高 海,喻九陽,徐建民,鄭小濤,林 緯武漢工程大學(xué)機(jī)電工程學(xué)院,湖北 武漢 430205
低溫油封冷卻器的結(jié)構(gòu)優(yōu)化及數(shù)值模擬
高海,喻九陽*,徐建民,鄭小濤,林緯
武漢工程大學(xué)機(jī)電工程學(xué)院,湖北 武漢 430205
針對(duì)管殼式換熱器折流板背部存在流動(dòng)死區(qū)的問題,對(duì)換熱器殼程折流板的結(jié)構(gòu)進(jìn)行優(yōu)化,并且通過數(shù)值模擬分別研究了折流板開圓孔和錐形孔對(duì)低溫油封冷卻器換熱性能和壓降的影響.數(shù)值模擬結(jié)果表明,當(dāng)殼程入口速度低于1.3 m/s,折流板開圓孔更有利于減小折流板背部流動(dòng)死區(qū),改善冷卻器殼程的強(qiáng)化傳熱性能;當(dāng)殼程入口流速大于2 m/s時(shí),折流板開錐形孔更有利于冷卻器殼程的強(qiáng)化傳熱.折流板開圓孔和錐形孔均有利于減小冷卻器殼程壓降,兩者對(duì)壓降的影響無明顯差別.
冷卻器;折流板開孔;結(jié)構(gòu)優(yōu)化;強(qiáng)化傳熱;數(shù)值模擬
換熱器在化工、煉油、冶金、動(dòng)力、核能、食品、輕工、制藥、家電等領(lǐng)域得到廣泛應(yīng)用并在總體投資中占有較大比例[1].由于技術(shù)成熟、結(jié)構(gòu)可靠、適用面廣,管殼式換熱器是目前熱力系統(tǒng)中最為常用的換熱設(shè)備結(jié)構(gòu)形式.目前工業(yè)實(shí)際應(yīng)用的管殼式換熱器往往通過在殼程設(shè)置折流板而得到良好傳熱效果,但這種結(jié)構(gòu)會(huì)產(chǎn)生較大的流動(dòng)阻力,使動(dòng)力能耗增加,而且殼程會(huì)出現(xiàn)較大的流動(dòng)死區(qū)而導(dǎo)致局部傳熱系數(shù)降低以及結(jié)垢、腐蝕等問題.然而采用單弓形折流板的管殼式換熱器,因其結(jié)構(gòu)簡單、制造維護(hù)方便、可靠性高和造價(jià)低廉等優(yōu)點(diǎn),目前在煉油、化工等企業(yè)中仍在廣泛使用,因此對(duì)弓形折流板進(jìn)行改進(jìn)或結(jié)構(gòu)優(yōu)化具有很強(qiáng)的實(shí)際意義和經(jīng)濟(jì)效益,對(duì)高效節(jié)能換熱器的研究與設(shè)計(jì)有啟發(fā)作用,對(duì)提高能源利用率和實(shí)現(xiàn)生產(chǎn)最優(yōu)化也有較大意義[2-4].
一般來說,換熱器換熱性能的提高總是伴隨著流動(dòng)阻力的增加,高效換熱設(shè)備研發(fā)的關(guān)鍵是在提高傳熱性能與減小摩擦阻力之間進(jìn)行取舍.折流板開孔對(duì)折流板背部流動(dòng)死區(qū)有明顯改善作用,并且對(duì)殼程壓降及傳熱性能都有較大的影響[5].之前的研究中主要集中在開孔的位置和開孔的布局,而很少研究孔的形狀.本文分別對(duì)折流板開圓孔和錐形孔的低溫油封冷卻器進(jìn)行數(shù)值模擬,利用計(jì)算流體力學(xué)FLUENT軟件研究了兩種開孔形式對(duì)低溫油封冷卻器的強(qiáng)化換熱性能和壓降的影響.
