国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

青藏高原東緣塊莖堇菜鱗莖分配的個體大小依賴性

2016-07-25 08:39常立博張世虎
廣西植物 2016年6期

郝 楠, 蘇 雪, 吳 瓊, 常立博, 張世虎, 孫 坤

( 西北師范大學(xué) 生命科學(xué)學(xué)院, 蘭州 730070 )

?

青藏高原東緣塊莖堇菜鱗莖分配的個體大小依賴性

郝楠, 蘇雪, 吳瓊, 常立博, 張世虎, 孫坤*

( 西北師范大學(xué) 生命科學(xué)學(xué)院, 蘭州 730070 )

摘要:塊莖堇菜(Viola tuberifera)為青藏高原特有兩型閉鎖花植物,屬多年生草本,具獨特的混和交配系統(tǒng),既可通過早春開放花異花受精和夏季地上地下閉鎖花自花受精有性繁殖,還可通過秋季新鱗莖無性繁殖產(chǎn)生后代。高山環(huán)境下,異花受精常因花粉限制而無法正常進行,自花受精和克隆繁殖成為保障植物種群正常繁衍的不二之選,而克隆繁殖更能在植株資源消耗最小的情況下保障子代的存活。該文以青藏高原東緣高寒草甸的混合繁育植物塊莖堇菜為研究對象,探索其生長期內(nèi)鱗莖分配的個體大小依賴性,以及植株如何權(quán)衡鱗莖的資源分配以適應(yīng)個體大小的變化。結(jié)果表明:塊莖堇菜生活史階段的鱗莖分配具有個體大小依賴性,鱗莖分配與個體大小呈極顯著負(fù)冪指數(shù)相關(guān)關(guān)系(P<0.01),個體越大,鱗莖分配越??;反之,個體越小,鱗莖分配越高。即塊莖堇菜對鱗莖的資源投入受個體大小的制約,通過鱗莖分配比例的高低響應(yīng)植株自身資源狀況的變化,保障在高寒環(huán)境下植物種群的生存和繁衍。該研究結(jié)果為高山植物克隆繁殖的生活史進化提供了依據(jù)。

關(guān)鍵詞:繁殖生態(tài)學(xué), 生長期, 混合交配, 無性繁殖, 總生物量

大多數(shù)多年生植物種存在混合繁殖方式,不僅可以選擇有性繁殖策略,還可以通過營養(yǎng)繁殖產(chǎn)生后代(鐘章成,1995)??寺》敝硨χ参锓N群的生活史會產(chǎn)生不同程度的影響。當(dāng)生物或非生物因子使其中一種繁殖方式受限時,植株繁殖策略的選擇在種間和種內(nèi)均會發(fā)生較大變化(Eckert,2001;Eckert et al,2003)。高山環(huán)境對混合繁殖構(gòu)建的克隆居群影響非常明顯,自然選擇傾向于保障植物的克隆繁殖方式,可能是因為高寒條件下植株通過有性繁殖產(chǎn)生后代比較困難,所以高山植物大多選擇營養(yǎng)器官生長繁殖(鐘章成,1995)。

對克隆植物種群的繁殖生態(tài)學(xué)研究已引起植物生態(tài)學(xué)家和進化植物學(xué)家的廣泛關(guān)注(卜兆君等,2005;Li & Wang,2006)。植物在生活史階段中對繁殖器官投入的比例稱為繁殖分配(reproductive allocation)。有關(guān)克隆植物繁殖分配的適應(yīng)策略研究多集中在有性繁殖和無性繁殖的權(quán)衡方面(Pickering,1994;Reekie,1998;王一峰等,2012;趙方和楊永平,2008)。繁殖分配常與植物自身的資源狀況緊密相關(guān),個體大小常用來反映較為穩(wěn)定的環(huán)境條件下居群內(nèi)植物個體資源分配的差異(Samson & Werk,1986)。植物的繁殖分配是個體大小依賴的,但有關(guān)工作大多集中在有性分配方面(陶冶和張元明,2014;劉左軍等,2002;趙志剛等,2004),有關(guān)無性繁殖分配的個體大小依賴性研究在國內(nèi)鮮有報道。鑒于此,本文以青藏高原東緣兩型閉鎖花植物塊莖堇菜為研究對象,探究其克隆繁殖的個體大小依賴性,以期為克隆植物特殊的生殖模式和對高山環(huán)境的生態(tài)適應(yīng)性提供實驗依據(jù)。

