陳 婷,張治遠(yuǎn),張?jiān)戮?/p>
(西藏民族大學(xué) 體育學(xué)院,陜西 咸陽(yáng) 712082)
?
高溫預(yù)處理對(duì)力竭運(yùn)動(dòng)后人血液白細(xì)胞HSP70mRNA及自由基代謝的影響
陳婷,張治遠(yuǎn),張?jiān)戮?/p>
(西藏民族大學(xué) 體育學(xué)院,陜西 咸陽(yáng)712082)
摘要:目的:探討一次及多次高溫預(yù)處理對(duì)遞增負(fù)荷至力竭運(yùn)動(dòng)后人血液白細(xì)胞 HSP70mRNA及自由基代謝的影響。方法:受試者隨機(jī)分為運(yùn)動(dòng)對(duì)照組(C),一次高溫預(yù)處理組(P1),多次高溫預(yù)處理組(P2)。P1組進(jìn)行一次性高溫預(yù)處理1 h(桑拿,溫度46±1 ℃,濕度85%-90%,體重下降2%)。P2組每隔三天進(jìn)行一次(共八次)高溫預(yù)處理。C組采用Bruce方案在跑臺(tái)上進(jìn)行遞增負(fù)荷運(yùn)動(dòng)至力竭。P1和P2組高溫預(yù)處理結(jié)束,在室溫下恢復(fù)24 h后,在跑臺(tái)上進(jìn)行遞增負(fù)荷運(yùn)動(dòng)至力竭。運(yùn)動(dòng)結(jié)束后記錄最大心率、最大運(yùn)動(dòng)通氣量、最大攝氧量、呼吸商等,同時(shí)記錄通氣閾時(shí)的通氣量、最大攝氧量利用率等。C組、P1組及P2組于運(yùn)動(dòng)前、運(yùn)動(dòng)后即刻、運(yùn)動(dòng)后1 h分別采肘靜脈血。采用RT-PCR法檢測(cè)受試者血液白細(xì)胞HSP70mRNA表達(dá),用硫代巴比妥(TBA)法測(cè)定血清丙二醛(MDA)含量,用黃嘌呤氧化酶法測(cè)定血清超氧化物歧化酶(SOD)活性,采用全血乳酸分析儀測(cè)定血乳酸值。結(jié)果:C組力竭運(yùn)動(dòng)后即刻,人血液白細(xì)胞HSP70mRNA表達(dá)和血清MDA含量較安靜時(shí)顯著增加(P<0.01,P<0.05)。C組運(yùn)動(dòng)后1 h,HSP70mRNA表達(dá)及MDA含量較運(yùn)動(dòng)后即刻顯著減少(均P<0.05),而血清SOD活性較運(yùn)動(dòng)后即刻顯著下降(P<0.05)。P1組在安靜時(shí)、運(yùn)動(dòng)后即刻及運(yùn)動(dòng)后1 h,均較C組相同時(shí)間點(diǎn)的HSP70mRNA顯著升高(均P<0.05)。而P1組在運(yùn)動(dòng)后1 h較C組同時(shí)間點(diǎn)的SOD活性顯著升高(P<0.05)。P2組血液在運(yùn)動(dòng)后即刻和運(yùn)動(dòng)后1 h,均較C組相同時(shí)間點(diǎn)的HSP70mRNA表達(dá)及血清SOD活性顯著升高(均P<0.05)。而P2組在安靜、運(yùn)動(dòng)后即刻及運(yùn)動(dòng)后1 h較C組同時(shí)間點(diǎn)的MDA含量均顯著減少(均P<0.05)。P2組在安靜時(shí)、運(yùn)動(dòng)后即刻及運(yùn)動(dòng)后1 h,均較P1組相同時(shí)間點(diǎn)的HSP70mRNA顯著下降(均P<0.05)。P1組、P2組力竭運(yùn)動(dòng)中通氣閾時(shí)通氣量VE較C組均顯著增加(P<0.05),且受試者血液白細(xì)胞HSP70mRNA表達(dá)與血清SOD/MDA比例呈顯著正相關(guān)(R=0.48,P<0.05)。結(jié)論:一次及多次高溫預(yù)處理可上調(diào)運(yùn)動(dòng)后人血液白細(xì)胞HSP70mRNA表達(dá),抑制力竭運(yùn)動(dòng)所造成的氧化應(yīng)激損傷。且多次高溫預(yù)處理后HSP70mRNA表達(dá)降低,可能是對(duì)高溫重復(fù)應(yīng)激的適應(yīng)性反應(yīng)。
關(guān)鍵詞:高溫預(yù)處理;HSP70mRNA;氧自由基;抗氧化酶;遞增負(fù)荷運(yùn)動(dòng);力竭