以低溫油封冷卻器為研究對(duì)象,對(duì)換熱器殼程折流板的結(jié)構(gòu)進(jìn)行優(yōu)化,該冷卻器屬于單弓形折流板管殼式換熱器,主要用于碳?xì)湮铮–6)的冷卻,其殼程為碳?xì)湮?,入口溫度?70℃,管程為低溫冷卻水,入口溫度5℃,碳?xì)湮锏奈锢硇再|(zhì)如下表1所示.
表1 殼程流體的物理性質(zhì)Tab.1 Physical properties of shell-side fluid
圖1為冷卻器殼程建模簡圖,冷卻器內(nèi)徑273 mm,殼程1 632 mm,殼程入口直徑100 mm,出口直徑100 mm,為簡化模型,設(shè)置了4塊折流板[5].圖2和圖3為折流板開圓孔以及開錐形孔的示意圖,其中圓孔直徑為14 mm,錐形孔左側(cè)直徑為14 mm,右側(cè)直徑為6 mm,錐形孔的開口方向與殼程流體方向一致,即流體經(jīng)過大徑流向小徑.冷卻器的殼程為對(duì)稱結(jié)構(gòu),故針對(duì)殼程流場的數(shù)值模擬采用對(duì)稱模型[6-8],即在不影響計(jì)算結(jié)果的基礎(chǔ)上減少網(wǎng)格數(shù)量,提高計(jì)算效率.
圖1 冷卻器殼程模型Fig.1 Model of the shell-side of cooler
圖2 折流板開圓孔示意圖Fig.2 Schematic diagram of baffle with round hole
圖3 折流板開錐形孔示意圖Fig.3 Schematic diagram of baffle with taper hole
利用Gambit2.4.6建模和網(wǎng)格劃分,將劃分好網(wǎng)格的模型導(dǎo)入FLUENT中,采用單精度求解器,非耦合穩(wěn)態(tài)隱式(simplec)求解;選擇雙方程的Standard k-ε model(湍流模型)和Standard Wall Functions(標(biāo)準(zhǔn)壁面函數(shù)法).邊界條件:殼程入口采用速度入口,出口采用出流,管壁采用恒壁溫邊界條件[9].
設(shè)置殘差監(jiān)視器和流場初始化后,開始迭代計(jì)算,保存csae和data文件后進(jìn)行結(jié)果后處理.分別在入口流速為0.3 m/s、0.8 m/s、1.3 m/s、2 m/s和3 m/s這5種不同情況下進(jìn)行模擬,對(duì)折流板開圓孔以及錐形孔進(jìn)行對(duì)比研究,分析了冷卻器殼程速度云圖與壓降圖.
4.1速度場分析
圖4~圖11為折流板背部速度云圖,折流板開孔以后,能夠形成垂直于折流板的射流,減小了折流板背部流動(dòng)死區(qū),加快流體的流動(dòng),有利于強(qiáng)化傳熱[10].如圖4~圖7所示,當(dāng)殼程入口流速低于1.3 m/s時(shí),折流板開圓孔的強(qiáng)化傳熱效果要好于開錐形孔;如圖8~圖11所示,當(dāng)殼程入口流速大于2 m/s時(shí)折流板開錐形孔的強(qiáng)化傳熱效果要好于開圓孔.造成這種現(xiàn)象的原因是,當(dāng)入口速度較小時(shí),折流板開錐形孔無法形成穩(wěn)定而且有效的射流,而當(dāng)入口速度逐漸增大時(shí),折流板開錐形孔有利于形成穩(wěn)定而且有效的射流.
