胡馨予, 高正良,2, 徐 俊
(1. 同濟(jì)大學(xué)附屬第十人民醫(yī)院轉(zhuǎn)化醫(yī)學(xué)中心,上海 200072; 2. 同濟(jì)大學(xué)醫(yī)學(xué)院轉(zhuǎn)化醫(yī)學(xué)中心,上海 200092; 3. 同濟(jì)大學(xué)附屬東方醫(yī)院干細(xì)胞工程轉(zhuǎn)化醫(yī)學(xué)中心,上海 200120)
?
·基礎(chǔ)研究·
2-DG對神經(jīng)干細(xì)胞增殖和分化影響的研究
胡馨予1, 高正良1,2, 徐 俊3
(1. 同濟(jì)大學(xué)附屬第十人民醫(yī)院轉(zhuǎn)化醫(yī)學(xué)中心,上海 200072; 2. 同濟(jì)大學(xué)醫(yī)學(xué)院轉(zhuǎn)化醫(yī)學(xué)中心,上海 200092; 3. 同濟(jì)大學(xué)附屬東方醫(yī)院干細(xì)胞工程轉(zhuǎn)化醫(yī)學(xué)中心,上海 200120)
目的 探究2-脫氧-D-葡萄糖(2-Deoxyglucose, 2-DG)對成體神經(jīng)再生的影響。方法 體外培養(yǎng)大鼠神經(jīng)干細(xì)胞,將其分為正常生長組和誘導(dǎo)靜息組,加入2-DG后定時觀測細(xì)胞增殖情況。利用LIF(leukemia inhibitory factor, LIF)和BMP4(bone morphogenic protein4, BMP4)誘導(dǎo)大鼠神經(jīng)干細(xì)胞定向分化為星形膠質(zhì)細(xì)胞,同時加入2-DG,免疫熒光染色檢測分化效率。qRT-PCR進(jìn)一步檢測實驗組和對照組中,細(xì)胞周期相關(guān)基因CDK2和CDK4以及控制神經(jīng)干細(xì)胞命運(yùn)選擇的Hes1基因的mRNA表達(dá)水平。結(jié)果 Incucyte機(jī)器實時監(jiān)測細(xì)胞增殖顯示,加入2-DG后,正常生長和靜息的神經(jīng)干細(xì)胞增殖均受到抑制。免疫熒光染色顯示,加入2-DG后神經(jīng)干細(xì)胞向星型膠質(zhì)細(xì)胞分化的效率顯著增高(P<0.05)。qRT-PCR結(jié)果表明,加入2-DG后CDK2和CDK4表達(dá)量下降,Hes1表達(dá)量顯著上升。結(jié)論 2-DG抑制神經(jīng)干細(xì)胞增殖,促進(jìn)其向星形膠質(zhì)細(xì)胞分化。
2-脫氧-D-葡萄糖; 神經(jīng)干細(xì)胞; 細(xì)胞增殖; 星型膠質(zhì)細(xì)胞分化; 大鼠
在哺乳動物中,成體神經(jīng)再生(Adult neurogenesis) 是指成體神經(jīng)干/前體細(xì)胞(Neural stem/progenitor cell, NSC/NPC) 產(chǎn)生具有功能的神經(jīng)元(Neuron)這一過程, 它主要發(fā)生在腦室下區(qū)的側(cè)腦室(Sub-ventricular zone, SVZ)和海馬齒狀回的顆粒下區(qū)(Sub-granular zone, SGZ)。在成體神經(jīng)再生的過程中,神經(jīng)干細(xì)胞不斷地增殖,其中部分神經(jīng)干細(xì)胞分化遷移至特定位置產(chǎn)生特定類型的神經(jīng)元。然而,在成體中樞神經(jīng)系統(tǒng)中,大部分神經(jīng)干細(xì)胞處于靜息(Quiescence)狀態(tài),它們被機(jī)體微環(huán)境內(nèi)的信號激活后,可以重新進(jìn)入細(xì)胞分裂周期, 增殖并遷移分化,產(chǎn)生新生神經(jīng)元[4-5]。研究發(fā)現(xiàn),成體神經(jīng)再生在慢性的神經(jīng)退行性疾病中發(fā)生了明顯的變化[6]。如在阿爾茨海默癥患者大腦的SGZ區(qū)和CA1區(qū)(Region I of hippocampus proper),不成熟神經(jīng)元明顯增多[7];在帕金森病患者的大腦SGZ和SVZ區(qū),增殖的神經(jīng)前體細(xì)胞受損非常嚴(yán)重[8]。