研究發(fā)現(xiàn),在缺血神經(jīng)元損傷[1],心肌梗死及心臟[2]、肝臟[3]、脊髓缺血再灌注損傷[4]等疾病模型中,高溫預(yù)處理均可發(fā)揮保護(hù)作用。其有益作用與熱休克蛋白70(HSP70)表達(dá)上調(diào)呈正相關(guān)[3]。HSP70在正常細(xì)胞中水平較低,而環(huán)境和生理應(yīng)激(包括熱、冷、缺血、缺氧、損傷、運(yùn)動(dòng)等)狀態(tài)下HSP70可顯著升高[5-6]。研究表明,小鼠骨骼肌HSP70過表達(dá)可保護(hù)肌肉免于萎縮及骨骼肌功能紊亂[7],心臟HSP70過表達(dá)可抑制缺血再灌注心肌細(xì)胞凋亡水平[8]。而敲除HSP70后的腦損傷小鼠,細(xì)胞死亡水平增加,活性氧ROS誘導(dǎo)的p53基因表達(dá)上調(diào),導(dǎo)致外傷性腦部損傷進(jìn)一步惡化[9]??梢奌SP70在提高細(xì)胞存活率、減輕細(xì)胞受損傷程度、維持機(jī)體內(nèi)穩(wěn)態(tài)中發(fā)揮著重要的保護(hù)作用。有文獻(xiàn)報(bào)道,一次力竭運(yùn)動(dòng)[10]和長(zhǎng)期運(yùn)動(dòng)訓(xùn)練[11]均可造成機(jī)體HSP70合成增加,且高溫預(yù)處理后24 h人白細(xì)胞中HSP70蛋白表達(dá)較安靜時(shí)顯著上調(diào)。但關(guān)于高溫預(yù)處理對(duì)力竭運(yùn)動(dòng)后人血液白細(xì)胞HSP70mRNA表達(dá)的影響未見報(bào)道,HSP70mRNA是否會(huì)對(duì)高溫重復(fù)應(yīng)激產(chǎn)生適應(yīng)亦未見報(bào)道。因此,本研究建立一次和多次兩種高溫預(yù)處理方式,采用一次遞增負(fù)荷至力竭運(yùn)動(dòng)方案,探討一次及多次高溫預(yù)處理對(duì)力竭運(yùn)動(dòng)后人血液白細(xì)胞HSP70mRNA 及自由基代謝的影響,旨在為高溫預(yù)處理方式防治運(yùn)動(dòng)損傷研究提供實(shí)驗(yàn)依據(jù)。
1材料與方法
1.1 實(shí)驗(yàn)受試者與分組
受試者為華南師范大學(xué)體育科學(xué)學(xué)院20名健康男性大學(xué)生。隨機(jī)分為2組:一次高溫預(yù)處理組(P1)、多次高溫預(yù)處理組(P2),每組10人。另外運(yùn)動(dòng)對(duì)照組(C)與P2組受試者相同,以此做多次高溫干預(yù)的前后對(duì)照。受試者在實(shí)驗(yàn)期間禁止飲酒,常規(guī)活動(dòng),禁止大強(qiáng)度運(yùn)動(dòng)。C組采用Bruce方法在跑臺(tái)上進(jìn)行遞增負(fù)荷運(yùn)動(dòng)至力竭,作為力竭運(yùn)動(dòng)對(duì)照組。P1組干預(yù)方式為一次性高溫預(yù)處理1 h,P2組高溫預(yù)處理時(shí)間為一個(gè)月,每隔三天一次(共八次),P1和P2組室溫恢復(fù)24 h后采用Bruce方法在跑臺(tái)上進(jìn)行遞增負(fù)荷運(yùn)動(dòng)至力竭。
表1 受試者身體特征±SD)
1.2主要儀器和試劑
主要儀器為Quinton Q55活動(dòng)跑臺(tái)、2900心肺功能測(cè)試儀、Polar遙測(cè)心率表、YSI-1500 SPORT全血乳酸分析儀、PTC 200 PCR儀、Apollo水平電泳儀、BIO凝膠成像系統(tǒng)、722分光光度計(jì)、TU-1901紫外分光光度計(jì)、廣州氣體廠液氮等。主要試劑包括全血總RNA快速提取試劑盒、通用RT-PCR試劑盒、通用PCR優(yōu)化試劑盒、HSPcDNA的引物、DNA Marker、EB、瓊脂糖、南京建成SOD和MDA測(cè)試盒。
1.3高溫預(yù)處理實(shí)驗(yàn)方案
高溫預(yù)處理方案在文獻(xiàn)[12-13]基礎(chǔ)上改良[12-13]。P1組受試者高溫預(yù)處理1 h(桑拿,溫度46±1℃,濕度85%—90%,體重下降2%),受試者分兩組進(jìn)行桑拿,實(shí)驗(yàn)人員陪同,觀察和詢問受試者情況。于安靜、高溫預(yù)處理0.5 h、高溫預(yù)處理后即刻記錄直腸溫度。P2組受試者每間隔三天進(jìn)行一次(共八次)高溫預(yù)處理,桑拿方式同P1組。
1.4受試者運(yùn)動(dòng)方案
C組采用Bruce方法在跑臺(tái)上進(jìn)行遞增負(fù)荷運(yùn)動(dòng)至力竭[14-15](Bruce運(yùn)動(dòng)方案見表2)。P1組高溫預(yù)處理1 h及P2組多次高溫預(yù)處理結(jié)束,均在室溫(溫度25±0.5 ℃,濕度60%—65%)恢復(fù)24 h后,在跑臺(tái)上進(jìn)行遞增負(fù)荷運(yùn)動(dòng)至力竭。運(yùn)動(dòng)方式同C組。
表2 Bruce運(yùn)動(dòng)方案
1.5最大攝氧量測(cè)定
