miRNA),其中35個miRNA在白色羊駝中高表達,13個miRNA在棕色羊駝中高表達,miR-202、miR-542-5p、miR-424、miR-370和 miR-22-3p 等高表達于白色羊駝,miR-211、miR-184、miR-486、miR-885和miR-451 高表達于棕色羊駝。B.Yan等[38]利用Solexa測序研究紅色和白色鯉魚皮膚的miRNA表達譜,共發(fā)現(xiàn)13個差異表達的miRNA,其中10個差異表達miRNA在紅色和白色羅非魚中存在相同的差異表達模式。P.Dynoodt等[39]用毛喉素和紫外線處理小鼠黑色素細胞,從正常組和處理組中發(fā)現(xiàn)16個差異表達miRNA,13個在正常組中高表達,3個在處理組中高表達。Z.Wu等[40]對雜毛山羊的黑毛和白毛毛囊miRNA測序,得到205個保守的miRNA以及9個新的miRNA,共存在6個差異表達miRNA,其中5個在黑毛毛囊中高表達,這5個miRNA能作用于大量與毛色形成相關的信號通路,包括MAPK信號通路[41]。利用高通量測序找到大量與色素沉積相關的miRNA,但是這種相關需要進一步被驗證,從而形成miRNA調(diào)控色素沉積的網(wǎng)絡。
3.2miRNA對MITF轉錄因子的調(diào)控作用
MITF是黑色素形成過程中最重要的轉錄因子,miRNA可以通過調(diào)控MITF的表達從而調(diào)節(jié)動物黑色素形成。Z.Zhu等[42]和J.Guo等[43]研究發(fā)現(xiàn),miR-25和miR-218能夠直接作用于MITF的3′UTR,過表達miR-25和miR-218均能夠降低MITF及其下游基因的表達,如Tyr、Tyrp1、Tyrp2抑制黑色素形成。C.Dong等[44]首次利用轉基因小鼠研究miRNA影響動物毛色,發(fā)現(xiàn)轉基因小鼠毛色與miR-137的表達量相關,miR-137能夠直接作用于MITF,下調(diào)MITF及下游基因表達[45]。隨著miR-137表達量增加,小鼠毛色由黑逐漸變黃,毛干中黑色素含量減少[44]。miR-429能夠直接作用于叉頭蛋白D3基因(Forkhead box D3,F(xiàn)oxD3)的3′UTR,F(xiàn)oxD3與神經(jīng)脊干細胞的遷移相關,能夠下調(diào)分化相關基因的表達[46]。miR-429沉默導致FoxD3表達量顯著升高,MITF及其下游基因的表達被抑制,鯉魚皮膚中黑色素減少、顏色改變[38]。miR-429在鯉魚發(fā)育過程中存在很強的時空特異性表達,miR-429隨著鯉魚發(fā)育在皮膚中表達量逐漸增加,鯉魚發(fā)育出具有顏色的皮膚。miR-10b在山羊黑毛毛囊中高表達[40],miR-10b能抑制HOX基因家族表達,HOXA10能夠上調(diào)毛色相關基因DKK1(Dickkopf 1,DKK1)的表達,DKK1能夠通過抑制β-catenin以及MITF的表達抑制黑色素形成[47-49]。
3.3miRNA對Wnt/TGF-β/cAMP信號通路的調(diào)控作用
miRNA還可以與信號轉導通路中關鍵分子的mRNA結合,通過影響細胞信號通路的傳遞間接調(diào)控黑色素細胞的色素沉積。Wnt/β-catenin通路對于細胞命運、增殖、分化和遷移具有重要的作用[50-53]。Wnt3a不僅能夠促進神經(jīng)脊干細胞分化為黑色素細胞,而且能夠通過維持MITF的表達促進成黑素細胞分化為黑色素細胞[54-55]。Y.Zhao等[56]利用小鼠黑色素細胞研究發(fā)現(xiàn),miR-27a-3p能夠與Wnt3a的3′UTR結合,抑制Wnt3a蛋白以及下游基因β-catenin的表達,抑制和過表達miR-27a-3p,發(fā)現(xiàn)miR-27a-3p的表達量與黑色素細胞中黑色素含量呈負相關。轉化生長因子-β1(Transforming growth factor-β1,TGF-β1)信號轉導主要由其下游Smads分子介導[57]。TGF-β/Smad信號通路與Wnt /β-catenin信號通路間存在著交互調(diào)節(jié)作用,TGF-β1可間接活化β-catenin,進一步激活Wnt /β-catenin信號通路[58]。賈小云等[59]利用羊駝黑色素細胞研究miR-663對黑色素沉積的影響,發(fā)現(xiàn)miR-663能夠靶向作用于TGF-β1基因,從而抑制TGF-β1的表達,影響TGF-β/Smad和Wnt /β-catenin信號通路,抑制羊駝黑色素細胞中的黑色素生成。X.Tian等[37]對白色和棕色羊駝測序發(fā)現(xiàn)大量新的miRNA,lap-miR-nov66在白色羊駝皮膚中高表達。lap-miR-nov66能夠作用于可溶性鳥苷酸環(huán)化基因(Soluble guanylate cyclase,sGC)的CDS區(qū)域,上調(diào)sGC的表達量,導致cGMP表達量上升,而cAMP表達量降低,從而通過PKA通路作用于MITF轉錄因子,抑制黑色素生成[60]。
