萬文,王敏,趙延林(1.湖南科技大學(xué) 土木工程學(xué)院,巖土工程穩(wěn)定控制與健康監(jiān)測(cè)湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 湘潭,41101;.湖南科技大學(xué) 能源與安全工程學(xué)院,煤礦安全開采技術(shù)湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 湘潭,41101)
損傷層狀鹽巖蠕變-滲透的流固耦合實(shí)驗(yàn)研究
萬文1,2,王敏2,趙延林2
(1.湖南科技大學(xué) 土木工程學(xué)院,巖土工程穩(wěn)定控制與健康監(jiān)測(cè)湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 湘潭,411201;
2.湖南科技大學(xué) 能源與安全工程學(xué)院,煤礦安全開采技術(shù)湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 湘潭,411201)
以湖北云應(yīng)鹽礦地下600~700 m含泥巖夾層的氯化鈉鹽巖試件為研究對(duì)象,進(jìn)行層狀鹽巖的蠕變-滲透試驗(yàn)。研究結(jié)果表明:?jiǎn)屋S壓縮條件下層狀鹽巖的衰減蠕變、定常蠕變階段顯現(xiàn),定常蠕變率保持在7.05×10-6/d左右;在定常蠕變階段,鹽巖層微裂隙穩(wěn)定擴(kuò)展,鹽巖層與泥巖夾層蠕變特性的差異誘發(fā)鹽巖-泥巖夾層出現(xiàn)剪切損傷破裂,這種層狀鹽巖的蠕變破裂為滲流提供了通道;未擾動(dòng)的層狀鹽巖致密,滲透性差,而蠕變損傷狀態(tài)下的層狀巖鹽透氣系數(shù)呈數(shù)量級(jí)增加,而且滲透性能的流固耦合效應(yīng)十分顯著,滲透系數(shù)隨體積應(yīng)力與滲透壓的變化而發(fā)生變化,定常蠕變階段損傷層狀巖鹽的滲透系數(shù)k與有效體積應(yīng)力Θe遵循負(fù)指數(shù)函數(shù)規(guī)律,其流固耦合方程為:k=2.046 2×10-10exp(-0.061Θe),這可對(duì)層狀鹽巖油氣儲(chǔ)庫的滲漏安全評(píng)價(jià)提供參考。
層狀巖鹽;流固耦合;蠕變損傷;滲透實(shí)驗(yàn)
能源地下儲(chǔ)存一般放置在鹽巖、大理巖等密實(shí)、非滲透性的深層地下巖層中。鹽巖具有良好的蠕變、低滲透率及損傷自我恢復(fù)特性,因而被認(rèn)為作為能源儲(chǔ)存和高放射核廢料永久處置的最理想介質(zhì)[1-3]。正因?yàn)辂}巖在環(huán)境工程和能源工業(yè)具有重要大的研究?jī)r(jià)值和應(yīng)用背景,許多發(fā)達(dá)國(guó)家已建大量的鹽巖地下儲(chǔ)氣(油)庫,用于國(guó)家戰(zhàn)略能源儲(chǔ)備和商業(yè)油氣儲(chǔ)備,并建立了一整套能源地下儲(chǔ)存、成熟的關(guān)鍵技術(shù)和指標(biāo)規(guī)范。我國(guó)的地下鹽巖資源十分豐富,分布范圍廣,但我國(guó)鹽巖儲(chǔ)層條件比較特殊,我國(guó)鹽巖礦層的基本特點(diǎn)是鹽巖層數(shù)多、單層厚度薄、不可溶性夾層眾多[4-6]。層狀鹽巖中內(nèi)建造鹽穴油氣儲(chǔ)庫一項(xiàng)艱巨的巖石工程,它比厚鹽丘內(nèi)建造油氣儲(chǔ)庫涉及的力學(xué)和技術(shù)問題更復(fù)雜[7-16],不僅要考慮巖鹽礦體溫度敏感的流變性、溶腔的蠕變收斂性、礦柱及蓋層的穩(wěn)定性,而且要充分考慮層狀鹽巖的滲透性。層狀鹽巖的滲透率以及滲透性隨溫度、壓力狀態(tài)的變化是評(píng)價(jià)儲(chǔ)庫長(zhǎng)期穩(wěn)定性的前提。人們對(duì)層狀鹽巖的短期與長(zhǎng)期力學(xué)特性進(jìn)行了大量的研究,如:卻保平[17]對(duì)層狀鹽巖溫度應(yīng)力耦合作用蠕變特性進(jìn)行了研究;楊春和等[18]進(jìn)行了層狀鹽巖力學(xué)特性試驗(yàn)研究及其理論分析。