采用Bruce運(yùn)動(dòng)方案,使用2 900氣體代謝儀進(jìn)行測(cè)試,參照文獻(xiàn)[16]判斷VO2max:①吸氧量不再增加而出現(xiàn)平臺(tái);②呼吸商大于1.1;③心率大于180/分;④血乳酸濃度在8 mmol/L以上。以上任何3種條件出現(xiàn)即可確定為最大攝氧量[16]。運(yùn)動(dòng)結(jié)束后記錄最大心率(HRmax)、最大運(yùn)動(dòng)通氣量(VEmax)、相對(duì)最大攝氧量(VO2max/kg)、最大攝氧量(VO2max)、呼吸商(R)、運(yùn)動(dòng)力竭時(shí)間(Time)。通氣閾參照通氣曲線進(jìn)行判斷[17],判斷方法為:①通氣量非線性上升的起點(diǎn);②二氧化碳排出量非線性上升的起點(diǎn);③二氧化碳當(dāng)量非線性上升并不伴隨氧當(dāng)量的變化。記錄通氣閾時(shí)各指標(biāo),包括心率(HR)、通氣量(VE)、最大攝氧量利用率(%VO2max)、呼吸商(R)、最大心率百分比(%HRmax)。
1.6受試者血液采集
C組、P1組及P2組于運(yùn)動(dòng)前安靜、遞增負(fù)荷運(yùn)動(dòng)后即刻、運(yùn)動(dòng)后1 h分別采肘靜脈血,測(cè)試受試者血液白細(xì)胞HSP70mRNA、血清丙二醛(MDA)、超氧化物歧化酶(SOD)、血乳酸。
1.7RT-PCR
取1 ml的EDTA-K2抗凝血,倒入DEPC處理的離心管,9 000轉(zhuǎn)離心2 min,去上清,加入1 ml的Trizol,4 ℃下12 000轉(zhuǎn)離心5 min。離心后加入氯仿0.2 mL,4 ℃下12 000轉(zhuǎn)離心15 min。加入異丙醇0.5 mL,4℃下12 000轉(zhuǎn)離心20 min,加入75%乙醇1 mL,4℃下10 000轉(zhuǎn)離心5 min。吸去剩余乙醇。取適量DEPC水溶解RNA。分裝出5 μl用于RNA定量,余下RNA用于反轉(zhuǎn)錄。利用紫外分光光度計(jì)測(cè)定所提取樣本總RNA濃度(μg/μl)。以A260/A280在1.8—2.0范圍作為RNA純度較好的標(biāo)準(zhǔn)。取4 μlRNA進(jìn)行1%瓊脂糖凝膠電泳,觀察18S和28S的完整性,檢測(cè)RNA有無降解。
反轉(zhuǎn)錄步驟:將提取的樣本RNA以2 μg/μl的濃度確定所需體積(<11 μl),按照反轉(zhuǎn)錄試劑盒操作步驟加入Oligo(dT)1 μl,樣本RNA,加DEPC水至總體積12 μl,65 ℃孵育5 min。按反轉(zhuǎn)錄試劑盒操作步驟分別加入5×Reaction Buffer 4 μl、RiboLockTM Rnase Inhibitor (20 μ/μl) 1 μl、10mM dNTP Mix 2 μl、RevertAidTM M-MμLV Reverse Transcriptase(200 μ/μl) 1 μl,混合均勻后離心。42 ℃孵育60 min,70 ℃加熱5 min終止反應(yīng),獲得RT產(chǎn)物。
PCR步驟:按照試劑盒操作步驟,配成25 μl反應(yīng)體系。分別加入2×Taq MasterMix 12.5 μl、Forward Primer(10 μM)1 μl、Reverse Primer(10 μM)1 μl、Template DNA<1 μg,加Rnase-free Water至總體積25 μl。充分混勻后離心,進(jìn)行PCR反應(yīng)(PCR引物見表3)。
PCR產(chǎn)物分析:取PCR產(chǎn)物各7.5 μl,進(jìn)行1%瓊脂糖凝膠電泳。電壓80V,電泳60 min,之后采用Syngene凝膠成像系統(tǒng)成像并定量分析。以HSP70與β-actin擴(kuò)增條帶的成像面積積分比值來評(píng)定HSP70mRNA表達(dá)水平。
表3 PCR引物
1.8血清MDA含量和SOD活性測(cè)定
采用硫代巴比妥(TBA)法測(cè)定血清丙二醛(MDA)含量,用黃嘌呤氧化酶法測(cè)定超氧化物歧化酶(SOD)活性,操作按照試劑盒說明書的規(guī)定程序進(jìn)行。
1.9血乳酸值測(cè)試
用美國(guó)產(chǎn)YSI-1500 SPORT全血乳酸分析儀測(cè)定血乳酸值。
1.10數(shù)據(jù)采集與統(tǒng)計(jì)學(xué)處理
2實(shí)驗(yàn)結(jié)果
2.1高溫預(yù)處理前中后受試者不同時(shí)刻直腸溫度的比較
P1組受試者直腸溫度在高溫預(yù)處理0.5 h、1 h均較高溫預(yù)處理前極顯著升高(P<0.01),高溫預(yù)處理1 h較0.5 h極顯著升高(P<0.01)。P2組受試者進(jìn)行8次高溫預(yù)處理,直腸溫度總平均值在高溫預(yù)處理0.5 h、1 h均較高溫前極顯著升高(P<0.01)。高溫預(yù)處理1 h較0.5 h極顯著升高(P<0.01),見表4。
