潘成澤,邱 林,葉現(xiàn)韜,董永觀
(1.新疆維吾爾自治區(qū)人民政府國家三〇五項(xiàng)目辦公室,烏魯木齊 830000)(2.南京地質(zhì)礦產(chǎn)研究所,南京 210016)
?
扎河壩蛇綠巖鋯石U-Pb年齡、Hf-O同位素組成及其地質(zhì)意義*
潘成澤1,邱 林1,葉現(xiàn)韜2,董永觀2
(1.新疆維吾爾自治區(qū)人民政府國家三〇五項(xiàng)目辦公室,烏魯木齊 830000)(2.南京地質(zhì)礦產(chǎn)研究所,南京 210016)
摘要:扎河壩蛇綠巖位于準(zhǔn)噶爾北緣,是扎河壩—阿爾曼太蛇綠混雜巖帶的一部分。通過對蛇綠混雜巖中堆晶輝長巖和凝灰?guī)r夾層的鋯石U-Pb年齡及Hf-O同位素進(jìn)行研究,獲得堆晶輝長巖的結(jié)晶年齡為485±4Ma,凝灰?guī)r的噴發(fā)年齡為401±2.5Ma。輝長巖極度虧損Hf同位素,εHf(t)為13~20,δ18O峰值為+5.37‰,顯示其具有地幔特征。凝灰?guī)r鋯石的Hf同位素虧損程度低于堆晶輝長巖,εHf(t)為1.4~9.2。扎河壩蛇綠巖具有典型的SSZ型蛇綠巖特征,是通過俯沖增生到洋內(nèi)弧弧前的蛇綠巖。
關(guān)鍵詞:扎河壩;蛇綠巖;年齡;同位素;地質(zhì)意義
蛇綠巖是由地幔橄欖巖、輝長巖、席狀巖墻、枕狀熔巖及深海硅質(zhì)巖組成的洋殼巖石圈殘片,野外露頭上有時(shí)只保留部分單元。由于蛇綠巖在研究大洋巖石圈部分熔融、洋陸轉(zhuǎn)換及造山帶構(gòu)造演化中具有特殊意義,因此一直受地質(zhì)學(xué)家們的廣泛關(guān)注。在這些研究中,蛇綠巖的分類是重要的問題之一[1-5]。Dilek和Furne[6]將蛇綠巖分五大類,分別是大陸邊緣型、洋中脊型、俯沖帶型(SSZ形)、火山弧型和增生型。采用不相容元素地球化學(xué)法,Pearce[4]將蛇綠巖分洋中脊型和俯沖帶型(SSZ型),其中洋中脊型又細(xì)分為N型、E型和P型,而SSZ型分為初始俯沖型、弧后盆地型和洋脊俯沖型等三個(gè)亞類。
中亞造山帶廣泛分布著多期、復(fù)雜的蛇綠巖。從時(shí)代上看,從文德紀(jì)到中生代都有發(fā)育,表明了中亞造山帶長期的演化歷史[7-11]。在準(zhǔn)噶爾北緣和阿勒泰南緣,發(fā)育包括克拉麥里、扎河壩—阿爾曼太、喬夏哈拉、庫爾提[11-等多條蛇綠巖帶,記錄了阿勒泰南緣構(gòu)造演化及準(zhǔn)噶爾增生的歷史,對探索阿勒泰南緣構(gòu)造演化具有重要意義。
1蛇綠巖巖石學(xué)特征
扎河壩蛇綠巖位于準(zhǔn)噶爾北緣,沿額爾齊斯構(gòu)造帶南緣呈北西向分布,是扎河壩—阿爾曼太蛇綠混雜巖帶的一部分,由蛇紋巖、輝長巖、玄武巖—安山巖和少量凝灰?guī)r及大理巖(圖1)組成。蛇紋巖以殘塊間雜于下泥盆統(tǒng)玄武巖—安山巖中,蛇紋石含量>95%,磁鐵礦和尖晶石少量,未見殘留的橄欖石和斜方輝石。磁鐵礦沿裂隙分布,是蛇紋石化過程中析出的礦物。輝長巖具明顯堆晶結(jié)構(gòu),塊狀構(gòu)造,由單斜輝石(30%~50%)和斜長石(40%~70%)及少量斜方輝石(5%~10%)組成,幾乎無蝕變,與蛇紋巖接觸邊界清晰,未發(fā)現(xiàn)冷凝邊,向接觸邊界巖石粒度明顯變細(xì),表明兩者之間具有侵入接觸關(guān)系。
玄武巖—安山巖分屬下中泥盆統(tǒng)托讓庫都克組、蘊(yùn)都喀拉組和上泥盆統(tǒng)江尕那薩依組。下中泥盆統(tǒng)托讓庫都克組分為三個(gè)巖性段,其中下巖性段有碳酸鹽巖團(tuán)塊,可能代表海山環(huán)境。早期資料中[12],下中泥盆統(tǒng)托讓庫都克組玄武巖被認(rèn)為是蛇綠巖的組成部分。
圖1 扎河壩蛇綠巖地質(zhì)圖(據(jù)文獻(xiàn)[14]修改) Fig.1 Geologic map of the Zhaheba ophiolite
大理巖以巖塊覆于玄武巖之上,代表當(dāng)時(shí)的海山環(huán)境。
