張光, 張英堂, 尹剛, 任國(guó)全, 李志寧, 范紅波
1 軍械工程學(xué)院7系, 石家莊 050003 2 65185部隊(duì), 遼寧鐵嶺 112611
?
一種磁張量探測(cè)系統(tǒng)載體的磁張量補(bǔ)償方法
張光1, 2, 張英堂1, 尹剛1, 任國(guó)全1, 李志寧1, 范紅波1
1 軍械工程學(xué)院7系, 石家莊050003 2 65185部隊(duì), 遼寧鐵嶺112611
摘要針對(duì)磁張量系統(tǒng)載體產(chǎn)生的磁張量值對(duì)系統(tǒng)測(cè)量精度產(chǎn)生很大影響的問(wèn)題,以及現(xiàn)有磁補(bǔ)償模型存在非線性、分體式和參數(shù)多的問(wèn)題,提出一種磁張量系統(tǒng)載體的一體化線性磁張量補(bǔ)償方法.分析了載體硬磁材料產(chǎn)生固有磁張量值和軟磁材料產(chǎn)生感應(yīng)磁張量值的微觀機(jī)理,并推導(dǎo)了相應(yīng)的數(shù)學(xué)表達(dá)式,結(jié)合固有磁場(chǎng)影響和感應(yīng)磁場(chǎng)影響建立了載體磁張量補(bǔ)償模型.模型中含有20個(gè)載體磁張量補(bǔ)償系數(shù),對(duì)模型求解得到補(bǔ)償系數(shù),結(jié)合三分量磁場(chǎng)測(cè)量值即可達(dá)到對(duì)載體磁張量的補(bǔ)償.實(shí)測(cè)實(shí)驗(yàn)表明,磁張量補(bǔ)償方法計(jì)算得到的載體磁張量值與載體實(shí)際產(chǎn)生的磁張量值僅差32 nT/m,可以有效完成對(duì)磁張量系統(tǒng)的載體磁張量補(bǔ)償.
關(guān)鍵詞磁張量系統(tǒng); 磁張量補(bǔ)償; 固有磁場(chǎng); 感應(yīng)磁場(chǎng)
First, the magnetic tensor system is built, and the whole magnetic tensor is replaced by the expression of 5 elements. The magnetization characteristic of the hard magnetic material that comprises the carrier is analyzed, and the connatural magnetic field from carrier hard magnetic material does not vary with the change of carrier attitude and position. The mathematic model of the connatural magnetic field is constrcuted. The mechanism of the induced magnetic field from carrier soft magnetic material is analyzed, and the induced magnetic field is equivalent to the magnetic field superposition of several magnetic dipoles. The mathematic expression of the induced magnetic field is derived. The carrier magnetic tensor compensation model is established combined with the influence of the connatural magnetic field and the induced magnetic field, and the magnetic tensor compensation model with 20 coefficients is established by variable substitution and combined reduction. If we rotate the magnetic tensor system and carrier more than 4 attitudes under the equal magnetic field environment, and put the measured value of the magnetic tensor and magnetic field components into the carrier magnetic tensor compensation model, we can get the 20 magnetic tensor compensation coefficients. When the magnetic tensor system is applied to search the target, we can calculate the magnetic tensor value of the carrier with the 20 magnetic tensor compensation coefficients and the three components of the magnetic field. The magnetic tensor value of the target can be determined with the total magnetic tensor value subtracting the magnetic tensor value of carrier, and the carrier magnetic tensor compensation is realized.