表4 高溫預(yù)處理前中后不同時(shí)刻受試者直腸溫度
注:*表示與高溫預(yù)處理前相比,P<0.05;**表示與高溫預(yù)處理前相比,P<0.01;#表示與高溫預(yù)處理0.5 h相比,P<0.05;##表示與高溫預(yù)處理0.5 h相比,P<0.01。
2.2高溫預(yù)處理前后受試者裸重的比較
P1組受試者高溫預(yù)處理后裸重極顯著下降(P<0.01),下降百分比約為2%。P2組受試者進(jìn)行8次高溫預(yù)處理后,裸重總平均值極顯著下降(P<0.01),下降百分比約為2%。見表5。
表5 高溫預(yù)處理前后受試者裸重
注:**表示與高溫預(yù)處理前相比,P<0.01。
2.3高溫預(yù)處理前后血液白細(xì)胞HSP70mRNA的變化
C組受試者力竭運(yùn)動(dòng)后即刻,血液白細(xì)胞HSP70mRNA表達(dá)較安靜值顯著升高(P<0.01),升高了2.96倍。運(yùn)動(dòng)后1 h的HSP70mRNA表達(dá)較運(yùn)動(dòng)后即刻顯著下降(P<0.05)。P1組HSP70mRNA在安靜時(shí)、運(yùn)動(dòng)后即刻及運(yùn)動(dòng)后1 h,均較C組相同時(shí)間點(diǎn)的值顯著升高(均P<0.05),且分別升高了10.29倍、2.34倍和10.97倍。P2組HSP70mRNA在運(yùn)動(dòng)后即刻和運(yùn)動(dòng)后1 h,均較C組相同時(shí)間點(diǎn)的值顯著升高(P<0.05),且分別升高了0.93%和3.18倍。P2組HSP70mRNA在安靜時(shí)、運(yùn)動(dòng)后即刻及運(yùn)動(dòng)后1 h,均較P1組相同時(shí)間點(diǎn)的值顯著下降(P<0.05),且分別下降了72%、43%和65%。見圖1、圖2。
圖1 受試者血液白細(xì)胞HSP70mRNA表達(dá)變化
圖2 受試者血液白細(xì)胞HSP70mRNA(HSP70/β-actin)面積積分比值
2.4高溫預(yù)處理前后血清MDA含量、SOD活性的變化
C組力竭運(yùn)動(dòng)即刻血清MDA含量較安靜時(shí)顯著增加(P<0.05)。運(yùn)動(dòng)后1 h較即刻顯著減少(P<0.05)。P2組MDA含量在安靜、運(yùn)動(dòng)后即刻及運(yùn)動(dòng)后1 h較C組同時(shí)間點(diǎn)的值均顯著減少(均P<0.05)。見圖3。
圖3 受試者血清MDA含量(nmol/mL)變化
C組力竭運(yùn)動(dòng)后1 h血清SOD活性較運(yùn)動(dòng)后即刻顯著下降(P<0.05)。P1組SOD活性在運(yùn)動(dòng)后1 h較C組同時(shí)間點(diǎn)的值顯著升高(P<0.05)。P2組SOD活性在運(yùn)動(dòng)即刻和運(yùn)動(dòng)后1 h,均較C組同時(shí)間點(diǎn)的值顯著升高(均P<0.05)。見圖4。
圖4 受試者血清SOD活性(μ/mL)變化
2.5受試者力竭運(yùn)動(dòng)時(shí)最大攝氧量、血乳酸等指標(biāo)的變化
C組、P1組和P2組在力竭運(yùn)動(dòng)時(shí),最大心率(HRmax)、最大運(yùn)動(dòng)通氣量(VEmax)、相對(duì)最大攝氧量(VO2max/kg)、最大攝氧量(VO2max)、呼吸商(R)、運(yùn)動(dòng)力竭時(shí)間(Time)各指標(biāo)均未出現(xiàn)顯著性變化(P>0.05) 。見表6。
P1組、P2組力竭運(yùn)動(dòng)中通氣閾時(shí)通氣量(VE)較C組均顯著增加(P<0.05),其他指標(biāo)包括心率(HR)、最大攝氧量利用率(%VO2max)、呼吸商(R)、最大心率百分比(%HRmax)均未出現(xiàn)顯著變化(P>0.05)。見表7。
C組、P1組和P2組受試者力竭運(yùn)動(dòng)后即刻血乳酸濃度較各組安靜值均顯著增加(均P<0.01)。C組、P1組和P2組受試者力竭運(yùn)動(dòng)后1 h血乳酸濃度較各組運(yùn)動(dòng)后即刻均顯著降低(均P<0.01)。P2組運(yùn)動(dòng)后即刻血乳酸濃度較C組、P1組均顯著增加(均P<0.01)。見圖5。
圖5 受試者力竭運(yùn)動(dòng)時(shí)血乳酸濃度(mmol/l)的變化