圖4 殼程入口流速為0.8 m/s時(shí)開圓孔折流板背部速度云圖Fig.4 Velocity image of the back of baffle with round hole at 0.8 m/s of shell-side entrance
圖5 殼程入口流速為0.8 m/s時(shí)開錐形孔折流板背部速度云圖Fig.5 Velocity image of the back of baffle with taper hole at 0.8 m/s of shell-side entrance
圖6 殼程入口流速為1.3 m/s時(shí)開圓孔折流板背部速度云圖Fig.6 Velocity image of the back of baffle with round hole at 1.3 m/s of shell-side entrance
圖7 殼程入口流速為1.3 m/s時(shí)開錐形孔折流板背部速度云圖Fig.7 Velocity image of the back of baffle with taper hole at 1.3 m/s of shell-side entrance
圖8 殼程入口流速為2 m/s時(shí)開圓孔折流板背部速度云圖Fig.8 Velocity image of the back of baffle with round hole at 2 m/s of shell-side entrance
圖9 殼程入口流速為2 m/s時(shí)開錐形孔折流板背部速度云圖Fig.9 Velocity image of the back of baffle with taper hole at 2 m/s of shell-side entrance
圖10 殼程入口流速為3 m/s時(shí)開圓孔折流板背部速度云圖Fig.10 Velocity image of the back of baffle with round hole at 3 m/s of shell-side entrance
圖11 殼程入口流速為3 m/s時(shí)開錐形孔折流板背部速度云圖Fig.11 Velocity image of the back of baffle with taper hole at 3 m/s of shell-side entrance
4.2壓力場分析
圖12表示的是入口速度為0.8 m/s時(shí),折流板開圓孔冷卻器壓力場云圖;圖13表示的是入口速度為0.8 m/s時(shí),折流板開錐形孔冷卻器壓力場云圖.折流板開孔以后,殼程壓降有較大的降低,即折流板開孔有利于減小壓降,這對(duì)于冷卻器配套設(shè)備的節(jié)能有很大意義.隨著殼程入口速度的增大,壓力場變化趨勢趨于穩(wěn)定[11].如圖12~圖13折流板冷卻器壓力場所示,折流板開圓孔對(duì)于減小殼程壓降的影響并不好于開錐形孔,即兩種開孔形式對(duì)壓降的影響近似,無明顯差別.
圖12 折流板開圓孔冷卻器壓力場Fig.12 Pressure field of baffle with round hole of cooler
圖13 折流板開錐形孔冷卻器壓力場Fig.13 Pressure field of baffle with taper hole of cooler
以上針對(duì)折流板背部存在流動(dòng)死區(qū)的問題,分別對(duì)折流板開圓孔和錐形孔對(duì)冷卻器換熱性能和壓降的影響進(jìn)行數(shù)值模擬分析,得出以下結(jié)論:
1)當(dāng)殼程入口速度低于1.3 m/s,折流板開圓孔更有利于減小折流板背部流動(dòng)死區(qū),改善冷卻器殼程的強(qiáng)化傳熱性能;當(dāng)殼程入口流速大于2 m/s時(shí),折流板開錐形孔更有利于冷卻器殼程的強(qiáng)化傳熱.
2)造成上述這種現(xiàn)象的原因是,當(dāng)入口速度較小時(shí),折流板開錐形孔無法形成穩(wěn)定而且有效的射流,而當(dāng)入口速度逐漸增大時(shí),折流板開錐形孔有利于形成穩(wěn)定而且有效的射流.
3)折流板開圓孔和錐形孔均有利于減小冷卻器殼程壓降,兩者對(duì)壓降的影響無明顯差別.
[1] 林宗虎.強(qiáng)化傳熱及工程應(yīng)用[M].北京:機(jī)械工業(yè)出版社,1985.
[2] 錢才富,高宏宇,孫海陽.曲面弓形折流板換熱器殼程流體流動(dòng)與傳熱[J].化工學(xué)報(bào),2011(5):1233-1238.
QIAN C F,GAO H Y,SUN H Y.Shell-side fluid flow and heat transfer in curved baffle heat exchanger[J]. Journal of chemical industry and engineering,2011(5):1233-1238.
[3]郭土,馬貴陽,石龍,等.折流板開孔對(duì)管殼式換熱器性能的影響[J].遼寧石油化工大學(xué)學(xué)報(bào),2013,33 (3):47-50.
GUO T,MA G Y,SHI L,et al.Effect of opening on the performanceof shell-and-tubeheat exchanger[J]. Journal of Liaoning university of petroleum&chemical technology,2013,33(3):47-50.