目前人們對(duì)層狀鹽巖的滲透特性研究很少。層狀鹽巖油氣儲(chǔ)庫在運(yùn)行過程中,圍巖處于定常蠕變階段,對(duì)定常蠕變狀態(tài)的層狀鹽巖的滲透性能需進(jìn)行深入研究。本文作者對(duì)湖北云應(yīng)鹽礦地下600~700 m的層狀鹽巖試件進(jìn)行層狀鹽巖的蠕變-滲透試驗(yàn),并得到定常蠕變狀態(tài)下層狀鹽巖透氣系數(shù)與有效體積應(yīng)力相關(guān)的流固耦合方程。
圖1所示為在=σ13.4 MPa應(yīng)力下,蠕變時(shí)間t=125 d時(shí),層狀鹽巖3號(hào)試件的蠕變?cè)囼?yàn)曲線,在此應(yīng)力水平下,層狀鹽巖的衰減蠕變階段、定常蠕變階段顯現(xiàn)。衰減蠕變階段歷時(shí)約為17 d,定常蠕變階段持續(xù)較長(zhǎng),定常蠕變率保持在7.05×10-6/d左右。從圖1可看出:層狀鹽巖的衰減蠕變階段較短,而蠕應(yīng)變主要發(fā)生在此階段,定常蠕變階段較長(zhǎng)。受時(shí)間限制,未對(duì)加速蠕變階段進(jìn)行實(shí)驗(yàn)。
圖1 層狀鹽巖3號(hào)試件蠕變曲線Fig.1 Creep curve of No.3 bedded salt rock specimen
層狀鹽巖的軸向蠕變應(yīng)變來自2部分:一部分為純鹽巖部分的蠕變,另一部分為泥巖夾層蠕變。純鹽巖蠕變率高于泥巖夾層的蠕變率,同時(shí)橫向應(yīng)變大于泥巖夾層的橫向應(yīng)變。因此,層狀鹽巖的蠕變應(yīng)變、蠕變率介于純鹽巖與泥巖夾層之間;層狀鹽巖的蠕變呈明顯的非線性關(guān)系。
鹽巖是一種典型的晶質(zhì)軟巖,鹽巖晶粒粒度為3~10 mm,為晶粒形狀組構(gòu)。巖鹽晶粒在形態(tài)上呈不規(guī)則的、分裂的、粗糙的鋸齒狀。圖2(a)所示為氯化鈉鹽巖的光學(xué)干磨像。從由圖2(a)可以看出:巖鹽晶粒致密,晶粒間存在晶間弱面,但未見明顯的節(jié)理裂隙發(fā)育。這是鹽巖低滲透性的物理原因。
巖鹽晶體中存在易于劈裂的解理面,在外力作用下很容易沿平行于解理面的平面裂開成立方體,氯化鈉巖鹽一般在蠕變初期就能形成微裂隙,逐漸發(fā)展,在穩(wěn)態(tài)蠕變階段微裂隙穩(wěn)定擴(kuò)展。由于鹽巖層與夾層蠕變特性的差異導(dǎo)致鹽巖與夾層互層產(chǎn)生剪切破裂。圖2(b)所示為蠕變損傷后層狀鹽巖的局部放大像。由于在層狀鹽巖內(nèi)部,純鹽巖與泥巖夾層之間變形不協(xié)調(diào),產(chǎn)生剪應(yīng)力,使純鹽巖和泥巖夾層之間產(chǎn)生剪切破壞;隨著時(shí)間增加,剪切破壞越來越劇烈,從而導(dǎo)致整個(gè)鹽巖體出現(xiàn)多重剪切破壞,使鹽巖體內(nèi)裂隙增多,剪切破壞的網(wǎng)格大量增加。蠕變導(dǎo)致層狀鹽巖裂隙發(fā)育、層間破裂,進(jìn)而為流體滲流提供了通道。
圖2 蠕變前后層狀鹽巖試件細(xì)部對(duì)比Fig.2 Detailed comparison of bedded rock salt specimen before and after creep
蠕變持持續(xù)時(shí)間t=125 d后,卸去軸壓,試件靜置7 d,將試件的環(huán)表面重新加工打磨,進(jìn)行蠕變損傷狀態(tài)的層狀鹽巖氣測(cè)滲透實(shí)驗(yàn)。
巖鹽滲透率極低,GIRAUD等[19-20]進(jìn)行了大量研究,結(jié)果表明未擾動(dòng)態(tài)下純質(zhì)巖鹽的滲透率為10-16~ 10-20m2,而在下列2種情況下滲透率會(huì)提高:1)巖鹽發(fā)生了力學(xué)損傷(如體積擴(kuò)容,礦體開采),由于應(yīng)力偏量造成微裂紋張開,晶體顆粒位錯(cuò);2)鹽巖層中的存在泥巖等非鹽質(zhì)夾層。STORMONT[21]發(fā)現(xiàn)在溶腔壁附近巖鹽和泥質(zhì)石膏巖的互層處的滲透率比巖鹽的滲透率要高若干個(gè)數(shù)量級(jí)。本試驗(yàn)的目的是研究經(jīng)歷蠕變損傷后層狀鹽巖的氣測(cè)滲透系數(shù)。