2蛇綠巖形成時(shí)代
對蛇綠巖中的堆晶輝長巖和下中泥盆統(tǒng)托讓庫都克組凝灰?guī)r進(jìn)行U-Pb年齡測定和Hf同位素分析,分析測試在天津地質(zhì)礦產(chǎn)研究所完成。巖石破碎至-80目,分階段淘洗,雙目境下手工挑選鋯石。輝長巖中的鋯石無色透明,晶體一般在100~150μm之間,長/寬為1~2。在CL圖象(圖2)中,絕大部分鋯石具有明顯的環(huán)帶或條帶狀結(jié)構(gòu)。30粒鋯石U含量為(22~133)×10-6,Th含量為(8~57)×10-6,Th/U為0.4~0.8。30個(gè)測點(diǎn)的U-Pb表面年齡在誤差范圍內(nèi)一致,獲得的算術(shù)平均年齡為485.8±2.5 Ma (圖2a),代表輝長巖的結(jié)晶年齡。
凝灰?guī)r中的鋯石有花崗巖結(jié)晶和基性巖漿結(jié)晶兩類,其中基性巖漿結(jié)晶鋯石獲得的年齡在誤差范圍內(nèi)一致,年齡平均值為401.4±1.6Ma(圖2b),代表凝灰?guī)r的噴發(fā)年齡。
表1 扎河壩蛇綠混雜巖帶堆晶輝長巖及凝灰?guī)r鋯石的U-Pb年齡測試結(jié)果
(續(xù)表)
圖2 扎河壩蛇綠巖帶中的堆晶輝長巖(a)及凝灰?guī)r(b)鋯石U-Pb年齡圖Fig.2 Zircon U-Pb Concordia diagrams of gabbros (a) and tuffs (b) in the Zhaheba ophiolite belt
3鋯石Hf-O同位素特征
堆晶巖輝長巖及凝灰?guī)r中的鋯石具有一致的Hf同位素組成,εHf(t=485 Ma)為13~20,個(gè)別點(diǎn)有異常高的εHf值(t=485 Ma),獲得的模式年齡低于結(jié)晶年齡,無現(xiàn)實(shí)意義。其他測試點(diǎn)獲得的模式年齡與結(jié)晶年齡幾乎一致,所有測試點(diǎn)的εHf(t=485 Ma)在直方圖上具有顯著的高斯分布特征,獲得峰值為15.7。400Ma的凝灰?guī)r中的鋯石εHf(t)值為1.4~9.2,模式年齡為680~920Ma。輝長巖鋯石的O同位素均一,為4.91‰~5.73‰,形成高斯分布,峰值為5.37±0.23‰,與地幔值一致。
表2 扎河壩蛇綠混雜巖帶堆晶輝長巖及凝灰?guī)r鋯石的Hf同位素組成
(續(xù)表)
表3 扎河壩蛇綠混雜巖帶輝長巖中鋯石的氧同位素組成
4討論
扎河壩蛇綠巖中堆晶巖和凝灰?guī)r的年齡分別為485Ma和401Ma,兩者不屬于同一單元,但堆晶巖與阿爾曼太蛇綠巖中堆晶輝長巖年齡503Ma[13]在誤差范圍內(nèi)一致,表明扎河壩和阿爾曼太蛇綠巖形成于洋中脊環(huán)境,其中火山巖組合形成于洋內(nèi)弧前增生環(huán)境。
輝長巖的鋯石Hf同位素表明,原始巖漿來自DM單元,具有Hf同位素虧損和與地幔巖相似的O同位素特征,與MORB蛇綠巖類似。
準(zhǔn)噶爾北緣克拉麥里、扎河壩—阿爾曼太和富蘊(yùn)三條不同時(shí)代(503Ma、503~485Ma、400Ma)的蛇綠巖帶,表明在寒武紀(jì)—早奧陶世,準(zhǔn)噶爾地區(qū)至少存在兩條擴(kuò)張脊,即克拉麥里蛇綠巖和扎河壩—阿爾曼太蛇綠巖。在這一時(shí)期,洋內(nèi)俯沖形成了弧前增生楔以及洋內(nèi)弧系統(tǒng),準(zhǔn)噶爾洋大致在此時(shí)沿額爾齊斯構(gòu)造帶向北俯沖。由于洋內(nèi)的持續(xù)俯沖,在準(zhǔn)噶爾形成一系列的增生雜巖,隨著沿額爾齊斯帶的洋殼消減作用,增生雜巖逐漸拼貼增生到阿勒泰南緣。在這一過程中,俯沖帶逐漸消減后撤,準(zhǔn)噶爾洋也逐漸衰亡。準(zhǔn)噶爾洋的最終關(guān)閉可能發(fā)生在中晚石炭世,因?yàn)閺耐硎俊缍B世,準(zhǔn)噶爾開始出現(xiàn)陸相沉積,巖漿作用也表現(xiàn)出造山后特征(圖4)。