On the wide lawn, the magnetic tensor system is fixed on the three-axis non-magnetic turntable, a piece of iron of 0.003 m3as the simulation carrier is put on the this turntable also with a certain distance from the magnetic tensor system. The three-axis non-magnetic turntable is rotated at different attitudes (to get more calculation accuracy, 10 attitudes are carried out), the measurement data of the magnetic tensor system are recorded. Using the magnetic tensor compensation method of this paper, the 20 magnetic tensor compensation coefficients of the simulation carrier are obtained with the measurement data. To test the validity of this compensation method, the three-axis non-magnetic turntable is rotated at another 4 attitudes, and the magnetic tensor value from the simulation carrier can be got with the 20 magnetic tensor compensation coefficients and the three components of magnetic field measured by the magnetic tensor system. The influence of the magnetic tensor of the simulation carrier is up to 653 nT/m before compensation, and the general targets can be submerged by it. After compensation, the influence is reduced to 32 nT/m, and to a certain extent, the magnetic tensor of the simulation carrier is compensated.
In this paper, the carrier magnetic tensor compensation model considering the connatural magnetic field and induced magnetic field is established. The model includes 20 magnetic tensor compensation coefficients, which can be solved by the model and the measurement data. The magnetic tensor generated by the carrier can be calculated using the 20 compensation coefficients and the three components of the magnetic field, and the carrier magnetic tensor compensation is realized. It is proved that the calculated magnetic tensor is very close to the real ones of the carrier by real measuring experiment, and the compensation method in this paper can effectively accomplish carrier magnetic tensor compensation.
1引言
磁張量系統(tǒng)可以實(shí)現(xiàn)對(duì)目標(biāo)的定位和識(shí)別(Gamey et al., 2004; Nara et al., 2006; Stolz et al., 2006; 李光等, 2012),為目標(biāo)探測(cè)提供有效手段.近年來(lái)磁張量理論以及磁張量系統(tǒng)已經(jīng)成為國(guó)內(nèi)外研究熱點(diǎn).磁張量系統(tǒng)一般需要搭載到機(jī)動(dòng)載體上進(jìn)行探測(cè),由于機(jī)動(dòng)載體多由鋼鐵等鐵磁性物質(zhì)組成,鐵磁性物質(zhì)被地球磁場(chǎng)等磁化后具有磁性,對(duì)磁張量系統(tǒng)測(cè)量會(huì)造成一定影響.雖然這些載體在使用前可能進(jìn)行過(guò)相應(yīng)的消磁處理,但被探測(cè)目標(biāo)磁場(chǎng)屬于弱磁場(chǎng),載體磁場(chǎng)足以將其淹沒(méi),載體磁場(chǎng)對(duì)磁張量測(cè)量是一個(gè)不容忽視的干擾源.
載體的磁干擾主要包括硬磁材料產(chǎn)生的固有磁場(chǎng)和軟磁材料產(chǎn)生的感應(yīng)磁場(chǎng),并且感應(yīng)磁場(chǎng)的大小和方向會(huì)隨著載體的位置、姿態(tài)的變化而變化.Pei針對(duì)水下無(wú)人平臺(tái)研究了磁張量系統(tǒng)載體磁場(chǎng)補(bǔ)償,以其中一個(gè)離載體較遠(yuǎn)的傳感器為參考傳感器,以此傳感器測(cè)量磁場(chǎng)為真實(shí)地球磁場(chǎng),對(duì)其他傳感器進(jìn)行載體磁補(bǔ)償(Pei et al., 2009; Pei et al., 2010).Lü指出Pei的方法中參考傳感器雖然離載體較遠(yuǎn),但仍然會(huì)受到載體磁場(chǎng)干擾.Lü對(duì)Pei的方法進(jìn)行了重新推導(dǎo),將參考傳感器受載體磁場(chǎng)干擾的因素加入其中,建立了更加嚴(yán)密的磁補(bǔ)償模型(Lü et al., 2013).Lü的方法較Pei的方法有所改進(jìn),但仍存在以下三個(gè)問(wèn)題:
(1)其建立的是非線性模型,求解時(shí)容易出現(xiàn)多解性和解不穩(wěn)定現(xiàn)象.
(2)其實(shí)質(zhì)是單個(gè)三軸磁傳感器的分別補(bǔ)償,即分體式補(bǔ)償,對(duì)于由非三軸磁傳感器構(gòu)成的磁張量系統(tǒng)難以適用.