組別HRmax/(B/min)VEmax/(L/min)VO2max/kgVO2max/(mL·min)RTime/minC組183.6±9.55102.12±16.6449.86±7.193064±524.411.219±0.0514.18±0.86P1組193.78±7.16116.37±13.8253.22±3.133319.22±252.751.17±0.0614.4±0.85P2組192.6±5.06111.1±11.7050.79±5.693135.1±398.141.22±0.0513.98±0.82
表7 受試者力竭運(yùn)動(dòng)中通氣閾時(shí)的各指標(biāo)變化
注:*表示與C組相比,P<0.05。
2.6相關(guān)性分析
圖6的相關(guān)性分析結(jié)果表明,受試者血液白細(xì)胞HSP70mRNA表達(dá)與血清SOD/MDA比例相關(guān)性密切,呈顯著正相關(guān)(R=0.48,P<0.05)。表明一次及多次高溫預(yù)處理后受試者血液白細(xì)胞HSP70mRNA表達(dá)增加,伴隨血清SOD/MDA比例的增加。
圖6 受試者血液白細(xì)胞HSP70mRNA與血清SOD/MDA比例相關(guān)性示意圖
3分析與討論
有研究發(fā)現(xiàn),一次力竭運(yùn)動(dòng)[10]和長(zhǎng)期運(yùn)動(dòng)訓(xùn)練[11]均可造成機(jī)體HSP70合成增加。而兩種運(yùn)動(dòng)方式的時(shí)相性表現(xiàn)為,一次力竭運(yùn)動(dòng)后30—60 min,骨骼肌HSP70mRNA表達(dá)達(dá)到峰值,之后逐漸下降,6 h后恢復(fù)安靜水平[10]。而連續(xù)4周大強(qiáng)度訓(xùn)練,運(yùn)動(dòng)員肌肉HSP70蛋白水平(訓(xùn)練前為100%)從第一周到第四周分別增長(zhǎng)181%、405%、456%和363%,呈下降趨勢(shì)。HSP70蛋白峰值出現(xiàn)在訓(xùn)練第二周后[18]。同時(shí)研究發(fā)現(xiàn)運(yùn)動(dòng)員跑完半個(gè)馬拉松后,白細(xì)胞胞漿HSP70在運(yùn)動(dòng)后即刻、3 h、24 h顯著增加[19-20]。HSP70表達(dá)與運(yùn)動(dòng)時(shí)間和強(qiáng)度密切相關(guān)[21]。中等強(qiáng)度運(yùn)動(dòng)尚不足刺激HSP70表達(dá)增加,高強(qiáng)度訓(xùn)練對(duì)HSP70的誘導(dǎo)更為顯著[22]。而關(guān)于運(yùn)動(dòng)誘導(dǎo)HSP70表達(dá)增加的機(jī)制,目前認(rèn)為劇烈運(yùn)動(dòng)過程中ATP的減少、體溫升高、pH值改變、氧化應(yīng)激損傷、乳酸堆積、運(yùn)動(dòng)引起的肌肉收縮、血流改變等應(yīng)激,都可能是誘導(dǎo)HSP70增加的刺激因素[23]。
而本實(shí)驗(yàn)證實(shí),力竭運(yùn)動(dòng)后即刻人血液白細(xì)胞HSP70mRNA顯著增加,運(yùn)動(dòng)后1 h逐漸降低。本實(shí)驗(yàn)還發(fā)現(xiàn),一次及多次高溫預(yù)處理可顯著上調(diào)人血液白細(xì)胞HSP70mRNA表達(dá),高溫預(yù)處理與運(yùn)動(dòng)疊加后HSP70mRNA表達(dá)進(jìn)一步增加。文獻(xiàn)表明熱應(yīng)激可導(dǎo)致HSP70合成增多,其合成量與受熱時(shí)間和程度有關(guān)。隨著HSP70表達(dá)增加,細(xì)胞存活率增加,受損傷程度減輕[24]。通過高溫預(yù)處理方式提前誘導(dǎo)HSP70產(chǎn)生,可增加機(jī)體抵抗損傷的能力,從而起到保護(hù)作用[2,12]。而HSP70表達(dá)的時(shí)相性研究發(fā)現(xiàn),經(jīng)冠狀靜脈竇逆行高溫灌注稀釋血液入心臟后大鼠心肌HSP70mRNA水平于15 min增加5倍,30 min增加10倍,60 min增加2倍[25]。而高溫預(yù)處理后大鼠肝臟HSP70表達(dá)在8—24 h達(dá)到最高峰[25]。而本實(shí)驗(yàn)指標(biāo)時(shí)相性結(jié)果發(fā)現(xiàn),一次高溫預(yù)處理白細(xì)胞HSP70mRNA在運(yùn)動(dòng)后即刻及運(yùn)動(dòng)后1 h,較運(yùn)動(dòng)對(duì)照組分別升高了2.34倍和10.97倍。而多次高溫預(yù)處理HSP70mRNA在運(yùn)動(dòng)后即刻和運(yùn)動(dòng)后1 h,較運(yùn)動(dòng)對(duì)照組分別升高了0.93%和3.18倍。且多次高溫預(yù)處理后HSP70mRNA表達(dá)較一次高溫預(yù)處理降低,在安靜時(shí)、運(yùn)動(dòng)后即刻及運(yùn)動(dòng)后1 h,分別下降了72%、43%和65%。表明可能是機(jī)體對(duì)高溫重復(fù)應(yīng)激的適應(yīng)性反應(yīng)。