圖4 準(zhǔn)噶爾地體增生過程模式圖Fig.4 Tectonic model showing the accretion process of the Junggar terrane
在阿勒泰南緣,最近識別出阿拉斯加型鎂鐵質(zhì)侵入巖帶,形成時(shí)代為400~380Ma[15-16]。在阿勒泰南緣還分布了大量400Ma左右具有I型花崗巖地球化學(xué)特征的花崗巖[17-21],同時(shí)Nd-Hf同位素顯示這些花崗巖在形成過程中有新生地殼成分參與。空間相疊、時(shí)代相同的花崗巖和阿拉斯加型鎂鐵質(zhì)巖帶,構(gòu)成了阿勒泰南緣晚古生代早期的巖漿弧系統(tǒng)。
參考文獻(xiàn)
[1]Coleman R G. Ophiolites[M]. New York: Springer Berlin Heidelberg, 1977: 220 .
[2]Dewey J F, Bird J M. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland[J].Journal of Geophysical Research Atmospheres,1971,76(14):3179-3206.
[3]Dilek Y, Flower M F J. Arc-trench rollback and forearc accretion: 2.A model template for ophiolites in Albania, Cyprus, and Oman[J]. Geological Society London Special Publications, 2003,218(1) :43-68.
[4]Pearce J A. Immobile element fingerprinting of ophiolites[J]. Elements,2014,10(2):101-108.
[5]Cawood P A, Kr?ner A, Collins W J, etal, Accretionary orogens through Earth history[J].Geological Society of London Special Publication, 2009,318(1), 1-36.
[6]Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oeanic lithosphere[J]. Geological Society of America Bulletin, 2011, 123 (2/3): 387-411.
[7]Jahn B M, WU F, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Earth and Environmental Sciences Transactions of the Royal Society of Edinburgh, 2000, 91(91): 181-193.
[8]Jahn B M. The central Asian orogenic belt and growth of the continental crust in the phanerozoic[J]. Geological Society London Special Publications, 2004, 226(1): 73-100.
[10]Windley B F, Kroner A, Guo J, et al. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution[J]. Journal of Geology, 2002, 110(6): 719-739.
[11]Yuan C, Sun M, Han C M, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids[J]. American Journal of Sciences, 2009, 30(3)9: 221-270.