[4] 郭土,馬貴陽,張一楠,等.球面弓形折流板換熱器折流板曲率半徑的優(yōu)化研究[J].當(dāng)代化工,2013,42 (10):1392-1394.
GUO T,MA G Y,ZHANG Y N,et al.Optimization research of baffle curvature radius in spherical baffle heat exchanger[J].Contemporary chemical industry,2013,42(10):1392-1394.
[5]鄭小濤,徐成.油封低溫冷卻器折流板開孔的傳熱性能[J].武漢工程大學(xué)學(xué)報(bào),2012,34(9):62-65.
ZHENG X T,XU C.Performance of low-temperature oil seal cooler with perforated baffle[J].Journal of Wuhan institute of technology,2012,34(9):62-65.
[6]付磊,唐克倫,文華斌,等.管殼式換熱器流體流動(dòng)與耦合傳熱的數(shù)值模擬[J].化工進(jìn)展,2012,31(11):2384-2389.
FU L,TANG K L,WEN H B,et al.Numerical simulation of shell and tube heat exchanger fluid flow and coupled heat transfer[J].Chemical industry and engineering progress,2012,31(11):2384-2389.
[7] 賀俊杰.管殼式換熱器殼程數(shù)值模擬及結(jié)構(gòu)優(yōu)化研究[D].哈爾濱:哈爾濱工程大學(xué),2011.
[8]高宏宇,錢才富.曲面弓形折流板換熱器殼程壓力降的數(shù)值模擬[J].壓力容器,2010,27(2):24-27.
GAO H Y,QIAN C F.Numerical simulation of pressure drop in shell side of curved baffle heat exchanger[J]. Pressure vessel,2010,27(2):24-27.
[9] 王為良.管殼式換熱器殼側(cè)流場數(shù)值模擬[D].北京:中國石油大學(xué),2010.
[10] 喻九陽,徐成.低溫油封冷卻器折流板開孔性能機(jī)理研究[J].工程熱物理學(xué)報(bào),2014,35(2):371-374.
YU J Y,XU C.Mechanism research the performance of low-temperature oil seal cooler with perforated baffle [J].Journal of engineering thermophysics,2014,35 (2):371-374.
[11] 葉萌,喻九陽.高粘度流質(zhì)下管殼式折流板開孔換熱器換熱性能的數(shù)值模擬[J].當(dāng)代化工,2015,44(1):212-214.
YE M,YU J Y.Numerical simulation on the performance of the heat exchanger with perforated baffle in high viscosity fluid[J].Contemporary chemical industry,2015,44(1):212-214.
本文編輯:陳小平
Structure Optimization and Numerical Simulation of Low-Temperature Oil Seal Cooler
GAO Hai,YU Jiuyang*,XU Jianmin,ZHENG Xiaotao,LIN Wei
School of Mechanical and Electrical Engineering,Wuhan Institute of Technology,Wuhan 430205,China
Aiming at the shell-and-tube heat transfer existing stagnant zones at the back of baffle,we optimized the structure of the baffle in shell-side of the heat exchanger,and studied the effects of the baffle with round and taper hole on the performance of heat transfer and pressure-drop of the low-temperature oil seal cooler by numerical simulation respectively.Result shows that the baffle with round hole is more conductive to reduce stagnant zones at the back of baffle and improve the performance of heat transfer of the cooler when the velocity of shell-side entrance is less than 1.3 m/s;and the baffle with taper hole is more advantageous to enhance the heat transfer of the cooler when the velocity of shell-side entrance is more than 2 m/s.Moreover,the baffles with round and taper hole are beneficial to reduce the pressure-drop of shell-side with almost the same effects.
cooler;perforated baffle;structure optimization;enhancement of heat transfer;numerical simulation
喻九陽,碩士,教授.E-mail:yjy@wit.edu.cn
TQ051
A
10.3969/j.issn.1674-2869.2016.04.015
1674-2869(2016)04-0394-05
2016-03-24
武漢工程大學(xué)研究生創(chuàng)新基金資助項(xiàng)目(CX2015026)
高海,碩士研究生.E-mail:371825278@qq.com