本實(shí)驗(yàn)采用一次遞增負(fù)荷至力竭的運(yùn)動(dòng)方案,發(fā)現(xiàn)運(yùn)動(dòng)對(duì)照組在運(yùn)動(dòng)后即刻,血清MDA含量較安靜時(shí)顯著增加,SOD活性有上升趨勢(shì),此時(shí)HSP70mRNA表達(dá)在運(yùn)動(dòng)后即刻較安靜時(shí)顯著升高。說明力竭運(yùn)動(dòng)使機(jī)體脂質(zhì)過氧化水平增加,而抗氧化酶活性提高不足以對(duì)抗ROS的增加,引起機(jī)體氧化應(yīng)激損傷。文獻(xiàn)中降低氧化應(yīng)激損傷的方式多樣,本實(shí)驗(yàn)中采用了高溫預(yù)處理方案。研究表明,高溫預(yù)處理可增加大鼠腓腸肌和淋巴細(xì)胞HSP表達(dá),提高肌纖維線粒體氧化酶活性,增加大鼠在高溫環(huán)境中的運(yùn)動(dòng)時(shí)間和耐力水平[24]。且高溫預(yù)處理的保護(hù)作用與HSP70表達(dá)上調(diào)呈正相關(guān)[3]。在本實(shí)驗(yàn)中,一次高溫預(yù)處理后血清SOD活性在運(yùn)動(dòng)后即刻和運(yùn)動(dòng)后1 h,較運(yùn)動(dòng)對(duì)照組顯著升高。多次高溫預(yù)處理后MDA含量在運(yùn)動(dòng)后即刻和運(yùn)動(dòng)后1 h,較運(yùn)動(dòng)對(duì)照組顯著降低。而SOD活性在運(yùn)動(dòng)后即刻和運(yùn)動(dòng)后1 h顯著增加。此時(shí)一次及多次高溫預(yù)處理組白細(xì)胞HSP70mRNA在運(yùn)動(dòng)后即刻和運(yùn)動(dòng)后1 h均顯著升高,且HSP70mRNA表達(dá)與血清SOD/MDA比例呈顯著正相關(guān)。提示高溫預(yù)處理及運(yùn)動(dòng)雙因素刺激后HSP70mRNA表達(dá)顯著增高,可提高機(jī)體抗氧化酶活性,抑制脂質(zhì)過氧化水平,減輕力竭運(yùn)動(dòng)造成的氧化應(yīng)激損傷。同時(shí)本研究發(fā)現(xiàn),一次及多次高溫預(yù)處理組在運(yùn)動(dòng)后通氣閾值VE均較運(yùn)動(dòng)對(duì)照組顯著增加。通氣閾值可反映人體有氧工作能力,提示兩種高溫預(yù)處理方式可增強(qiáng)受試者的有氧工作能力。
研究表明,HSP70的分子保護(hù)機(jī)制包括抗氧化作用[26]、協(xié)同免疫作用[27]、分子伴侶作用、抗細(xì)胞凋亡作用[28-29]。HSP具有抗氧化的生物活性,HSP與其結(jié)合物可激活蛋白激酶C,增強(qiáng)蛋白酶活性,促進(jìn)ATP水解,刺激內(nèi)源性抗氧化劑的合成和釋放,從而抵抗過氧化物損傷。研究報(bào)道小鼠骨骼肌過表達(dá)HSP72,可增加血清抗氧化酶SOD活性,抑制氧化應(yīng)激損傷,降低力竭運(yùn)動(dòng)造成的骨骼肌損傷和疲勞[26]。同時(shí)發(fā)現(xiàn)心肌過表達(dá)HSP72,可通過提高心臟Mn-SOD含量及活性,減少心肌細(xì)胞凋亡,對(duì)缺血再灌注心臟起到保護(hù)作用[29]。在本實(shí)驗(yàn)中兩種高溫預(yù)處理方式抑制了力竭運(yùn)動(dòng)造成的氧化應(yīng)激損傷,其機(jī)制主要體現(xiàn)在白細(xì)胞HSP70mRNA的抗氧化作用。
4結(jié)論
本研究發(fā)現(xiàn)一次及多次高溫預(yù)處理可上調(diào)運(yùn)動(dòng)后人血液白細(xì)胞HSP70mRNA表達(dá),抑制力竭運(yùn)動(dòng)造成的氧化應(yīng)激損傷。且多次高溫預(yù)處理后HSP70mRNA表達(dá)降低,可能是對(duì)高溫重復(fù)應(yīng)激的適應(yīng)性反應(yīng)。
參考文獻(xiàn):
[1]Du F, Qian Z M, Zhu L, et al. A synergistic role of hyperthermic and pharmacological preconditioning to protect astrocytes against ischemia/reperfusion injury [J]. Neurochem Res, 2011,36(2):312-318.