(3)校正參數(shù)過(guò)多,達(dá)48個(gè).為此本文提出了一種磁張量系統(tǒng)載體的一體化線性磁補(bǔ)償方法,該方法只需求解20個(gè)磁補(bǔ)償參數(shù).
2磁張量系統(tǒng)結(jié)構(gòu)
2.1磁張量要素
磁場(chǎng)是一個(gè)矢量場(chǎng),包括3個(gè)分量,其3分量磁場(chǎng)在空間3個(gè)方向的變化率即為磁張量,共包括9個(gè)值,其表達(dá)式為
(1)
其中G為磁張量,Bx、By和Bz為磁場(chǎng)三分量.磁性載體產(chǎn)生的磁場(chǎng)可以看作靜磁場(chǎng),由麥克斯韋方程組可知,描述靜磁場(chǎng)的基本方程為(林春生, 2003)
(2)
其中H為磁場(chǎng)強(qiáng)度,B為磁感應(yīng)強(qiáng)度,μ為磁導(dǎo)率,σ為空間電流密度.在磁性載體周?chē)臻g內(nèi),σ=0,μ為常數(shù),故有:divB=0,rotB=0,即
所以式(1)中只有5個(gè)要素是獨(dú)立的,本文為后續(xù)計(jì)算簡(jiǎn)便用其中5個(gè)獨(dú)立元素表示磁張量為
(4)
2.2磁張量探測(cè)系統(tǒng)
磁張量系統(tǒng)的結(jié)構(gòu)形式有很多,如平面十字形、三角形、正方形、直角四面體和正四面體(劉麗敏, 2012).本文以平面十字形的磁張量系統(tǒng)為例闡述本文所提出的載體磁補(bǔ)償方法,平面十字磁張量系統(tǒng)如圖1所示(張光等, 2013).
圖1 平面磁張量系統(tǒng)結(jié)構(gòu)
圖1中1、2、3和4分別代表一個(gè)三軸磁場(chǎng)傳感器,傳感器對(duì)應(yīng)磁軸相互平行,系統(tǒng)的基線距離為d,用該系統(tǒng)可以測(cè)量得到磁性目標(biāo)的磁場(chǎng)張量值G和總磁場(chǎng)矢量B為
(5)
(6)
3載體磁場(chǎng)補(bǔ)償模型
載體通常由大量鋼鐵構(gòu)件組成,并且裝有電機(jī)等驅(qū)動(dòng)設(shè)備,這些構(gòu)件和設(shè)備中往往包含硬磁材料和軟磁材料,硬磁材料產(chǎn)生固有磁場(chǎng),軟磁材料產(chǎn)生感應(yīng)磁場(chǎng).
3.1載體固有磁場(chǎng)影響
硬磁材料是在經(jīng)受外磁場(chǎng)后能保持大量剩磁的磁性材料,這類磁性材料的特點(diǎn)是矯頑力大,該種材料的磁滯回線所包圍的“面積”較大,磁滯特性非常明顯,相當(dāng)于永久磁鐵,它產(chǎn)生的磁感應(yīng)強(qiáng)度可以認(rèn)為是不變的,不會(huì)隨著載體姿態(tài)或位置的變化而改變,稱為固有磁場(chǎng).