成體神經(jīng)再生其實是神經(jīng)中樞自我修復(fù)的一種代償性反應(yīng),在受到損傷或處于慢性疾病過程中,它會相應(yīng)地做出正向或負(fù)向的動態(tài)調(diào)控[9]。但是這種損傷和疾病應(yīng)激的分子、細(xì)胞學(xué)機(jī)制,例如神經(jīng)干細(xì)胞的增殖、分化及命運(yùn)選擇,仍有待研究。因此,在本研究中,探索2-DG,這種可抑制神經(jīng)母細(xì)胞瘤并緩解神經(jīng)退行性疾病中神經(jīng)元損失的藥物,對正常生長、靜息及分化中的神經(jīng)干細(xì)胞會有何影響。
1.1 材料
2-DG購自美國Sigma公司,用ddH2O配置成1M,使用時用細(xì)胞培養(yǎng)液按照1∶1000稀釋至工作濃度1mM。DMEM/F12培養(yǎng)基、N2 supplement、雙抗(Penicillin-Streptomcyin)、0.05% Trypsin-EDTA購自美國Gibco公司;bFGF、BMP4購自美國Humanzyme公司;GFAP(glial fibrillary acidic protein)和S100β(S100 calcium-binding protein β)抗體購自美國Millipore公司;二抗CF488和CF543購自美國Biotium公司;反轉(zhuǎn)錄試劑盒和熒光定量PCR試劑盒購自中國天根公司。
1.2 細(xì)胞培養(yǎng)
大鼠神經(jīng)干細(xì)胞培養(yǎng)在含有20ng/ml,bFGF,100×N2 suppliment,100×青霉素-鏈霉素,100×Glutamax的DMEM/F-12培養(yǎng)基中,培養(yǎng)條件為37℃,5% CO2。每3天傳一次代,實驗時取對數(shù)生長期細(xì)胞。正常傳代24h后,換至無bFGF含LIF+BMP4的培養(yǎng)基內(nèi),誘導(dǎo)其向星型膠質(zhì)細(xì)胞分化。(感謝美國SALK研究所的Fred Gage博士贈送HCN神經(jīng)干細(xì)胞)。
1.3 Incucyte細(xì)胞增殖觀測
將神經(jīng)干細(xì)胞以2×104/孔接種于24孔板中,過夜貼壁培養(yǎng),第2天換至不同處理的培養(yǎng)基中: bFGF 20ng/ml;bFGF 20ng/ml 2-DG 1mmol;bFGF 20ng/ml BMP4 50ng/ml;bFGF 20ng/ml BMP4 50ng/ml 2-DG 1mol。將培養(yǎng)皿放入Incuctye機(jī)器,每隔2h 拍照一次,按照視野內(nèi)細(xì)胞密度來觀測細(xì)胞生長速度。
1.4 免疫熒光染色
吸出培養(yǎng)基,用1×PBS洗一次,加入500μl 4%多聚甲醛固定液,室溫放置10min;吸出固定液,用1×PBS洗三次,每次5min;吸出PBS,加入500μl 0.25%PBST透化液,室溫放置15min;吸出透化液,加入200μl 3%BSA封閉液,室溫放置1h;吸出封閉液,加入200μl免疫染色一抗孵育液,4℃孵育過夜;吸出一抗孵育液,用1×PBS洗三次,每次5min;吸出PBS,加入200μl免疫染色二抗孵育液,室溫孵育45min;吸出二抗孵育液,用1×PBS洗三次,每次5min;吸出PBS,加入200μl DAPI染色液,室溫孵育10min;吸出DAPI染色液,用1×PBS洗三次,每次5min;在熒光顯微鏡下鏡檢并拍攝照片。
1.5 qRT-PCR