2.1氣測(cè)滲透試驗(yàn)
對(duì)標(biāo)國(guó)外先進(jìn)技術(shù),渤海裝備目前已先后完成中國(guó)石油集團(tuán)公司科研項(xiàng)目6項(xiàng),專利申報(bào)26項(xiàng),技術(shù)攻關(guān)48項(xiàng),為產(chǎn)品升級(jí)換代、適應(yīng)用戶新的更高要求提前做好技術(shù)儲(chǔ)備。
為研究蠕變損傷狀態(tài)層狀鹽巖的滲透性能,在三軸滲透儀MDS-200上開展蠕變損傷狀態(tài)層狀鹽巖氣測(cè)滲透實(shí)驗(yàn)[22]。圖3所示為三軸滲透儀MDS-200裝置示意圖,實(shí)驗(yàn)氣體采用N2,實(shí)驗(yàn)步驟如下:
1)將蠕變損傷狀態(tài)層狀巖鹽巖樣置入三軸應(yīng)力滲透儀內(nèi),施加軸壓;保持軸壓不變,施加圍壓。
3)保持一定時(shí)間,利用排水法反復(fù)測(cè)量流量,記下流量和壓力。
4)逐步改變軸壓和圍壓,重復(fù)上述步驟。
圖3 三軸滲透儀MDS-200裝置示意圖Fig.3 Device schematic of triaxial permeameter of MDS-200
2.2實(shí)驗(yàn)結(jié)果及分析
以進(jìn)口壓力p=4.5 MPa,軸壓1σ=13 MPa,圍壓2σ分別為6.0,7.5,9.0,10.5 MPa這4種情況為例研究蠕變損傷層狀巖鹽滲透特性的流固耦合效應(yīng)。表1所示為上述4種情況下不同時(shí)段內(nèi)出口氣體流量統(tǒng)計(jì)結(jié)果。不同圍壓下氣體滲透蠕變損傷層狀鹽層的流量見圖4。從表1可以看出:各時(shí)段內(nèi)氣體流量上下波動(dòng)。對(duì)出口氣體流量求平均,得到不同圍壓下氣體滲過層狀鹽巖(蠕變損傷狀態(tài)下)的流量Q。表1和圖4都顯示了在一定軸壓下,隨著圍壓的增加,氣體流量呈非線性減少。
2.3滲透系數(shù)計(jì)算
由于氣體的可壓縮性,在巖芯中沿長(zhǎng)度L方向,每個(gè)斷面的壓力不同,因此,進(jìn)入巖芯的氣體體積流量在巖芯上是變化的,與出口氣量也不相等,而是沿著壓降的方向不斷膨脹、增大,此時(shí)需要采用達(dá)西公式的微分形式來計(jì)算。假定氣體在巖心所發(fā)生的膨脹是等溫過程,按達(dá)西定律,其透氣系數(shù)計(jì)算公式為
表1 不同圍壓下不同時(shí)段出口氣體流量Table 1 Export gas flow under different confining pressures
圖4 不同圍壓下氣體滲透蠕變損傷層狀鹽巖的流量Fig.4 Flow diagram of gas penetrating bedded rock salt at creep damage state under different confining pressures
式中:q為流速;k為滲透系數(shù);p為孔隙壓力;x為試件長(zhǎng)度。當(dāng)氣體以流速q通過一定面積A時(shí),得到一定時(shí)間內(nèi)的流量:
得到氣體滲過巖芯的流量為
設(shè)Q0為p0=1×105Pa時(shí)的流量,有
比較式(4)和式(5),得滲透系數(shù)為
式中:p1為試件入口壓力;p2為試件出口壓力;A為試件截面面積;L為試件長(zhǎng)度。表2所示為不同應(yīng)力狀態(tài)、不同孔隙壓下,蠕變損傷層狀巖鹽巖芯的滲透系數(shù)實(shí)驗(yàn)結(jié)果。
表2表明:1)在一定體積應(yīng)力Θ下,隨著孔隙壓p增加,滲透系數(shù)k隨之增大;2)在一定孔隙壓p下,隨體積應(yīng)力Θ增加,滲透系數(shù)k增大。圖5所示為Θ=18 MPa時(shí),滲透系數(shù)k隨著孔隙壓p的變化曲線;圖6所示為p=4.5 MPa時(shí),滲透系數(shù)k隨體積應(yīng)力Θ的變化曲線。