因?yàn)檫@些硬磁材料和磁張量系統(tǒng)都是固聯(lián)在載體上的,所以不論載體姿態(tài)怎樣變化硬磁材料所產(chǎn)生的合成磁場(chǎng)在張量系統(tǒng)位置都是不變的.也就是說(shuō),固有磁場(chǎng)對(duì)磁張量系統(tǒng)的影響相當(dāng)于增加了一個(gè)常矢量偏置,其表達(dá)式為
(7)
載體固有磁場(chǎng)在短時(shí)間內(nèi)可認(rèn)為是恒定的常矢量,但當(dāng)載體長(zhǎng)期暴露在地磁場(chǎng)環(huán)境中,其固有磁場(chǎng)也會(huì)隨著時(shí)間的增長(zhǎng)而不斷變化(仲維暢, 2004).當(dāng)載體在地磁場(chǎng)中因往復(fù)的加速運(yùn)動(dòng)或高速旋轉(zhuǎn)而引起的磁化-退磁循環(huán)次數(shù)足夠多時(shí),載體上的剩磁最終會(huì)在一段時(shí)間后發(fā)生較大變化.因此,載體在使用一段時(shí)間后,需要重新對(duì)其固有磁場(chǎng)進(jìn)行校正.
3.2載體感應(yīng)磁場(chǎng)影響
軟磁材料能夠用相對(duì)低的磁感應(yīng)強(qiáng)度磁化,當(dāng)外磁場(chǎng)移走后保持相對(duì)弱的剩磁.該種材料的特點(diǎn)是矯頑力很小,其磁滯回線狹窄,所包圍的“面積”較小,當(dāng)被環(huán)境磁場(chǎng)磁化后產(chǎn)生的感應(yīng)磁場(chǎng)將影響其周?chē)艌?chǎng).影響的大小和方向與環(huán)境磁場(chǎng)和軟磁材料本身有關(guān).
鋼鐵構(gòu)件由原子組成,每個(gè)原子又由原子核及圍繞其轉(zhuǎn)動(dòng)的電子組成.電子的轉(zhuǎn)動(dòng)形成電流,稱為原子電流.每個(gè)原子電流形成一個(gè)小的環(huán)狀電流,在外磁場(chǎng)作用下,各個(gè)環(huán)狀電流將受到磁力矩的作用,這一作用使各環(huán)狀電流在一定程度上沿著外磁場(chǎng)的方向排列起來(lái),對(duì)外顯示磁性.軟磁材料中的單個(gè)原子電流環(huán)可用一個(gè)磁偶極子來(lái)表征(周耀忠和張國(guó)友, 2004),那么軟磁材料的感應(yīng)磁場(chǎng)可以等效于若干個(gè)被磁化的磁偶極子磁場(chǎng)的疊加.由電磁學(xué)知識(shí)可知,鐵磁等材料在外磁場(chǎng)作用下會(huì)被磁化產(chǎn)生磁矩,其磁化磁矩與外磁場(chǎng)的強(qiáng)度成正比,那么載體中某磁偶極子的磁化磁矩為(王楚等, 2000)
(8)
其中Bx,By和Bz為外界磁化磁場(chǎng);mxi,myi和mzi為被磁化磁偶極子的磁矩;λxi,λyi和λzi為磁化系數(shù),i表示某個(gè)磁偶極子的序號(hào).該磁偶極子在磁張量系統(tǒng)所在位置產(chǎn)生的梯度張量值為(吳招才, 2008)
(9)
其中mi=(mxi,myi,mzi)T;ri=(xi,yi,zi)T為磁偶極子到磁張量系統(tǒng)中心的位置矢量.
將式(8)代入式(9),將Bx,By和Bz單獨(dú)提出來(lái),整理后得
(10)
其中cmni(m=1…5,n=1…3)被外磁場(chǎng)磁化產(chǎn)生的磁偶極子,在磁張量探測(cè)系統(tǒng)中心產(chǎn)生的磁張量系數(shù).