1材料與方法

1.1 研究樣地概況

研究樣地位于青藏高原東緣甘南藏族自治州合作境內(nèi)(102°18′~102°55′ E,34°28′~35°11′ N),海拔 2 600~3 500 m,平均氣溫 1.8 ℃,年降雨量 572 mm。研究區(qū)屬典型高原大陸性氣候,沒有四季之分,僅冷暖二季。溫差年均較小,日均較大,輻射強烈。土壤為高山草甸土、亞高山草甸土、沼澤土、泥炭土和暗棕壤等。植被類型主要有高寒灌叢、高寒草甸和沼澤化草甸(杜國禎,2001)。

1.2 研究方法

在塊莖堇菜的生長季節(jié)內(nèi)6-9月,每個月隨機選取3~5 個樣方,每個樣方挖取完整植株60 株左右,每株間隔>1 m。去除泥土和雜草,所有材料置于信封內(nèi)帶回實驗室,80 ℃烘箱內(nèi)烘2 h至恒重,于萬分之一天平對每株個體的總生物量和鱗莖生物分別稱重,記錄數(shù)據(jù)。計算鱗莖分配(鱗莖生物量占總生物量的比例)。以總生物量衡量個體大小。

1.3 數(shù)據(jù)處理與分析

所有數(shù)據(jù)用Excel 2003和SPSS 21.0軟件處理,先進行正態(tài)分析,若正態(tài)則單因素方差分析數(shù)據(jù)的顯著性差異,若不正態(tài)則用獨立樣本檢驗比較各組數(shù)據(jù)間的差異;然后回歸分析兩組數(shù)據(jù)間的相關(guān)關(guān)系,且做圖。種群水平下均采用均值 ± 標(biāo)準(zhǔn)誤的數(shù)值,個體水平下均采用實際測得的數(shù)值。

2結(jié)果與分析

2.1 塊莖堇菜的鱗莖分配

表1顯示,在塊莖堇菜的整個生長期內(nèi),總生物量在閉鎖花時期(7、8 月)達到最高,約為初末期(6、9 月)的2.5倍,總生物量隨季節(jié)變化呈先上升后下降的趨勢,且季節(jié)間差異顯著(P<0.05)。鱗莖生物量在8 月份最小,這是由于8 月份是鱗莖枯萎期,鱗莖數(shù)目很少;初期(6 月)鱗莖生物量最高,這是因為生長初期大多數(shù)植株是由前一年的鱗莖長出來的個體。鱗莖分配在生長初期和末期達到最大,由于末期鱗莖大量產(chǎn)生保障越冬繁殖,所以投入較多;在8 月份,鱗莖分配比例最低??傮w看,隨著塊莖堇菜生長期的推移,鱗莖生物量及分配呈先降低后升高的趨勢,且各生長期的變化顯著(P<0.05)。

表 1 塊莖堇菜生長期的鱗莖分配格局

注:所有值為均值 ± 標(biāo)準(zhǔn)誤的形式。數(shù)字不同表明在P=0.05水平上差異顯著,數(shù)字相同表明差異不顯著(P<0.05)。

Note: All values are Mean ± SE. Values with different letters show significant differences at 0.05 level, while with same letters show non-significant differences(P<0.05).

2.2 塊莖堇菜鱗莖分配的個體大小依賴性

圖1顯示,在生長初期(6月),塊莖堇菜剛剛返青,植株個體較小,野外觀察發(fā)現(xiàn),大多植株由鱗莖長出來,通過個體大小與鱗莖分配的相關(guān)關(guān)系分析發(fā)現(xiàn),個體大小與鱗莖分配呈極顯著負(fù)冪指數(shù)相關(guān)關(guān)系(P=0.000),相關(guān)性較大(r=-0.765)。在閉鎖花生長初期(7月),地上和地下閉鎖花逐漸出現(xiàn),植株個體慢慢變大。塊莖堇菜的個體大小與鱗莖分配的相關(guān)分析表明,個體大小與鱗莖分配呈極顯著負(fù)冪指數(shù)相關(guān)關(guān)系(P=0.000),相關(guān)性大(r=-0.803)。在閉鎖花盛花期(8月),地上和地下閉鎖花達到最多,植株個體較大。通過對塊莖堇菜的個體大小與鱗莖分配的相關(guān)分析表明,個體大小與鱗莖分配呈極顯著負(fù)冪指數(shù)相關(guān)關(guān)系(P=0.000),相關(guān)性大(r=-0.818)。在生長季節(jié)末期(9月),鱗莖大量產(chǎn)生,植株個體逐漸變小。塊莖堇菜的個體大小與鱗莖分配呈極顯著負(fù)冪指數(shù)相關(guān)關(guān)系(P=0.000),相關(guān)性較大(r=-0.614)。即在塊莖堇菜的整個生長階段內(nèi),鱗莖分配具有大小依賴性。