表2 不同應(yīng)力狀態(tài)、不同孔隙壓下滲透系數(shù)實(shí)驗(yàn)結(jié)果Table 2 Experimental results of permeability coefficient at different stresses states and different pore pressures
圖5 滲透系數(shù)k隨孔隙壓力p的變化曲線Fig.5 Change curve of permeability coefficient k along with pore pressure p
未擾動(dòng)的層狀鹽巖是致密的,其孔隙度特別小,滲透性差。但蠕變損傷狀態(tài)層狀鹽巖不再致密,蠕變導(dǎo)致其內(nèi)部產(chǎn)生許多細(xì)小劈裂裂隙,這些裂隙構(gòu)成了流體滲流通道,它們?cè)谕獠亢奢d作用下會(huì)發(fā)生改變。在孔隙壓不變的情況下,隨著體積應(yīng)力的增大,巖體發(fā)生收縮變形,其內(nèi)部的孔隙和裂隙張開度會(huì)減小,有的孔隙、裂隙會(huì)閉合,使層狀鹽巖的微觀結(jié)構(gòu)發(fā)生變化,導(dǎo)致流體的滲流通道減少,滲透系數(shù)隨之減小;當(dāng)體積應(yīng)力不變時(shí),隨著孔隙壓增大,巖體內(nèi)的孔隙擴(kuò)張,裂隙張開度增大,流體流通增多,流體單位時(shí)間內(nèi)的流量增大,其滲透系數(shù)隨之增大;當(dāng)體積應(yīng)力和孔隙壓都改變時(shí),其滲透系數(shù)就是這2種應(yīng)力綜合作用的體現(xiàn),滲透系數(shù)k與有效體積應(yīng)力Θ可按指數(shù)規(guī)律擬合:
圖6 滲透系數(shù)k隨著體積應(yīng)力Θ的變化曲線Fig.6 Change curve of permeability coefficient k along with volume stress Θ
式中:k0為有效應(yīng)力Θe=0時(shí)的滲透率;Θe為有效體積應(yīng)力;γ為擬合常數(shù)。有效體積應(yīng)力由下式給出:
式中:Θc為體積應(yīng)力;α為等效孔隙壓系數(shù)。COSENZA等[2]研究發(fā)現(xiàn)在巖鹽擾動(dòng)區(qū)(DRZ)損傷的巖鹽中α=0.5~0.7。本次實(shí)驗(yàn)擬合的結(jié)果為
圖7所示為蠕變損傷層狀巖鹽的滲透系數(shù)k與有效體積應(yīng)力Θe的關(guān)系擬合曲線。
圖7 蠕變損傷層狀巖鹽滲透系數(shù)k-有效體積應(yīng)力Θe關(guān)系曲線Fig.7 Relation curve of permeability coefficient and effective volume stress for bedded salt rock at creep damage state
1)單軸壓縮條件下層狀鹽巖的衰減蠕變、定常蠕變階段顯現(xiàn),定常蠕變率保持在7.05×10-6/d左右。在定常蠕變階段,鹽巖微裂隙穩(wěn)定擴(kuò)展,鹽巖層與泥巖夾層蠕變特性的差異誘發(fā)鹽巖-泥巖夾層出現(xiàn)剪切損傷破裂,進(jìn)而為流體滲流提供了通道。
2)蠕變損傷狀態(tài)下層狀鹽巖滲透性能的流固耦合效應(yīng)十分顯著,其滲透系數(shù)隨體積應(yīng)力與滲透壓的變化而發(fā)生改變。本次實(shí)驗(yàn)耦合結(jié)果為:k=2.046 2× 10-10exp(-0.061Θe)。
3)未擾動(dòng)的層狀鹽巖致密,滲透性差。而蠕變損傷狀態(tài)下的層狀巖鹽滲透系數(shù)呈數(shù)量級(jí)增加。這一實(shí)驗(yàn)現(xiàn)象對(duì)層狀鹽巖油氣儲(chǔ)庫的滲漏安全評(píng)價(jià)有參考價(jià)值。
