国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一類廣義平均曲率Liénard方程周期解存在性與唯一性

2016-08-31 02:25蘭德新陳文斌
關(guān)鍵詞:武夷蘭德武夷山

蘭德新,陳文斌

(武夷學(xué)院數(shù)學(xué)與計算機學(xué)院,中國 武夷山 354300)

?

一類廣義平均曲率Liénard方程周期解存在性與唯一性

蘭德新*,陳文斌

(武夷學(xué)院數(shù)學(xué)與計算機學(xué)院,中國 武夷山354300)

運用Mawhin 重合度拓展定理研究了一類廣義平均曲率Liénard 方程

周期解存在性與唯一性問題,得到了周期解存在性與唯一性的相關(guān)新結(jié)果.

廣義平均曲率;Liénard 方程;周期解;重合度

1 Introduction

We consider the following Prescribed mean curvature Liénard equation:

(1)

wheref,e∈C(R,R),β,g,τ∈C1(R,R),e,τ,βare T-periodic,T>0,β(t)>0 andτ(t)≥0. As we all know, the dynamic behaviors of Liénard equation have been wide-ly investigated[1-5]due to the application in many fields such as physics, mechanics and the engineering technique fields. In such applications, it is important to know the existence of periodic solutions of Liénard equation. For example, see papers[1-5]. These papers were devoted mainly to study the following several types:

x″(t)+f(x(t))x′(t)+g(x(t-σ))=e(t),

x″(t)+f(x(t))x′(t)+g(x(t-τ(t,x(t))))=e(t),

(φp(x′(t)))′+f(x(t))x′(t)+β(t)g(x(t-τ(t)))=e(t).

(2)

2 Preliminaries

Throughout this paper, letXandYbe real Banach spaces and letL:D(L) ?X→Ybe a Fredholm operator with index zero; hereD(L) denotes the domain ofL.This means that ImLis closed inYand dim KerL=dim(Y/lmL)<+∞. Consider the supplementary subspacesX1andY1such thatX=KerL⊕X1andY=lmL⊕Y1and letP:X→KerLandQ:Y→Y1be the natural projections, Clearly, KerL∩(D(L)∩X1)=0; thus the restrictionLp: =L|D(L)∩X1is invertible. Denote the in-verse ofLpbyK.

(1)Lx≠λNx,?(x,λ)∈(D(L)∩?Ω)×(0,1);

(2)Nx?lmL,?x∈KerL∩?Ω;

(3) deg(JQN,Ω∩KerL,0)≠0,whereJ:lmQ→KerLis an isomorphism.

Lemma 2.2[10]Letα∈[0,+∞] be constants,S∈C(R,R) withs(t+T)≡s(t), ands(t)∈[-α,α],?t∈[0,T]. Then ?x∈C1(R,R) withx(t+T)≡x(t),we have

In order to use Mawhin’s continuation theorem to study the existence of T-periodic solutions for Eq.(1),we should consider the following system:

(3)

LetX=Y={x:x=(x1,x2)T∈C(R,R2),x(t)≡x(t+T)},‖x‖=max{|x1|0,|x2|0},

and letKrepresent the inverse ofLKer P∩D(L). Clearly, KerL=lmQ=R2and

where

For the sake of convenience, we list the following assumptions which will be used for us to study the existence and uniqueness of T-periodic solutions to Eqs.(3) in Section 3.

[H2] There existsl>0 such that |g(x1)-g(x2)|≤l|x1-x2|,?l∈R,x1,x2∈R.

[H4]g′(x)<0,|τ|0≤εandτ′(t)<1 (εbe sufficiently small constant ).

3 Main results

ProofWeconsiderLx=λNx,?λ∈(0,1).

LetΩ1={x∈X:Lx=λNx,λ∈(0,1)}.Ifx∈Ω1,thenwehave

(4)

Bythefirstformulaeof(4),wehave

Itfollowsthat

(5)

(6)

Thenfromtheassumption[H1],wemusthave

x1(t1-τ(t1))>-d,

(7)

and

x1(t2-τ(t2))

(8)

Now,webegintoprovethatthereisaconstantξ∈R such that |x1(ξ)|≤d.

Case1Ifx1(t2-τ(t2))∈(-d,d),then|x1(ξ)|≤dwhenξ=t2-τ(t2).

Case2Ifx1(t2-τ(t2))<-d,thenfrom(3.4)andthecontinuityofx1(t)onR,weseethatthereisaconstantξ∈(t1-τ(t1),t2-τ(t2))[or(t2-τ(t2),t1-τ(t1))]suchthat|x1(ξ)|=-d,i.e.,|x1(ξ)|≤d.

WeseeineitherCase1orCase2that|x1(ξ)|≤d.Sinceξ∈R is a constant, there must be an integer kand a pointt*∈[0,T] such thatξ=kT+t*.So|x1(ξ)|=|x1(t*)|≤d, which leads to

(9)

(10)

By |f(x)|≥σ, we know

(11)

(12)

By using Lemma 2.2, we see

(13)

Substituting (12) and (13) into (11). we get

(14)

Combining (9) and (14), we obtain

(15)

So by using (9), we get

Furthermore, from the first equation of (3.1), we have

Which implies that there is a constantζ∈[0,T] such thatx2(ζ)=0.So

By the second formulae of (4) and [H3], we have

Now, if we setΩ={x:x=(x1,x2)T∈X,|x1|00,equationQN(x)=(0,0)T,i.e.,

has no solution in (Ω∩KerL)/Δε, whereε∈(0,ε0) is an arbitrary constant. So deg {JQN,Ω∩KerL,0}=deg {JQN,Δε,0}. Let

Ifx∈?Δε. Then

which implies that ‖JQN(x)-JQN0(x)‖→0 asε→0. So ifε>0 is sufficiently small, then

deg {JQN,Δε,0}=deg {JQN0,Δε,0}.