3.4miRNA對其他因子的調(diào)控作用
miRNA除調(diào)控MITF和一些信號通路影響色素沉積外,還可作用于其他基因影響黑色素形成。小鼠注射pre-MiR-434-5p能夠?qū)е缕淦つw中Tyr表達量降低,小鼠毛色變白,且合成的miR-434-5p類似物miR-Tyr與甘油混合涂抹于人皮膚表面,使人皮膚變白變亮[61]。K.H.Kim等[62]研究發(fā)現(xiàn),miR-125b能夠作用于DCT和Tyr基因抑制黑色素沉積,黑色素細胞中,miR-125能夠通過啟動子高度甲基化,降低miR-125b的表達,促進黑色素生成。P.Dynoodt等[39]研究發(fā)現(xiàn),miR-145能夠通過不同途徑影響黑色素的沉積。miR-145能夠作用于小鼠和人Myo5a基因的3′UTR,而Myo5A、Mlph以及Rab27a能形成復雜的Rab27a-Mlph-Myo5a三聯(lián)體蛋白[63],同時,miR-145高表達能夠使與黑色素沉積相關基因表達量降低,如MITF、Myo5A、Rab27a、Tyr等[39]。
動物毛色和膚色是極為重要的表型特征,與吸引異性、躲避天敵等緊密相關。對毛用動物而言,毛色更是重要的經(jīng)濟性狀。近年來,大量與毛色形成相關基因已經(jīng)被發(fā)現(xiàn)和鑒定,其中MITF不僅能夠影響黑色素細胞的存活、遷移、增殖和分化,還能夠調(diào)控黑色素形成相關基因的活性。目前已經(jīng)發(fā)現(xiàn)一些調(diào)控黑色素沉積的miRNA,它們作用于黑色素沉積相關的轉錄因子和信號通路,共同調(diào)控色素沉積,miRNA調(diào)控色素沉積網(wǎng)絡正逐漸形成。但miRNA對色素沉積調(diào)控網(wǎng)絡僅初步形成,尚需深度挖掘,進一步補充、完善。研究黑色素沉積的分子機制,構建miRNA對色素沉積的調(diào)控網(wǎng)絡,利用miRNA定向改變動物毛色以及將miRNA應用于美容行業(yè)將會成為未來研究miRNA調(diào)控色素沉積的新方向。
[1]HANNA L L,SANDERS J O,RILEY D G,et al.Identification of a major locus interacting with MC1R and modifying black coat color in an F2Nellore-Angus population[J].GenetSelEvol,2014,46:4.
[2]CARO T.The adaptive significance of coloration in mammals[J].BioScience,2005,55(2):125-136.
[3]MIYAGI R,TERAI Y.The diversity of male nuptial coloration leads to species diversity in Lake Victoria cichlids[J].GenesGenetSyst,2013,88(3):145-153.
[4]TAKAHASHI A.Pigmentation and behavior:potential association through pleiotropic genes in Drosophila[J].GenesGenetSyst,2013,88(3):165-174.
[5]CHANDRAMOHAN B,RENIERI C,LA MANNA V,et al.The alpaca agouti gene:genomic locus,transcripts and causative mutations of eumelanic and pheomelanic coat color[J].Gene,2013,521(2):303-310.
[6]DENG W D,SHU W,YANG S L,et al.Pigmentation in Black-boned sheep (Ovisaries):association with polymorphism of the MC1R gene[J].MolBiolRep,2009,36(3):431-436.