[1]吳文,楊春和,侯正猛.鹽巖中能源(石油和天然氣)地下儲(chǔ)存力學(xué)問題研究現(xiàn)狀及其發(fā)展[J].巖石力學(xué)與工程學(xué)報(bào),2005, 24(增2):5561-5568. WU Wen,YANG Chunhe,HOU Zhengmeng.Investigations on studiedsituationsassociatedwith mechanical aspects and development for underground storage of petroleum and natural gas in rock salt[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(Suppl 2):5561-5568.
[2]COSENZA M,GHOREYCHIA M,BAZARGAN-SABET B, et al.In situ rock salt permeability measurement for long term safety assessment of storage[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(4):509-526.
[3]譚羽非,陳家新.國(guó)外鹽穴地下儲(chǔ)氣庫的建設(shè)及研究進(jìn)展[J].油氣儲(chǔ)運(yùn),2001,20(1):6-8. TAN Yufei,CHEN Jiaxin.The construction and development of foreign underground gas storage caverns in salt formations[J]. Oil&Gas Storage and Transportation,2001,20(1):6-8.
[4]李建中.我國(guó)建設(shè)鹽穴地下儲(chǔ)庫工程的可行性[J].巖石力學(xué)與工程學(xué)報(bào),2002,21(增):2254-2256. LI Jianzhong.Feasibility of underground salt cavern storage[J]. Chinese Journal of Rock Mechanics and Engineering,2002, 21(Suppl):2254-2256.
[5]劉飛.建設(shè)鹽穴型地下儲(chǔ)庫儲(chǔ)存碳?xì)浠衔锏陌踩骩J].天然氣工業(yè),2004,24(9):139-141. LIU Fei.Security of underground salt caverns as hydrocarbon storages[J].Natural Gas Industry,2004,24(9):139-141.
[6]尹雪英,楊春和,陳劍文.金壇鹽礦老腔儲(chǔ)氣庫長(zhǎng)期穩(wěn)定性分析數(shù)值模擬[J].巖土力學(xué),2006,27(6):868-874. YIN Xueying,YANG Chunhe,CHEN Jianwen.Numerical simulation research on long-term stability of gas storage in Jintan Salt Mine[J].Rock and Soil Mechanics,2006,27(6): 868-874.
[7]劉飛,宋桂華,李國(guó)韜,等.含有夾層的薄鹽層中鹽穴儲(chǔ)氣庫運(yùn)行壓力的確定[J].天然氣工業(yè),2004,24(9):133-135. LIU Fei,SONG Guihua,LI Guotao,et al.Determination of operating pressure for gas storage with salt caves in thin salt beds with inter-beds[J].Natural Gas Industry,2004,24(9): 133-135.