(11)
將上式進(jìn)一步化簡(jiǎn)得
(12)
3.3載體磁場(chǎng)補(bǔ)償模型
在勻強(qiáng)磁場(chǎng)環(huán)境下,磁張量系統(tǒng)測(cè)量的磁張量值應(yīng)當(dāng)接近零,但由于載體固定磁場(chǎng)和感應(yīng)磁場(chǎng)的影響使磁張量系統(tǒng)測(cè)量值G″遠(yuǎn)遠(yuǎn)偏離零值,結(jié)合式(7)和式(12)得到載體磁場(chǎng)補(bǔ)償模型為
(13)
將上式進(jìn)一步寫(xiě)為
(14)
(15)
將式(15)移項(xiàng)、求逆得到的B代入式(14)得:
(16)
G″=M(B′-B0)+G0
=MB′-MB0+G0
=MB′+(G0-MB0),
(17)再令
(18)
4實(shí)驗(yàn)驗(yàn)證
運(yùn)用自制的經(jīng)典式三軸磁通門(mén)傳感器構(gòu)成平面磁張量系統(tǒng),并先完成一系列的系統(tǒng)校正(黃玉和郝燕玲, 2012; 張光等, 2013, 2015),降低磁張量系統(tǒng)固有誤差(單個(gè)三分量磁傳感器三軸非正交性誤差、靈敏度不一致誤差、零點(diǎn)偏移誤差和4個(gè)傳感器軸系間對(duì)正誤差等).
在均勻磁場(chǎng)環(huán)境下,將磁張量系統(tǒng)固定在三軸無(wú)磁轉(zhuǎn)臺(tái)上,在一定距離上放置一體積為0.003m3的鐵塊模擬載體產(chǎn)生硬磁軟磁干擾.磁張量系統(tǒng)連同鐵塊在轉(zhuǎn)臺(tái)上進(jìn)行多姿態(tài)旋轉(zhuǎn)(為了增加求解的準(zhǔn)確性,進(jìn)行了10個(gè)姿態(tài)的旋轉(zhuǎn)),記錄各姿態(tài)時(shí)磁張量系統(tǒng)的測(cè)量數(shù)據(jù),如表1所示.運(yùn)用本文所提出的方法,結(jié)合磁張量系統(tǒng)測(cè)量數(shù)據(jù)求解得到模擬載體的20個(gè)磁張量補(bǔ)償系數(shù)為
為驗(yàn)證補(bǔ)償效果,在均勻磁場(chǎng)環(huán)境下,對(duì)磁張量系統(tǒng)及鐵塊又進(jìn)行了4個(gè)姿態(tài)的旋轉(zhuǎn).利用磁張量系統(tǒng)測(cè)量得到的三分量磁場(chǎng)值,以及前面求解得到的20個(gè)磁張量補(bǔ)償系數(shù)就可以解算得到鐵塊產(chǎn)生的磁張量值,如果該張量值與磁張量系統(tǒng)直接測(cè)量得到的磁張量值接近,說(shuō)明磁補(bǔ)償系數(shù)求解正確,磁補(bǔ)償方法有效.磁張量系統(tǒng)測(cè)量的三分量磁場(chǎng)值結(jié)合磁補(bǔ)償系數(shù)求解得到的磁張量值、直接測(cè)量得到的磁張量值如表2所示.
表1 各姿態(tài)下磁張量系統(tǒng)測(cè)量數(shù)據(jù)
表2 磁補(bǔ)償系數(shù)解算的磁張量值及直接測(cè)量的磁張量值比較
由表2可以看到模擬載體所用的鐵塊對(duì)磁張量系統(tǒng)測(cè)量值的影響最大達(dá)到653 nT/m,超過(guò)一般被探測(cè)目標(biāo)所產(chǎn)生的磁張量值,若不對(duì)其進(jìn)行補(bǔ)償將使磁張量系統(tǒng)難以完成探測(cè).運(yùn)用本文所提出的方法解算得到的磁張量值與直接測(cè)量的磁張量值最大相差為32 nT/m,比較準(zhǔn)確地得到了載體對(duì)磁張量系統(tǒng)測(cè)量值的影響,在一定程度上對(duì)載體硬磁軟磁影響進(jìn)行了補(bǔ)償.