[7]張進威,羅毅,王宇豪,等.MicroRNA 調(diào)控動物脂肪細胞分化研究進展[J].遺傳,2015,37(12):1175-1184.
ZHANG J W,LUO Y,WANG Y H,et al.microRNA regulates animal adipocyte differentiation[J].Hereditas(Beijing),2015,37(12):1175-1184.(in Chinese)
[8]王世強,李丹,李博雅,等.microRNA 調(diào)控心肌纖維化研究進展[J].生命的化學,2015,35(4):565-570.
WANG S Q,LI D,LI B Y,et al.Research progress of myocardial fibrosis regulated by microRNA [J].ChemistryofLife,2015,35(4):565-570.(in Chinese)
[9]吳剛,王丹,黃毅,等.衰老相關 microRNAs 研究進展[J].生物化學與生物物理進展,2014,41(3):273-287.
WU G,WANG D,HUANG Y,et al.The research progress of microRNAs in aging[J].ProgressinBichemistryandBiophysics,2014,41(3):273-287.(in Chinese)
[10]BARTEL D P.microRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297.
[11]LEE R C,F(xiàn)EINBAUM R L,AMBROS V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854.
[12]TANG Y,ZHENG J,SUN Y,et al.microRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2[J].IntHeartJ,2009,50(3):377-387.
[13]SHENOY A,BLELLOCH R H.Regulation of microRNA function in somatic stem cell proliferation and differentiation[J].NatRevMolCellBiol,2014,15(9):565-576.
[14]TREIBER T,TREIBER N,MEISTER G.Regulation of microRNA biogenesis and function[J].ThrombHaemost,2012,107(4):605-610.
[15]YANG J S,PHILLIPS M D,BETEL D,et al.Widespread regulatory activity of vertebrate microRNA* species[J].RNA,2011,17(2):312-326.
[16]馬圣運,白玉,韓凝,等.miRNA*生物合成及其功能研究的新發(fā)現(xiàn)[J].遺傳,2012,34(4):383-388.
MA S Y,BAI Y,HAN N,et al.Recent research progress of biogenesis and functions of miRNA*[J].Hereditas(Beijing),2012,34(4):383-388.(in Chinese)
[17]AMERES S L,ZAMORE P D.Diversifying microRNA sequence and function[J].NatRevMolCellBiol,2013,14(8):475-488.
[18]WESTHOLM J O,LADEWIG E,OKAMURA K,et al.Common and distinct patterns of terminal modifications to mirtrons and canonical microRNAs[J].RNA,2012,18(2):177-192.
[19]DJURANOVIC S,NAHVI A,GREEN R.miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay[J].Science,2012,336(6078):237-240.
[20]WU L,F(xiàn)AN J,BELASCO J G.microRNAs direct rapid deadenylation of mRNA[J].ProcNatlAcadSciUSA,2006,103(11):4034-4039.
[21]MATZKE M A,MOSHER R A.RNA-directed DNA methylation:an epigenetic pathway of increasing complexity[J].NatRevGenet,2014,15(6):394-408.
[22]WU L,ZHOU H,ZHANG Q,et al.DNA methylation mediated by a microRNA pathway[J].MolCell,2010,38(3):465-475.
[23]LABONNE C,BRONNER-FRASER M.Induction and patterning of the neural crest,a stem cell-like precursor population[J].JNeurobiol,1998,36(2):175-189.
[24]BAKER C V,BRONNER-FRASER M,LE DOUARIN N M,et al.Early- and late-migrating cranial neural crest cell populations have equivalent developmental potentialinvivo[J].Development,1997,124(16):3077-3087.
[25]文琴.發(fā)育神經(jīng)生物學[M].北京:科學出版社,2007.
WEN Q.Developmental neurobiology[M].Beijing:Science Press,2007.
[26]HIROBE T.Histochemical survey of the distribution of the epidermal melanoblasts and melanocytes in the mouse during fetal and postnatal periods[J].AnatRec,1984,208(4):589-594.
[27]RILEY P A.Melanin[J].IntJBiochemCellBiol,1997,29(11):1235-1239.
[28]ITO S,NAKANISHI Y,VALENZUELA R K,et al.Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples:application to chemical analysis of human hair melanins[J].PigmentCellMelanomaRes,2011,24(4):605-613.
[29]GUENTHER C A,TASIC B,LUO L,et al.A molecular basis for classic blond hair color in Europeans[J].NatGenet,2014,46(7):748-752.