3討論與結(jié)論

高山環(huán)境下,克隆植物具有獨特的繁殖策略——有性和無性繁殖。不同繁殖對策的選擇權(quán)衡受內(nèi)外因素的影響。Salisbury(1942)通過研究177種多年生草本,發(fā)現(xiàn)其中120 種(占68%)植物克隆繁殖。因為在很多情況下,克隆繁殖比有性繁殖更加容易,其克隆后代對環(huán)境有更大的適應(yīng)性??寺『蟠梢栽诩ち业母偁幒蛧?yán)酷的環(huán)境下,通過無性繁殖在非最適宜的條件下延續(xù)后代,提高子代的生存能力。與有性繁殖相比,克隆繁殖的子代缺少遺傳變異性,但其子代存活率要遠(yuǎn)高于種子幼苗建成的概率,如葡伏毛茛種子形成幼苗的壽命為0.2~0.6 a,而無性分株(module)的壽命卻為1.2~2.1 a(Sarukhan & Harper,1973)。

Schmid et al(1995)通過比較細(xì)葉紫菀(Asterlanceolatus)和加拿大一枝黃花(Solidagocanadensis)的有性和無性繁殖的個體大小依賴性,結(jié)果表明兩種植物都在個體達到最小臨界值時才可以開始有性繁殖,有性繁殖分配隨個體增加而增加;兩種植物對無性繁殖的分配與個體存在相關(guān)關(guān)系,但無性繁殖不存在最小個體臨界值。Sato(2002)對多年生草本植物珠芽艾麻(Laporteabulbifera)的研究得出了類似結(jié)論,研究發(fā)現(xiàn)較大的個體能同時產(chǎn)生雌雄花序和無性繁殖器官, 而較小的個體只產(chǎn)生無性繁殖器官,有性和無性繁殖器官的生物量均與個體大小呈正相關(guān)關(guān)系。這與Dong & De Kroon(1994)、Schmid et al(1995)的研究有所不同,他們認(rèn)為克隆植物對無性繁殖的分配在較大的個體內(nèi)常常是恒定的。

圖 1  塊莖堇菜生長期個體大小與鱗莖分配的關(guān)系Fig. 1 Relationship between individual size and bulbs allocation in life-history V. tuberifera

塊莖堇菜的無性繁殖在整個生長季節(jié)內(nèi)呈規(guī)律性變化。在生長季節(jié)初末期,鱗莖生物量和分配均較高,在閉鎖花時期鱗莖生物量及分配較低,且在閉鎖花盛花期(8 月)達到最低。這與其鱗莖的生物學(xué)特性緊密相關(guān),在生長季節(jié)初期,上一年的鱗莖萌發(fā)產(chǎn)生新個體,鱗莖生物量所占比例相對較大,隨個體發(fā)育到閉鎖花時期,植株大量產(chǎn)生兩種閉鎖花進行有性繁殖,而老的鱗莖大多已枯萎,因此該階段鱗莖生物量及其分配均較低;但在生長季末期,塊莖堇菜大量產(chǎn)生鱗莖以保障越冬和來年的繁殖。通過分析發(fā)現(xiàn),塊莖堇菜的克隆繁殖分配具有個體大小依賴性,即個體越大,鱗莖分配越小。但是鱗莖分配也存在臨界值,在個體大小到達一定值后,鱗莖分配值不再隨著個體大小的增加而下降。這可能是由于較大的個體同時將資源投入到有性繁殖器官、無性繁殖器官和營養(yǎng)生長保障植物的繁殖和生存,相比較之下,對無性繁殖的投入和分配較??;而較小的個體由于自身資源獲取能力較弱,將有限的資源主要用于營養(yǎng)器官的生長和繁殖,旨在通過鱗莖的營養(yǎng)生長保障繁殖,延續(xù)后代。

參考文獻:

BA ZZA FA, ACKELY DD, 1992. Reproductive allocation and reproductive effort in plants [J]. Ecol Reg Plant Comm.

BU ZJ,YANG YF,LANG HQ,et al. 2005. Regeneration mechanism of the clonalCarexmiddendorffiipopulation in an oligotrophic mire, China [J]. Acta Pratac Sin, 14:124-129. [卜兆君,楊允菲,朗惠卿,等. 2005. 貧營養(yǎng)泥炭沼澤高鞘苔草無性系種群更新機制 [J]. 草業(yè)學(xué)報, 14:124-129.]