不同處理的細(xì)胞,用Trizol試劑提取其總RNA。按照試劑盒步驟,將其反轉(zhuǎn)錄成總cDNA后,用RNase-Free水稀釋10倍備用。取稀釋后的模板4μl, 2×Premix 10μl,10μmol/L基因引物0.6μl,50×ROX 0.4μl,RNase-Free水4.4μl,在 7500 實時熒光定量PCR儀進(jìn)行PCR擴(kuò)增。引物序列: 內(nèi)參18S上游5′-CATTCGAACGTCTGCC-CTATC-3′,下游5′-CCTGCTGCCTTCCTTGGA-3′;CDK2上游5′-CTTTGCCGAAATGGTGACCC-3′,下游5′-TAACTCCTGGCCAAACCACC-3′;CDK4上游5′-TGGATTGCCTCCAGAAGACG-3′,下游5′-CAGATTCCTCCATCTCCGGC-3′;Hes1上游5′-GCGCCGGGCAAGAATAAATG-3′,下游5′-GGA-ATGCCGGGAGCTATCTT-3′。
1.6 統(tǒng)計學(xué)處理
所有數(shù)據(jù)運(yùn)用SPSS 17統(tǒng)計軟件進(jìn)行分析,每組樣本均為3例。P<0.05表示差異有統(tǒng)計學(xué)意義。
2.1 2-DG抑制大鼠神經(jīng)干細(xì)胞增殖
體外培養(yǎng)大鼠神經(jīng)干細(xì)胞,正常傳代后第2天加入2-DG(1mol),分別在24h、48h和72h拍照記錄。將細(xì)胞放入Incucyte機(jī)器中觀測其生長速度,結(jié)果顯示,加入2-DG明顯抑制大鼠神經(jīng)干細(xì)胞增殖,見圖1A。2-DG加入48h后可明顯看到正常生長的神經(jīng)干細(xì)胞增殖減緩,24h即可看到靜息的神經(jīng)干細(xì)胞增殖受阻,見圖1B。
圖1 2-DG阻止神經(jīng)干細(xì)胞增殖Fig.1 2-DG inhibits the proliferation of neural stem cellA. Incucyte觀測神經(jīng)干細(xì)胞增殖;B. 顯微鏡下觀測2-DG處理后神經(jīng)干細(xì)胞形態(tài)及增殖情況
2.2 2-DG促進(jìn)大鼠神經(jīng)干細(xì)胞向星形膠質(zhì)細(xì)胞分化
體外定向誘導(dǎo)神經(jīng)干細(xì)胞向星形膠質(zhì)細(xì)胞分化,同時加入2-DG(1mmol),分化3d后固定細(xì)胞,免疫熒光染色結(jié)果顯示,加入2-DG后星型膠質(zhì)細(xì)胞特異性蛋白GFAP和S100β均增多,見圖2A。細(xì)胞計數(shù)結(jié)果發(fā)現(xiàn),神經(jīng)干細(xì)胞向星形膠質(zhì)細(xì)胞的分化效率明顯提升,見圖2B。
圖2 2-DG促進(jìn)神經(jīng)干細(xì)胞向星形膠質(zhì)細(xì)胞分化Fig.2 2-DG promotes the differentiation of neural stem cells to astrocytesA. 免疫熒光染色檢測星形膠質(zhì)細(xì)胞的分化;B. 免疫熒光染色的計數(shù)結(jié)果。**P<0.01
2.3 2-DG影響神經(jīng)干細(xì)胞細(xì)胞周期,調(diào)控神經(jīng)干細(xì)胞命運(yùn)抉擇
qRT-PCR結(jié)果顯示,加入2-DG后,在正常生長的神經(jīng)干細(xì)胞中,調(diào)控細(xì)胞周期相關(guān)基因CDK4的表達(dá)量明顯下降(P<0.01),見圖3A;在誘導(dǎo)靜息的神經(jīng)干細(xì)胞中,同樣看到調(diào)控細(xì)胞周期相關(guān)基因CDK2表達(dá)量明顯下降(P<0.05),見圖3B。而在定向誘導(dǎo)星形膠質(zhì)分化的細(xì)胞中,加入2-DG后,調(diào)控神經(jīng)干細(xì)胞向星形膠質(zhì)細(xì)胞分化的基因Hes1表達(dá)量明顯升高(P<0.01),見圖3C。
圖3 2-DG加入后促進(jìn)細(xì)胞周期相關(guān)基因表達(dá)下降,而調(diào)控神經(jīng)干細(xì)胞分化的相關(guān)基因表達(dá)上升