[30]V?GE D I,NIEMINEN M,ANDERSON D G,et al.Two missense mutations in melanocortin 1 receptor (MC1R) are strongly associated with dark ventral coat color in reindeer (Rangifertarandus)[J].AnimGenet,2014,45(5):750-753.
[31]ABITBOL M,LEGRAND R,TIRET L.A missense mutation in the agouti signaling protein gene (ASIP) is associated with the no light points coat phenotype in donkeys[J].GenetSelEvol,2015,47:28.
[32]UONG A,ZON L I.Melanocytes in development and cancer[J].JCellphysiol,2010,222(1):38-41.
[33]WHITE R M,ZON L I.Melanocytes in development,regeneration,and cancer[J].CellStemCell,2008,3(3):242-252.
[34]YASUMOTO K,YOKOYAMA K,SHIBATA K,et al.Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene[J].MolCellBiol,1994,14(12):8058-8070.
[35]BONDURAND N,PINGAULT V,GOERICH D E,et al.Interaction among SOX10,PAX3 and MITF,three genes altered in Waardenburg syndrome[J].HumMolGenet,2000,9(13):1907-1917.
[36]MIONE M,BOSSERHOFF A.microRNAs in melanocyte and melanoma biology[J].PigmentCellMelanomaRes,2015,28(3):340-354.
[37]TIAN X,JIANG J,F(xiàn)AN R,et al.Identification and characterization of microRNAs in white and brown alpaca skin[J].BMCGenomics,2012,13:555.
[38]YAN B,LIU B,ZHU C D,et al.microRNAs regulation of skin pigmentation in fish[J].JCellSci,2013,126(Pt 15):3401-3408.
[39]DYNOODT P,MESTDAGH P,VAN PEER G,et al.Identification of miR-145 as a key regulator of the pigmentary process[J].JInvestDermatol,2013,133(1):201-209.
[40]WU Z,F(xiàn)U Y,CAO J,et al.Identification of differentially expressed miRNAs between white and black hair follicles by RNA-sequencing in the goat (Caprahircus)[J].IntJMolSci,2014,15(6):9531-9545.
[41]AHN J H,JIN S H,KANG H Y.LPS induces melanogenesis through p38 MAPK activation in human melanocytes[J].ArchDermatolRes,2008,300(6):325-329.
[42]ZHU Z,HE J,JIA X,et al.microRNAs-25 functions in regulation of pigmentation by targeting the transcription factor MITF in alpaca (Lamapacos) skin melanocytes[J].DomestAnimEndocrinol,2010,38(3):200-209.
[43]GUO J,ZHANG J F,WANG W M,et al.microRNAs-218 inhibits melanogenesis by directly suppressing microphthalmia-associated transcription factor expression[J].RNABiol,2014,11(6):732-741.
[44]DONG C,WANG H,XUE L,et al.Coat color determination by miR-137 mediated down-regulation of microphthalmia-associated transcription factor in a mouse model[J].RNA,2012,18(9):1679-1686.
[45]馬淑慧,薛霖莉,徐剛,等.黑色素細胞中過量表達 miR-137 對 TYRP-1 和 TYRP-2 的影響[J].中國農(nóng)業(yè)科學,2013,46(16):3452-3459.
MA S H,XUE L L,XU G,et al.The influences of over-expressing miR-137 on TYRP-1 and TYRP-2 in melanocytes[J].ScientiaAgriculturaSinica,2013,46(16):3452-3459.(in Chinese)
[46]ABEL E V,APLIN A E.FOXD3 is a mutant B-RAF-regulated inhibitor of G1-S progression in melanoma cells[J].CancerRes,2010,70(7):2891-2900.
[47]MAGNUSSON M,BRUN A C,MIYAKE N,et al.HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development[J].Blood,2007,109(9):3687-3696.
[48]YAMAGUCHI Y,PASSERON T,HOASHI T,et al.Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/β-catenin signaling in keratinocytes[J].FASEBJ,2008,22(4):1009-1020.
[49]YAMAGUCHI Y,PASSERON T,WATABE H,et al.The effects of dickkopf 1 on gene expression and Wnt signaling by melanocytes:mechanisms underlying its suppression of melanocyte function and proliferation[J].JInvestDermatol,2007,127(5):1217-1225.