5結(jié)論
在分析載體固有磁場(chǎng)和感應(yīng)磁場(chǎng)形成機(jī)理的基礎(chǔ)上,將載體固有磁場(chǎng)等效為固定磁張量偏置,將載體感應(yīng)磁場(chǎng)等效為磁偶極子磁張量值的疊加,建立了載體的一體化線性磁張量補(bǔ)償模型,對(duì)模型進(jìn)行求解,得到20個(gè)磁張量補(bǔ)償系數(shù),當(dāng)系統(tǒng)探測(cè)目標(biāo)時(shí)可利用其對(duì)系統(tǒng)進(jìn)行載體磁張量補(bǔ)償.實(shí)測(cè)實(shí)驗(yàn)表明,本文所提方法解算得到的磁張量值與載體實(shí)際產(chǎn)生的磁張量值僅差32 nT/m,可在一定程度上補(bǔ)償載體對(duì)磁張量系統(tǒng)的影響,證明了本文方法的正確性及有效性.
References
Gamey T J, Doll W E, Beard L P. 2004. Initial design and testing of a full-tensor airborne SQUID magnetometer for detection of unexploded ordnance.∥ SEG Technical Program Expanded Abstracts.SEG, 798-801.
Huang Y, Hao Y L. 2012. Error correction of magnetic field component gradiometer based on FLANN and least-squares.ChineseJournalofScientificInstrument(in Chinese), 33(4): 911-917.
Li G, Sui Y Y, Liu L M, et al. 2012. Magnetic dipole single-point tensor positioning based on the difference method.JournalofDetection&Control(in Chinese), 34(5): 50-54.
Lin C S. 2003. The Physical Field of Ships (in Chinese) . Beijing: Ordnance Industry Press.
Liu L M. 2012. Configuration design, error analysis and underwater target detection of fluxgate tensor magnetometer (in Chinese). Changchun: Jilin University.
Lü J W, Yu Z T, Huang J L, et al. 2013. The compensation method of vehicle magnetic interference for the magnetic gradiometer.AdvancesinMathematicalPhysics, 2013: Article ID 523164.
Nara T, Suzuki S, Ando S. 2006. A closed-form formula for magnetic dipole localization by measurement of its magnetic field and spatial gradients.IEEETransactionsonMagnetics, 42(10): 3291-3293.
Pei Y H, Yeo H G. 2009. UXO survey using vector magnetic gradiometer on autonomous underwater vehicle. ∥ OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges. Biloxi, MS: IEEE, 1-8.
Pei Y H, Yeo H G, Kang X Y, et al. 2010. Magnetic gradiometer on an AUV for buried object detection. ∥ OCEANS 2010. Seattle, WA: IEEE, 1-8.
Stolz R, Zakosarenko V, Schulz M, et al. 2006. Magnetic full-tensor SQUID gradiometer system for geophysical applications.TheLeadingEdge, 25(2): 178-180. Wang C, Li C, Zhou L Z. 2000. Electromagnetics (in Chinese). Beijing: Beijing University Press, 182-206.
Wu Z C. 2008. Magnetic gradient tensor technology and its application (in Chinese). Wuhan: China University of Geosciences. Yang Y T, Shi Z Y, Guan Z Z, et al. 2009. A magnetic disturbance compensation method based on magnetic dipole magnetic field distributing theory.ActaArmamentarii(in Chinese), 29(12): 1485-1491.
Zhang G, Zhang Y T, Li Z N, et al. 2013. Localizing method of magnetic field gradient tensor under carriers moving parallelly.J.HuazhongUniv.ofSci. &Tech. (NaturalScienceEdition) (in Chinese), 41(1): 21-24. Zhang G, Zhang Y T, Yin G, et al. 2015. Calibration method of magnetic tensor system based on linear error model.JournalofJilinUniversity(EngineeringandTechnologyEdition) (in Chinese), 45(3): 1012-1016.
Zhong W C. 2004. The self “motion magnetization” of ferro-magnetic object in the earth′s magnetic field.NondestructiveInspection(in Chinese), 28(5): 9-10, 14.