成體干細(xì)胞一般以靜息和激活兩種互相轉(zhuǎn)化的狀態(tài)存在。在體內(nèi),干細(xì)胞靜息和激活的平衡對機(jī)體再生、修復(fù)和穩(wěn)態(tài)至關(guān)重要。與激活狀態(tài)相比,靜息的干細(xì)胞表現(xiàn)為: 細(xì)胞周期停滯于DNA二倍體時期,染色體濃縮,核糖體RNA合成減少,蛋白翻譯減少,各種應(yīng)激抗性的增強(qiáng)[10-16]。
葡萄糖是動物細(xì)胞生長的主要碳源和氮源,對于中樞神經(jīng)系統(tǒng)而言,葡萄糖供給能源尤為重要。瓦氏效應(yīng)認(rèn)為癌細(xì)胞的生長速度高于正常細(xì)胞是能量來源的差別所造成的。癌細(xì)胞有別于正常細(xì)胞通過有氧循環(huán)獲能,而更偏向于通過糖酵解途徑獲能。這一觀點的提出,引發(fā)了不少研究者的好奇,是否能通過誘導(dǎo)癌細(xì)胞恢復(fù)正常有氧代謝,切斷其糖酵解能量供應(yīng)來阻止癌細(xì)胞生長。與此同時,有科學(xué)家開始對神經(jīng)系統(tǒng)的糖代謝產(chǎn)生興趣[17]。 2004年,日本科學(xué)家研究發(fā)現(xiàn),對增殖條件下的神經(jīng)干細(xì)胞低糖處理會減慢其增殖,而分化條件下對神經(jīng)干細(xì)胞做低糖處理則會加速其向神經(jīng)元和星形膠質(zhì)細(xì)胞分化[18]。
2-DG殺傷神經(jīng)母細(xì)胞瘤的有效濃度在5~10mol,選用略低于此濃度的2-DG作用于正常神經(jīng)干細(xì)胞,以此來探索該藥物的正常生理學(xué)作用。以往的研究發(fā)現(xiàn)2-DG可通過抑制葡萄糖代謝來抑制細(xì)胞的增殖,在此基礎(chǔ)上體外驗證了2-DG抑制成體神經(jīng)干細(xì)胞的增殖[2],同時還發(fā)現(xiàn)靜息神經(jīng)干細(xì)胞的葡萄糖代謝水平較正常細(xì)胞顯著降低,但在加入相同濃度的2-DG后,生長過程仍明顯受到阻滯。這也提示,2-DG可能存在其他途徑影響神經(jīng)干細(xì)胞增殖。此外,在基因水平驗證了2-DG處理后,細(xì)胞周期相關(guān)基因CDK2和CDK4的表達(dá)均明顯下降。這與Mikyung等在小鼠神經(jīng)干細(xì)胞系中的實驗結(jié)果相吻合。
成體神經(jīng)干細(xì)胞具有多向分化潛能,在體內(nèi)可以分化成神經(jīng)元、星型膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞[19-21]。為進(jìn)一步研究2-DG對成體神經(jīng)再生的影響,在體外定向誘導(dǎo)神經(jīng)干細(xì)胞向星型膠質(zhì)細(xì)胞分化,結(jié)果表明加入2-DG(1mol)后神經(jīng)干細(xì)胞向星型膠質(zhì)細(xì)胞分化的效率明顯增高。此前,文獻(xiàn)證實bHLH(Basic helix-loop-helix)家族的轉(zhuǎn)錄因子在神經(jīng)干細(xì)胞自我更新和三向分化過程中扮演著重要的角色,其中Ascl1/Mash1,Hes1和Olig2分別調(diào)控神經(jīng)元、星型膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞的命運(yùn)選擇[22-24]。在Itaru等的最新研究中,利用實時成像熒光顯微鏡觀察到在神經(jīng)干細(xì)胞中,Ascl1/Mash1,Hes1和Olig2呈振蕩性表達(dá),這表明了正是相應(yīng)的轉(zhuǎn)錄因子主導(dǎo)了神經(jīng)干細(xì)胞分化的命運(yùn)選擇[25]。在加了2-DG的樣本中檢測到了Hes1基因相對高表達(dá),這解釋了2-DG促進(jìn)神經(jīng)干細(xì)胞向星型膠質(zhì)細(xì)胞分化的現(xiàn)象。