[50]CLEVERS H,LOH K M,NUSSE R.Stem cell signaling.An integral program for tissue renewal and regeneration:Wnt signaling and stem cell control[J].Science,2014,346(6205):1248012.
[51]MILLER J R.The wnts[J].GenomeBiol,2002,3(1):REVIEWS3001.
[52]MOON R T,BROWN J D,TORRES M.WNTs modulate cell fate and behavior during vertebrate development[J].TrendsGenet,1997,13(4):157-162.
[53]SETHI J K,VIDAL-PUIG A.Wnt signalling and the control of cellular metabolism[J].BiochemJ,2010,427(1):1-17.
[54]DUNN K J,BRADY M,OCHSENBAUER-JAMBOR C,et al.WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action[J].PigmentCellRes,2005,18(3):167-180.
[55]JIN E J,ERICKSON C A,TAKADA S,et al.Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo[J].DevBiol,2001,233(1):22-37.
[56]ZHAO Y,WANG P,MENG J,et al.microRNAs-27a-3p inhibits melanogenesis in mouse skin melanocytes by targeting Wnt3a[J].IntJMolSci,2015,16(5):10921-10933.
[57]PARK S H.Fine tuning and cross-talking of TGF-β signal by inhibitory Smads[J].JBiochemMolBiol,2005,38(1):9-16.
[58]GUO X,WANG X F.Signaling cross-talk between TGF-β/BMP and other pathways[J].CellRes,2009,19(1):71-88.
[59]賈小云,金雷皓,苗瀲涓,等.miR-663 通過靶向 TGF-β1 調(diào)控羊駝黑色素細胞的黑色素生成[J].中國農(nóng)業(yè)科學,2015,48(1):165-173.
JIA X Y,JIN L H,MIAO Y J,et al.Melanin synthesis of alpaca melanocytes regulated by miR-663 through targeting TGF-β1[J].ScientiaAgriclturaSinica,2015,48(1):165-173.(in Chinese)
[60]YANG S,F(xiàn)AN R,SHI Z,et al.Identification of a novel microRNA important for melanogenesis in alpaca (Vicugnapacos) [J].JAnimSci,2015,93(4):1622-1631.
[61]WU D TS,CHEN J S,CHANG D C,et al.miR-434-5p mediates skin whitening and lightening[J].ClinlCosmetInvestigDermatol,2008,1:19-35.
[62]KIM K H,BIN B H,KIM J,et al.Novel inhibitory function of miR-125b in melanogenesis[J].PigmentCellMelanomaRes,2014,27(1):140-144.
[63]VAN GELE M,DYNOODT P,LAMBERT J.Griscelli syndrome:a model system to study vesicular trafficking[J].PigmentCellMelanomaRes,2009,22(3):268-282.
(編輯程金華)
Research Progress of the Role of microRNAs in the Regulation of Animal Coat and Skin Color
WU Xiao-qian,LIU Chen-dong,DU Jing-jing,LUO Jia,ZHU Li*,ZHANG Shun-hua*
(CollegeofAnimalScienceandTechnology,SichuanAgriculturalUniversity,Chengdu611130,China)
Melanocyte,generated from embryonic neural crest stem cells,plays important roles in coat and skin color formation.Melanin,the product of a series of enzyme catalyzed reactions in melanocyte,determines animal coat and skin color.Melanogenesis is a complex process involving coordinated regulation of some transcription factors,hormones and signaling pathway molecules.microRNA (miRNA) is a class of endogenous,non-coding,small RNA molecule (about 22 nt),which regulates gene expression mainly at the post-transcription level.More and more evidences demonstrated that miRNA involve in the regulation of melanogenesis.Herein,it was reviewed in this paper the studies on the discovery and identification of melanin-associated miRNAs,and the research progress of how miRNAs regulate animal coat and skin color.
microRNA;melanocyte;melanin;coat color;skin color
10.11843/j.issn.0366-6964.2016.06.002
2015-12-22
四川省科技支撐計劃項目(2013NZ0041;2013NZ0056);四川省科技富民強縣專項行動計劃項目
巫小倩(1991-),女,四川什邡人,碩士生,主要從事豬遺傳育種研究,E-mail:1097377344@qq.com
朱礪,教授,博士生導師,主要從事豬遺傳育種研究,E-mail:zhuli7508@163.com; 張順華,博士,碩士生導師,主要從事豬遺傳育種研究,E-mail:363445986@qq.com
Q343
A
0366-6964(2016)06-1086-07