DONG M, DE KROON H, 1994. Plasticities in morphology and biomass allocation inCynodondactylon,a grass species forming stolons and rhizomes[J]. Oikos,70:90-106.

DU GJ, 2001.Research of plant ecology in alpine meadow [M]. Xi’an:Shaanxi Sicence and Technology Press. [杜國禎, 2001. 高寒草甸植物生態(tài)學(xué)研究 [M]. 西安:陜西科學(xué)技術(shù)出版社.]

ECKERT CG, 2002. The loss of sex in clonal plants [J]. Evol Ecol,15:501-520.

ECKERT CG, LUI K, BRONSON K, et al, 2003. Population genetic consequences of extreme variation in sexual and clonal reproduction in an aquatic plant [J]. Molecu Ecol,12:331-344.

LI L, WANG G, 2006. The ideal free distribution of clonal plant’s ramets among patches in a heterogeneous environment [J]. Bull Mathem Biol,68:1 837-1 850.

LIU ZJ,DU GJ, CHEN JK, 2002. Size-dependent reproductive allocation ofLigulariavirgaureain different habitats [J]. Acta Phytoecol Sin,26(1):44-50. [劉左軍,杜國楨,陳家寬, 2002. 不同生境下黃帚橐吾(Ligulariavirgaurea)個體大小依賴的繁殖分配 [J]. 植物生態(tài)學(xué)報,26(1):44-50.]

PICKERING CM, 1994. Size-denpendent reproduction in Australian alpineRanunculus[J]. Aus J Bot,76:43-50.

REEKIE EG, 1998. An explanation for size-dependent reproductive allocation inPlantagomajor[J]. Can J Bot,76:43-50.

SALISBURY EJ, 1942. The reproductive capacity of plant, Bell London(A classic text wite early quantitative, data on seed sizes and numbers per plant).

SAMSON DA, WERK KS, 1986. Size-dependent effects in the analysis of reproductive effort in plants [J]. Am Natur, 127:667-680.

SARUKHAN J, HARPER JL, 1973. Studies on plant demography:RanunculusrepensL.,R.bulbosusL. andR.acrisL.Ⅰ. population flux and survivorship [J]. J Ecol, 61:675-716.

SARUKHAN J, 1974. Studies on plant demography:RanunculusrepensL.,R.bulbosusL. andR.acrisL.Ⅱ. reproductive strategies and seed population dynamics [J]. J Ecol, 62:151-177.

SATO T, 2002. Size-dependent resource allocation among vegetative propagules and male female functions in the forest herbLaporteabulbifera[J]. Oikos, 96,453-462.

SCHIMID B, BAZZAZ FA, WEUBER J, 1995. Size-dependency of sexual reproduction and of clonal growth in two perennial plants [J]. Can J Bot, 73:1 831-1 837.

TAO Y,ZHANG YM, 2014. Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China [J]. Acta Pratac Sin, 23(2):38-48. [陶冶,張元明, 2014. 準(zhǔn)格爾荒漠6種類短命植物生物量分配與異速生長關(guān)系 [J]. 草業(yè)學(xué)報, 23(2):38-48.]WANG YF, LI M,LI SX, ET AL, 2012. Variation of reproductive allocation along elevations inSaussureastellaon East Qinghai-Xizang Plateau [J]. J Plant Ecol, 36(11):1 145-1 153. [王一峰,李梅,李世雄等, 2012. 青藏高原東緣星狀風(fēng)毛菊生殖分配對海拔的響應(yīng)[J]. 植物生態(tài)學(xué)報, 36(11):1 145-1 153.]

ZHAO F, YANG YP, 2008. Reproductive allocation in a dioecious perennialOxyriasinensis(Polygonaceae) along altitudinal gradients [J]. J Syst & Evol, 46(6):830-835. [趙方,楊永平, 2008. 中華山蓼不同海拔居群的繁殖分配研究 [J]. 植物分類學(xué)報, 46(6):830-835.]

ZHAO ZG, DU GZ, REN QJ, 2004. Size-dependent reproduction and sex allocation in five species of Ranunculaceae [J]. Acta Phytoecol Sin, 28(1):9-16. [趙志剛,杜國楨,任青吉, 2004. 5種毛茛科植物個體大小依賴的繁殖分配和性分配 [J]. 植物生態(tài)學(xué)報, 28(1):9-16.]

ZHONG ZC, 1995. Reproductive strategy of plant population [J]. J Ecol,14(1):37-42. [鐘章成, 1995. 植物種群的繁殖對策[J]. 生態(tài)學(xué)雜志,14(1):37-42.]