2-DG作為一種可能的抗腫瘤藥物引起國內(nèi)外不少學(xué)者的關(guān)注,其抑制腫瘤生長的作用在體外實驗和動物模型中均得到驗證。目前,對于2-DG的研究大多聚焦于它的抗腫瘤機(jī)制,然而在抑制腫瘤生長的同時,對正常干細(xì)胞是否存在一定程度的影響卻鮮有報道。本研究立意于此,在驗證了2-DG阻止神經(jīng)干細(xì)胞增殖的基礎(chǔ)上,進(jìn)一步探討了2-DG對成體神經(jīng)再生的影響,闡明其用于腫瘤患者后可能出現(xiàn)的隱患,為2-DG的臨床應(yīng)用提供新了思路。
[1] Shutt DC, O’Dorisio MS, Aykin BN, et al. 2-deoxy-D-glucose induces oxidative stress and cell killing in human neuroblastoma cells[J]. Cancer Biol Ther, 2010,9(11): 853-861.
[2] Park M, Song KS, Kim HK, et al. 2-Deoxy-d-glucose protects neural progenitor cells against oxidative stress through the activation of AMP-activated protein kinase[J]. Neurosci Lett, 2009,449(3): 201-216.
[3] Garriga CM, Schoenike B, Qazi R, et al. 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure[J]. Nat Neurosci, 2006,9(11): 1382-1387.
[4] Mira H, Andreu Z, Suh H, et al. Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus[J]. Cell Stem Cell, 2010,7(1): 78-89.
[5] Wang YZ, Plane JM, Jiang P. Concise review: Quiescent and active states of endogenous adult neural stem cells: identification and characterization[J]. Stem Cells, 2011,29(6): 907-912.
[6] Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system[J]. Annu Rev Neurosci, 2005,28: 223-250.
[7] Curtis MA, Penney EB, Pearson AG, et al. Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain[J]. Proc Natl Acad Sci USA, 2003,100(15): 9023-9027.
[8] Jin K, Peel AL, Mao XO, et al. Increased hippocampal neuroge-nesis in Alzheimer’s disease[J]. Proc Natl Acad Sci USA, 2004,101(1): 343-347.
[9] Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions[J]. Neuron,2011,70(4): 687-702.
[10] Gray JV, Petsko GA, Johnston GC, et al. “Sleeping beauty”: quiescence in Saccharomyces cerevisiae[J]. Microbiol Mol Biol Rev, 2004,68(2): 187-206.
[11] Werner WM, Braun E, Johnston GC, et al. Stationary phase in the yeast Saccharomyces cerevisiae[J]. Microbiol Rev, 1993,57(2): 383-401.