[8]趙延林.層狀巖鹽儲(chǔ)庫氣體滲漏固氣耦合模型及儲(chǔ)庫穩(wěn)定性研究[D].太原:太原理工大學(xué)礦業(yè)工程學(xué)院,2006:21-65. ZHAO Yanlin.Study on the solid and gas coupling model of gas seepage in layered rock salt storage and the stability of storage[D].Taiyuan:Taiyuan University of Technology,2006: 21-65.
[9]張強(qiáng)勇,劉德軍,賈超,等.鹽巖油氣儲(chǔ)庫介質(zhì)地質(zhì)力學(xué)模型相似材料研制[J].巖土力學(xué),2009,30(12):3581-3586. ZHANG Qiangyong,LIU Dejun,JIA Chao,et al.Development of geomechanical model similitude material for salt rock oil-gas storage medium[J].Rock and Soil Mechanics,2009,30(12): 3581-3586.
[10]楊春和,李銀平,屈丹安,等.層狀鹽巖力學(xué)特性研究進(jìn)展[J].力學(xué)進(jìn)展,2008,38(4):484-494. YANG Chunhe,LI Yinping,QU Dan’an,et al.Advances in research of the mechanical behaviors of bedded salt rocks[J]. Advances in Mechanics,2008,38(4):484-494.
[11]徐素國(guó),梁衛(wèi)國(guó),莫江,等.軟弱泥巖夾層對(duì)層狀鹽巖體力學(xué)特性影響研究[J].地下空間與工程學(xué)報(bào),2009,5(5):878-883. XU Suguo,LIANG Weiguo,MO Jiang,et al.Influence of weak mudstoneintercalatedlayeronmechanicalpropertiesof laminated salt rock[J].Chinese Journal of Underground Space and Engineering,2009,5(5):878-883.
[12]李銀平,施錫林,楊春和,等.深部鹽礦油氣儲(chǔ)庫水溶造腔控制的幾個(gè)關(guān)鍵問題[J].巖石力學(xué)與工程學(xué)報(bào),2012,31(9): 1785-1796. LI Yinping,SHI Xilin,YANG Chunhe,et al.Several key problems about control of solution mining for oil/gas storage in deep salt mine[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(9):1785-1796.
[13]李二兵,譚躍虎,段建立,等.層狀鹽巖夾層楊氏模量對(duì)儲(chǔ)存庫穩(wěn)定性影響研究[J].地下空間與工程學(xué)院,2014,10(增2): 1842-1847. LI Erbing,TAN Yuehu,DUAN Jianli,et al.Effect of change of inter bed Young’s modulus on the stability of underground storagecaverninbeddedsalt[J].ChineseJournalof UndergroundSpaceandEngineering,2014,10(Suppl2): 1842-1847.
[14]唐明明,王芝銀,丁國(guó)生,等.含夾層鹽巖蠕變特性試驗(yàn)及其本構(gòu)關(guān)系[J].煤炭學(xué)報(bào),2010,35(1):42-45. TANG Mingming,WANG Zhiyin,DING Guosheng,et al.Creep property experiment and constitutive relation of salt-mudstone inter layer[J].Journal of China Coal Society,2010,35(1): 42-45.
[15]王軍保,劉新榮,郭建強(qiáng),等.鹽巖蠕變特性及其非線性本構(gòu)模型[J].煤炭學(xué)報(bào),2014,39(3):445-451. WANG Junbao,LIU Xinrong,GUO Jianqiang,et al.Creep properties of salt rock and its nonlinear constitutive model[J]. Journal of China Coal Society,2014,39(3):445-451.
[16]梁衛(wèi)國(guó),徐素國(guó),趙陽升,等.鹽巖蠕變特性的試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2006,25(7):1386-1390. LIANGWeiguo,XUSuguo,ZHAOYangsheng,etal. Experimental study on creep property of rock salt[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(7): 1386-1390.