[12]新疆地質(zhì)礦產(chǎn)局.新疆維吾爾自治區(qū)地質(zhì)志[M].北京:地質(zhì)出版社,1993:210-335.
[13]簡平,劉敦一,張旗,等. 蛇綠巖及蛇綠巖中淡色巖的SHRIMP U-Pb測年[J].地學(xué)前緣,2003, 10(4): 439-456.
[14]NIU Hecai, SHAN Qiang, ZHANG Haixiang, etal.40Ar/39Ar geochronology of the ultrahigh-pressure metamorphic quartz-magnesitite in Zaheba, eastern Junggar, Xinjiang[J]. Acta Petrologica Sinica,2007,23(7):1627-1634.
[15]YE Xiantao, ZHANG Chuanlin, ZOU Haibo, et al. Devonian Alaskan-type ultramafic-mafic intrusions and silicic igneous rocks along the southern Altai Orogen: Implications on the Phanerozoic continental growth of the Altai orogen of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2014, 113:75-89.
[16]CAI Keda, Sun Min, Yuan Chao, et al. Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance[J]. Chemical Geology, 2012, 294(3): 26-41.
[17]SUN Min, YUAN Chao, XIAO Wenjiao, et al. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic[J]. Chemical Geology, 2008, 247(3): 352-383.
[18]SUN Min, LONG Xiaoping, CAI Keda, et al. Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions[J]. Science in China Series D-Earth Sciences, 2009, 52(9): 1345-1358.
[19]WANG Tao, HONG Dawei, Jahn B M, et al. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, northwest China: Implications for the Tectonic evolution of an accretionary orogen[J]. Journal of Geology, 2006, 114(6): 735-751.
[20]WANG Tao, Jahn B M, Kovach V P, et al. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt[J]. Lithos, 2009, 110(1): 359-372.
[21]ZHANG Chuanlin., Santosh M, ZOU Haibo, et al. Revisiting the "Irtish tectonic belt": Implications for the Paleozoic tectonic evolution of the Altai orogen[J]. Journal of Asian Earth Sciences, 2012, 52(1): 117-133.
DOI:10.16788/j.hddz.32-1865/P.2016.02.004
* 收稿日期:2015-12-28改回日期:2016-01-26責(zé)任編輯:譚桂麗
基金項(xiàng)目:十二五國家三五項(xiàng)目“成礦動(dòng)力學(xué)背景和成礦過程研究”(項(xiàng)目編號:2011BAB06B03-01)。
第一作者簡介:潘成澤,1964年生,男,地質(zhì)礦產(chǎn)高級工程師,從事地質(zhì)礦產(chǎn)調(diào)查研究和科技管理工作。
中圖分類號:P597
文獻(xiàn)標(biāo)識碼:A
文章編號:2096-1871(2016)02-106-07
Zircon U-Pb ages and Hf-O isotope compositions of the Zhaheba ophiolite in the northern margin of the Junggar terrane and their tectonic implications
PAN Cheng-ze1, QIU Lin1, YE Xian-tao2, DONGYong-guan2
(1.National305ProjectOffice,Urumqi830000,China)(2.NanjingInstituteofGeologyandMineralResources,Nanjing210016,China)
Abstract:The Zhaheba ophiolite, located in the northern margin of Junggar terrane, is part of the Zhaheba-Aerman ophiolitic melange belt. Through U-Pb zircon age and Hf-O composition analysis for two samples from the ophiolitic melange belt, this study obtained a crystallization age of 485±4Ma for cumulate gabbros and an eruptive age of 401±2.5Ma for tuffs. The gabbros are characterized by extreme depletion of Hf isotopic composition with εHf(t) of 13~20 and δ18O peak value of +5.37‰, indicating a mantle-sourced feature. Hf isotope depletion degree of zircons from the tuffs is lower than that from cumulate gabbros, with εHf(t) of 1.4~9.2. All this features suggest that the Zhaheba ophiolite is of typical characteristic of the SSZ type ophiolite, which results from subduction accretion to the front of intra-oceanic arc.
Key words:Zhaheba ophiolite, MORB-type, accretion process, Central Asia Orogenic Belt (CAOB), Junggar terrane.