[2]Juggi J S, Hoteit L J, Babiker F A, et al. Protective role of normothermic, hyperthermic and estrogen preconditioning and pretreatment on tumour necrosis factor-alpha-induced damage [J]. Exp Clin Cardiol, 2011,16(2):5-10.
[3]Mizushima Y, Wang P, Jarrar D, et al. Preinduction of heat shock proteins protects cardiac and hepatic functions following trauma and hemorrhage [J]. Am J Physiol Regul Integr Comp Physiol, 2000,278(2): 352-359.
[4]Zhang P, Abraham V S, Kraft K R,et al. Hyperthermic preconditioning protects against spinal cord ischemic injury [J]. Ann Thorac Surg, 2000,70(5):1490-1495.
[5]Kim N, Kim J Y, Yenari M A.Pharmacological induction of the 70-kDa heat shock protein protects against brain injury [J]. Neuroscience, 2015,284C(10):912-919.
[6]Kourtis N, Nikoletopoulou V, Tavernarakis N. Small heat-shock proteins protect from heat-stroke-associated neurodegeneration [J]. Nature, 2012,490(7419):213-218.
[7]McArdle A, Dillmann W H, Mestril R,et al. Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction [J]. FASEB J,2001, 18(2): 355-357.
[8]Suzuki K, Sawa Y, Kagisaki K, et al. Reduction in myocardial apoptosis associated with overexpression of heat shock protein 70 [J]. Basic Res Cardiol,2000, 95(5):397-403.
[9]Eroglu B, Kimbler D E, Pang J, et al. Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury [J]. J Neurochem, 2014,130(5):626-641.
[10]Thompson H S, Scordilis S P, Clarkson, P M, et al. A single bout of eccentric exercise increases HSP27 and HSC/HSP70 in human skeletal muscle [J]. Acta Physiol Scand, 2001,171(2):187-193.
[11]Milne K J, Noble E G. Exercise-induced elevation of HSP70 is intensity dependent [J]. J Appl Physiol, 2002,93(2):561-568.
[12]Du F, Zhu L, Qian Z M, et al. Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by up-regulation of HIF-1 alpha expression and binding activity [J]. Biochim Biophys Acta, 2010,1802(11):1048-1053.
[13]Ozveri E S, Bekraki A, Cingi A, et al. The effect of hyperthermic preconditioning on the immune system in rat peritonitis [J]. Intensive Care Med, 1999,25(10): 1155-1159.
[14]Fielding R A, Frontera W R, Hughes V A, et al. The reproducibility of the Bruce protocol exercise test for the determination of aerobic capacity in older women [J]. Med Sci Sports Exerc, 1997,29(8):1109-1113.
[15]van der Cammen-van Zijp M H M, Ijsselstijn H, Takken T, et al. Exercise testing of pre-school children using the Bruce treadmill protocol: new reference values [J]. Arbeitsphysiologie, 2009,108(2):393-399.
[16]Levine B D .VO2max: what do we know, and what do we still need to know?[J]. J Physiol,2008, 586(1):25-34.
[17]Gaskill S E, Ruby B C, Walker A J, et al. Validity and reliability of combining three methods to determine ventilatory threshold [J]. Med Sci Sports Exerc, 2001,33(11):1841-1848.
[18]Liu Y, Mayr S, Opitz-Gress A, et al. Human skeletal muscle HSP70 response to training in highly trained rowers [J]. J Appl Physiol, 1999,86(1): 101-104.
[19]Fehrenbach E, Passek F, Niess A M, et al. HSP expression in human leukocytes is modulated by endurance exercise [J]. Med Sci Sports Exerc, 2000,32(3):592-600.
[20]Walsh R C, Koukoulas I, Garnham A, et al. Exercise increases serum Hsp72 in humans [J]. Cell Stress Chaperones,2001, 6(4): 386-393.
[21]Liu Y, Lormes W, Baur C, et al. Human skeletal muscle HSP70 response to physical training depends on exercise intensity [J]. Int J Sports Med, 2000,21(5):351-355.
[22]Liu Y, Lormes W, Wang L, et al. Different skeletal muscle HSP70 responses to high-intensity strength training and low-intensity endurance training [J]. Arbeitsphysiologie,2004, 91(2-3): 330-335.
[23]P?s? A R, Eklund-Uusitalo S, Hyypp? S, et al. Induction of heat shock protein 72 mRNA in skeletal muscle by exercise and training [J]. Equine Vet J Suppl,2002,(34):214-218.