[17] 卻保平.含高鹽分泥巖夾層的鹽巖蠕變特性及油氣儲(chǔ)庫穩(wěn)定性研究[D].太原:太原理工大學(xué)礦業(yè)工程學(xué)院,2006:32-87. XI Baoping.Study on creep property of roc k salt with salt—mudstone interlayer and stability of oil and gas storage cavern[D].Taiyuan:Taiyuan University of Technology.College of Mining Engineering,2006:32-87.
[18]楊春和,白世偉,吳益民.應(yīng)力水平及加載路徑對(duì)鹽巖時(shí)效的影響[J].巖石力學(xué)與工程學(xué)報(bào),2000,19(3):270-275. YANG Chunhe,BAI Shiwei,WU Yimin.Stress level and loading path effect on time dependent properties of salt rock[J]. Chinese Journal of Rock Mechanics and Engineering,2000, 19(3):270-275.
[19]GIRAUD A,PICARD J M,ROUSSET G.Time dependent behavior of tunnels excavated in porous mass[J].Int J Rock Mech Min Sci Geomech Abstr,1993,30(7):1453-1459.
[20]PFEIFLE T W,HURTADO L D.Permeability of nature rock salt from the isolation pilot plant(WIPP)during damage evolutionandhealing[J].InternationalJournalofRock Mechanics and Mining Sciences,1998,35(5):593-594.
[21]STORMONT J C.In situ gas permeability measurements to delineate damage in rock salt[J].Int J Rock Mech Min Sci Geomech Abstr,1997,34(7):1055-1064.
[22]趙陽升.礦山巖石流體力學(xué)[M].北京:煤炭工業(yè)出版社, 1994:44-51. ZHAO Yangsheng.Rock fluid mechanics mine[M].Beijing: China Coal Industry Publishing House,1994:44-51.
(編輯陳燦華)
Fluid-solid coupling experimental study on damage bedded rock salt
WAN Wen1,2,WANG Min2,ZHAO Yanlin2
(1.Key Laboratory of Geotechnical Engineering Stability Control and Health Monitoring of Hunan Province, School of Civil Engineering,Hunan University of Science and Technology,Xiangtan 411201,China;
2.Key Laboratory of Safe Mining Techniques of Coal Mines of Hunan Province, School of Energy and Safety Engineering,Hunan University of Science and Technology,Xiangtan 411201,China)
Taking the sodium chloride rock salt specimens containing mudstone located at-600-700 m level of Yunying salt-mine in Hubei Province as the research object,uniaxial compression creep tests and permeability tests on bedded rock salt were performed.The results show that the decay creep and steady creep appear under unixial compression,and steady creep rate is kept at about 7.05×10-6/d.During the steady creep phase,microfissures stably propagate,and the differences in creep characteristics of the interlayer and that of rock salt make alternating beds of mudstone and rock salt shear fracture,creep rupture of bedded rock salt provides channel for seepage through permeability tests of bedded rock salt specimens at steady creep stage.Undisturbed bedded rock salt is compact,and its permeability is very small.The orders of magnitude increase in the permeability coefficient of bedded rock salt at creep damage state.Fluid-solid coupling effect of permeability coefficient bedded rock salt at creep damage state is quite obvious.Permeability coefficients changes with volumetric stress and seepage pressure.Permeability coefficient k and volumetric stressΘeof bedded salt rock at steady creep stage follows negative exponential function law,and its fluid-solid coupling formula is k=2.046 2×10-10exp(-0.061Θe),which can provide reference for leakage safety evaluation of oil and gas storage cavern in bedded salt rock.
bedded rock salt;fluid-solid coupling;creep damage;permeability test
萬文,博士,教授,從事礦山巖石力學(xué)研究;E-mail:wanwenhn@163.com
TU452;O357.3
A
1672-7207(2016)07-2341-06
10.11817/j.issn.1672-7207.2016.07.023
2015-07-21;
2015-09-26
國(guó)家自然科學(xué)基金資助項(xiàng)目(51174088,51274097);湖南省教育廳科研項(xiàng)目(13A020)(Projects(51174088,51274097) supported by the National Natural Science Foundation of China,Project(13A020)supported by the Scientific Research Fund of Education Department of Hunan Province)