[12] Cooper TG. Yeast genetics and molecular biology[J]. Nature, 1981,289(5794): 119-120.
[13] Johnston GC, Pringle JR, Hartwell LH. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae[J]. Exp Cell Res, 1977,105(1): 79-98.
[14] Pinon R. Folded chromosomes in non-cycling yeast cells: evidence for a characteristic go form[J]. Chromosoma, 1978,67(3): 263-274.
[15] Werner WM, Braun EL, Crawford ME, et al. Stationary phase in Saccharomyces cerevisiae[J]. Mol Microbiol, 1996,19(6): 1159-1166.
[16] Fuge EK, Braun EL, Werner WM. Protein synthesis in long-term stationary-phase cultures of Saccharomyces cerevisiae[J]. J Bacteriol, 1994,176(18): 5802-5813.
[17] Faubert B, Boily G, Izreig S, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo[J]. Cell Metab, 2013,17(1): 113-124.
[18] Knobloch M, Braun SM, Zurkirchen L, et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis[J]. Nature, 2013,493(7431): 226-230.
[19] Fishell G, Kriegstein AR. Neurons from radial glia: the consequences of asymmetric inheritance[J]. Curr Opin Neurobiol, 2003,13(1): 34-41.
[20] Gotz M, Huttner WB. The cell biology of neurogenesis[J]. Nat Rev Mol Cell Biol, 2005,6(10): 777-788.
[21] Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells[J]. Annu Rev Neurosci, 2009,32: 149-184.
[22] Vasconcelos FF, Castro DS. Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1[J]. Front Cell Neurosci, 2014,8: 412.
[23] Imayoshi I, Kageyama R. bHLH factors in self-renewal multipotency and fate choice of neural progenitor cells[J]. Neuron, 2014,82(1): 9-23.
[24] Imayoshi I, Kageyama R. Oscillatory control of bHLH factors in neural progenitors[J]. Trends Neurosci, 2014,37(10): 531-538.
[25] Imayoshi I, Ishidate F, Kageyama R. Real-time imaging of bHLH transcription factors reveals their dynamic control in the multipotency and fate choice of neural stem cells[J]. Front Cell Neurosci, 2015,9: 288.
2-DG inhibits proliferation and promotes astrocytic differentiation of neural stem cells
HUXin-yu1,GAOZheng-liang1,2,XUJun3
(1.Institute of Translational Medicine, Tenth People’s Hospital Affiliated to Tongji University, Shanghai 200072, China; 2.Institute of Translational Medicine, Tongji University School of Medicine, Shanghai 200092, China; 3. Institute of Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China)
Objective To investigate the effects of 2-Deoxyglucose(2-DG) on proliferation and astrocytic differentiation of neural stem cells. Methods Rat neural stem cells were cultured under proliferating and quiescent conditions. At indicated time points after 2-DG treatment, the proliferation rate of cells was examined. The growth factors of LIF and BMP4 were used to induce astrocytic differentiation of neural stem cell and differentiation efficiency was quantified by immunofluorescence staining. qRT-PCR was used to determine the expression of cell cycle geneCDK2,CDK4 and fate-determining geneHes1. Results 2-DG inhibited neural stem cell proliferation under both proliferating and quiescent conditions and prompted astrocytic differentiation(P<0.05). Consistent with the phenotypical changes, 2-DG dramatically suppressed the expression ofCDK2 andCDK4 but induced the expression ofHes1. Conclusion 2-DG inhibits the proliferation of neural stem cells and promotes the differentiation of neural stem cells to astrocytes.
2-Deoxyglucose; neural stem cells; cell proliferation; astrocytic differentiation; rat
2016-06-14
國家自然科學(xué)基金面上項目(31371497);國家自然科學(xué)基金青年項目(31301063)
胡馨予(1990—),女,碩士.E-mail: huxinyu.0516@163.com
徐 俊.E-mail: xunymc 2000@yahoo.com
Q 2
A
1008-0392(2016)06-0035-06
10.16118/j.1008-0392.2016.06.008