Zhou Y Z, Zhang G Y. 2004. The Analysis and Calculation of Ships′ Magnetic Field (in Chinese). Beijing: National Defense Industry Press.
附中文參考文獻(xiàn)
黃玉, 郝燕玲. 2012. 基于FLANN和最小二乘的磁梯度計(jì)誤差校正. 儀器儀表學(xué)報(bào), 33(4): 911-917.
李光, 隨陽(yáng)軼, 劉麗敏等. 2012. 基于差分的磁偶極子單點(diǎn)張量定位方法. 探測(cè)與控制學(xué)報(bào), 34(5): 50-54.
林春生. 2003. 艦船物理場(chǎng). 北京: 兵器工業(yè)出版社.
劉麗敏. 2012. 磁通門(mén)張量的結(jié)構(gòu)設(shè)計(jì)、誤差分析及水下目標(biāo)探測(cè). 長(zhǎng)春: 吉林大學(xué).
王楚, 李椿, 周樂(lè)柱. 2000. 電磁學(xué). 北京: 北京大學(xué)出版社, 182-206.
吳招才. 2008. 磁力梯度張量技術(shù)及其應(yīng)用研究. 武漢: 中國(guó)地質(zhì)大學(xué).
楊云濤, 石志勇, 關(guān)貞珍等. 2009. 一種基于磁偶極子磁場(chǎng)分布理論的磁場(chǎng)干擾補(bǔ)償方法. 兵工學(xué)報(bào), 29(12): 1485-1491.
張 光, 張英堂, 李志寧等. 2013. 載體平動(dòng)條件下的磁梯度張量定位方法. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 41(1): 21-24.
張 光, 張英堂, 尹 剛等. 2015. 基于線性誤差模型的磁張量系統(tǒng)校正. 吉林大學(xué)學(xué)報(bào)(工學(xué)版), 45(3): 1012-1016.
仲維暢. 2004. 鐵磁性物體在地磁場(chǎng)中的自發(fā)“運(yùn)動(dòng)磁化”. 無(wú)損探傷, 28(5): 9-10, 14.
周耀忠, 張國(guó)友. 2004. 艦船磁場(chǎng)分析計(jì)算. 北京: 國(guó)防工業(yè)出版社.
(本文編輯張正峰)
基金項(xiàng)目國(guó)家自然科學(xué)基金(50175109,50475053)資助.
作者簡(jiǎn)介張光,男,1984年生,軍械工程學(xué)院博士,主要從事測(cè)試技術(shù)與信號(hào)處理. E-mail:drzhangg@163.com
doi:10.6038/cjg20160126 中圖分類號(hào)P631
收稿日期2013-10-20,2015-08-20收修定稿
Magnetic tensor compensation method for the carrier of the magnetic tensor detection system
ZHANG Guang1, 2, ZHANG Ying-Tang1, YIN Gang1, REN Guo-Quan1,LI Zhi-Ning1, FAN Hong-Bo1
1Department7th,MechanicsEngineeringCollege,Shijiazhuang050003,China2Unit65185PLA,Tieling112611,China
AbstractTo solve the problem that the measurement accuracy of the magnetic tensor detection system is influenced by the magnetic tensor generated by the carrier, and existence of nonlinearity, separated patterns and too many coefficients in the existing compensation model, this work proposes an integrated linear compensation method for the magnetic tensor carrier.
KeywordsMagnetic tensor system; Magnetic tensor compensation; Connatural magnetic field; Induced magnetic field
張光, 張英堂, 尹剛等. 2016. 一種磁張量探測(cè)系統(tǒng)載體的磁張量補(bǔ)償方法.地球物理學(xué)報(bào),59(1):311-317,doi:10.6038/cjg20160126.
Zhang G, Zhang Y T, Yin G, et al. 2016. Magnetic tensor compensation method for the carrier of the magnetic tensor detection system.ChineseJ.Geophys. (in Chinese),59(1):311-317,doi:10.6038/cjg20160126.