[24]Chen H W, Chen S C, Tsai J L, et al. Previous hyperthermic treatment increases mitochondria oxidative enzyme activity and exercise capacity in rats [J]. Kaohsiung J Med Sci, 1999,15(10):572-580.
[25]McCully J D, Myrmel T, Lotz M M, et al. The rapid expression of myocardial hsp 70 mRNA and the heat shock 70 kDa protein can be achieved after only a brief period of retrograde hyperthermic perfusion [J]. J Mol Cell Cardiol, 1995,27(3):873-882.
[26]Liu C C, Lin C H, Lin C Y, et al. Transgenic overexpression of heat shock protein 72 in mouse muscle protects against exhaustive exercise-induced skeletal muscle damage [J]. J Formos Med Assoc, 2013,112(1): 24-30.
[27]Chang C C, Chen S D, Lin T K, et al. Heat shock protein 70 protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus via inhibition of nuclear factor-kappaB activation-induced nitric oxide synthase II expression [J]. Neurobiol Dis, 2013(62): 241-249.
[28]Daugaard M, Rohde M, Jaattela M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions [J]. Febs Lett, 2010,581(19): 3702-3710.
[29]Suzuki K, Murtuza B, Sammut I A, et al. Heat shock protein 72 enhances manganese superoxide dismutase activity during myocardial ischemia-reperfusion injury, associated with mitochondrial protection and apoptosis reduction [J]. Circulation, 2002,106(1):270-276.
收稿日期:2016-02-27
作者簡(jiǎn)介:陳婷(1984-),女,陜西西安人,講師,博士,研究方向?yàn)檫\(yùn)動(dòng)生理學(xué)。
中圖分類號(hào):G804.2
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1008-3596(2016)04-0074-09
Effects of Hyperthermic Preconditioning on Blood Leucocyte HSP70mRNA and Oxygen Free Radical after Exhaustive Exercise
CHEN Ting, ZHANG Zhi-yuan, ZHANG Yue-juan
(School of Physical Education, Tibet University for Nationalities, Xianyang 712082, China)
Abstract:Objectives: To discuss the effects of two kinds of hyperthermic preconditioning on blood leucocyte HSP70mRNA and oxygen free radical after incremental exercise. Methods: The subjects are randomly divided into 3 groups: exercise control group(C) ,exercise after one hyperthermic preconditioning group(P1), and exercise after more hyperthermic preconditioning group(P2). P1 Group: The hyperthermic preconditioning is performed for an hour(Sauna, 46±1℃; relative humidity, 85%-90%). P2 Group: one hyperthermic preconditioning every three days, total eight times are performed. Group C applies Bruce protocol on treadmill to do incremental exercise to exhaustion. P1 and P2 Group are at rest under the normal temperature for 24 hours after hyperthermic preconditioning, and then do incremental exercise to exhaustion on treadmill. The maximum heart rate, maximal exercise ventilation, maximal oxygen uptake, respiration quotient are recorded at the end of the exercise, and the ventilation rate, maximal oxygen uptake utilization ratio are recorded at the same time. The elbow vein blood of C Group, P1 and P2 are collected before exercise, immediately after exercise, and 1 hour after exercise. By RT-PCR method, the tested groups’ expression of blood white cells HSP70mRNA are detected, content of malondialdehyde (MDA) in the serum is determined by the method of TBA and superoxide dismutase (SOD) activity is measured by the method of xanthine oxidase, blood lactic acid values is examined by the blood lactate analyzer. Results: in C Group, in immediate testing, the expression of HSP70mRNA and the content of serum MDA are significantly increased (P<0.01, P<0.05) compared with the test at rest. C Group after 1 hour’s exercise, HSP70mRNA expression and MDA content are significantly reduced compared with immediate testing (both P<0.05), while the serum SOD activity is significantly decreased (P<0.05) compared with immediate testing. Compared with C Group, HSP70mRNA expression in P1 Group increases significantly at rest, immediately and 1h after exercise(both P<0.05). SOD activity of P1 Group elevates significantly immediately after exercise (P<0.05). Compared with C Group, HSP70mRNA expression and SOD activity in P2 Group increases significantly at immediately and 1hour after exercise (both P<0.05), MDA content in P2 Group reduces markedly at rest, immediately and1hour after exercise (both P<0.05). Compared with P1 Group, P2 Group HSP70mRNA expression decreases markedly at rest, immediately after exercise, 1 hour after exercise (P<0.05). And HSP70mRNA is positively correlated with the production of SOD/MDA(R=0.48, P<0.05). Conclusions: Two kinds of hyperthermic preconditioning could increase leukocyte HSP70mRNA expression after incremental exercise, and reduce exhaustive exercise-induced oxidative damage. Leukocyte HSP70mRNA expression is decreased after one month hyperthermic preconditioning, this may be the adaptive response to repeated heat stress.
Key words:hyperthermic preconditioning; HSP70mRNA; oxygen free radical; superoxide dismutase; incremental exercise; exhaustion
河北體育學(xué)院學(xué)報(bào)2016年4期