Size-dependent of Qinghai-Tibetan PlateauViolatuberifera(Violaceae)bulbs allocation

HAO Nan, SU Xue, WU Qiong, CHANG Li-Bo, ZHANG Shi-Hu, SUN Kun*

(CollegeofLifeSciences,NorthwestNormalUniversity, Lanzhou 730070, China )

Abstract:Viola tuberifera is a typical dimorphic cleistogamous plant which endemic to Qinghai-Tibetan Plateau and its eastern neighbour region, belongs to perennial herb, possessing mixed-mating reproductive system, which conducts not only sexual propagation via both open, aerial chasmogamous (CH) flowers in spring and closed, obligate self-pollinating aerial and subterranean cleistogamous (CL) flowers in summer, but also asexual reproduction via new bulbs in autumn reproducing offsprings through winter. Chasmogamous flowers depend on pollinator, such as bumblebees, obligate cross-fertilization producting bigger and few seeds. Cleistogamous flowers do not need pollinators, they can pollinate by themselves and produce smaller and abundant seeds. Further to say, survival ratio of chasmogamous flowers seedings is lower than the cleistogamous flowers offprings. In particular, while plant under harsh environment, cleistogamy can provide reproductive assurance and cost economically. Three flowers are all sexual propagation. Only vegetative organ-bulbs via asexual propagation. Bulbs prapagation can also assure reproduction under adverse habitat. Especially in alpine ecosystem, plants always face to pollination limatation, at this time vegetative propagation can produce offsprings which are similar to stock plant and form ramets to fight for habitats and resources. Parents and offsprings together resist stern climate and through cold environment. That is to say, bulbs reproduction can ensure V. tuberifera surivial and continuation in the high alpine environment and cost mininum resources to through winter. Sexual reproduction is conducted before asexual reproduction and two opposite reproductive strategies can ensure survival together in the whole life history. In the alpine district, allogamy always face pollen limitation and cannot assure plants reproduction, whereas autogamy and clonal reproduction are alternative choices to ensure propagation of plants populations, as well as clonal reproduction can furtherly assure offsprings’ survival with the lowest resources assumption. In this paper, mixed-mating plant-V. tuberifera in eastern Qinghai-Tibetan Plateau alpine meadow were chosen as study material, probing into size-dependent on bulbs allocation during life-history, aiming at how V. tuberifera could trade off resource allocation on bulbs to adapt to changes of individual size, providing evidence for life-history evolution of clonal reproduction in alpine plants. The results showed that bulbs allocation of V. tuberifera endemic to eastern Qinghai-Tibetan Plateau existed size-dependent in the whole life history, bulbs allocation and individual size showed extremely significantly negative exponent correlationship (P<0.01). The bigger the individual size was, the lower the bulbs allocation was, and vice versa. Although individual size was small, plants allocate amounts of resources to asexual organ—bulbs, assuring propagation in winter and survive themselves. When the bulbs allocation came to the maximum, though individual size became bigger, proportion of bulbs did not change any more. Therefore, that individual size controlled resource allocation was within a definite range. Beyond the certain range, individual size no longer affected bulbs allocation. That is to say, resource allocation on bulbs in V. tuberifera is controlled by individual size in a certain range, plants via altering proportion of bulbs allocation to adapting to inner resource condition changes of V. tuberifera, ensuring plants population survival and offsprings propagation in the alpine environments.

Key words:reproductive ecology, life-history, mixed-mating, asexual reproduction, total biomass

DOI:10.11931/guihaia.gxzw201501037

收稿日期:2015-01-28修回日期:2015-05-04

基金項目:國家自然科學(xué)基金(31260054)[Supported by the National Natural Science Foundation of China(31260054)]。

作者簡介:郝楠(1991-),女,陜西商洛人,碩士研究生,主要從事植物生態(tài)學(xué)研究,(E-mail)haonan1022@126.com。 *通訊作者:孫坤,博士,教授,主要從事植物系統(tǒng)進化和生物多樣性等研究,(E-mail)kunsun@nwnu.edu.cn。

中圖分類號:Q948

文獻標(biāo)識碼:A

文章編號:1000-3142(2016)06-0674-05

郝楠,蘇雪,吳瓊,等. 青藏高原東緣塊莖堇菜鱗莖分配的個體大小依賴性[J]. 廣西植物, 2016, 36(6):674-678

HAO N,SU X,WU Q,et al. Size-dependent of Qinghai-Tibetan PlateauViolatuberifera(Violaceae)bulbs allocation [J]. Guihaia, 2016, 36(6):674-678