Noting dimQN0=1, it follows that deg{JQN0,Δε,0}=deg{JQN0,Δ0,0}, where Δ0={x:x∈R,|x|0 is constant. By assumption [H1], we see that deg {JQN0,Δ0,0}≠0,i.e., deg {JQN,Ω∩KerL,0}=deg {JQN,Δ0,0}≠0. Then, the condition (3) of Lemma 2.1 is also satisfied. Therefore, by applying Lemma 2.1, we conclude that the equation

Lx=Nx,

Furthermore, letu(t)=x3(t)-x4(t) andv(t)=y3(t)-y4(t)v. Sincex′=ψ(y-h(x)), it follows from (1) that

we will show thatv(t)≤0,?t∈[0,T].

Suppose there exists at0∈[0,T] such thatv(t0)=maxt∈[0,T]v(t)>0 which together withβ(t)>0 implies that

(16)

It follows from [H4] and the first equation of Eq.(16) thatx3(t0-τ(t0))=x4(t0-τ(t0)), then from the second equation of Eq.(7), we get

-β(t)g′(x3(t0-τ(t0)))[ψ(y3(t0-τ(t0))-h(x3(t0-τ(t0)))-

ψ(y4(t0-τ(t0))-h(x4(t0-τ(t0)))](1-τ′(t0)).

In view ofβ(t0)>0,g′(x3(t0-τ(t0)))<0.v(t0)=y3(t0)-y4(t0)>0.τ′(t0)<1 and |τ|0<ε,εbe sufficiently small, then we haveψ(y3(t0-τ(t0)))>ψ(y4(t0-τ(t0))) andv″(t0)>0.

Which is a contradiction. Hence maxt∈[0,T]v(t)≤0. Similarly, exchanging the role ofx3andx4, we can show that maxt∈[0,T]v(t)≥0. This implies thatv(t)≡0,i.e.,y3(t)≡y4(t).Then fromg′(x)<0, we havex3(t-τ(t))≡x4(t-τ(t)).i.e.,x3(t)≡x4(t) Therefore, the Eq.(1) has at most one solution. The proof of Theorem 3.1 is now complete.

References:

[1]NGUYENPC.Periodicsolutionsofasecondordernonlinearsystem[J].JMathAnalAppl, 1997,214(1):219-232.

[2]LUSP,GEWG.PeriodicsolutionsforakindofLiénardequationwithadeviatingargument[J].JMathAnnaAppl, 2004,289(2):231-243.

[3]CHENGWS,RENJL.OntheexistenceofperiodicsolutionforP-LaplaciangeneralizedLiénardequation[J].NonlinearAnal, 2005,60(1):65-75.

[4]GAOFB,LUSP.NewresultsontheexistenceanduniquenessofpreiodicsolutionsforLiénardequationtypeP-Laplacianequation[J].JFranklinInstitute, 2008,345(2):374-381.

[5]GAOH,LIUBW.ExistenceanduniquenessofperiodicsolutionsforforcedRayleigh-typeequations[J].ApplMathComput, 2009,211(1):148-154.

[6]BONHEURED,HABETSP,OBERSNELF, et al.Classicalandnon-classicalsolutionsofaprescribedcurvatureequations[J].JDiffEqu, 2007,243(1):208-237.

[7]LOPEZR.Acomparisonresultforradialsolutionsofthemeancurvatureequation[J].ApplMathLett, 2009,22(4):860-864.

[8]PANH.One-dimensionalprescribedmeancurvatureequationwithexponentialnonlinearity[J].NonlinearAnnl, 2009,70(5):999-1010.

[9]GAINESRE,MAWHINJ.Coincidencedegreeandnonlineardifferentialequaations[M].Berlin:Springer, 1977.

[10]LUSP,GEWG.Sufficientconditionsfortheexistenceofperiodicsolutionstosomesecondorderdifferentialequationswithadeviatingargument[J].JMathAnalAppl, 2005,308(2):393-419.

(編輯CXM)

Existence and Uniqueness of Periodic Solutions for Prescribed Mean Curvature Liénard Equation with a Deviating Argument

LAN De-xin*, CHEN Wen-bin

(College of Mathematics and Computer Science, Wuyi University, Wuyi Shan 354300, China)

By using the coincidence degree theory, some new results were established, on the existence and uniqueness of T-periodic solutions for a kind of prescribed mean curvature Liénard equation of the form

prescribed mean curvature; Liénard equation; periodic solution; coincidence degree

10.7612/j.issn.1000-2537.2016.03.016

2015-10-15

武夷學(xué)院科學(xué)研究基金資助項目(XQ201305)

,E-mail:1220340699@qq.com

O175.6

A

1000-2537(2016)03-0089-06

猜你喜歡
武夷蘭德武夷山
《武夷天下秀》
它們的家園——武夷山
武夷學(xué)院
基于PTR-TOF-MS與GC-MS技術(shù)的武夷水仙和武夷肉桂香氣特征分析
風(fēng)雨廊橋——武夷山馀慶橋
一類廣義平均曲率Liénard方程周期解存在性與唯一性(英文)
中國智庫:何時能圓“蘭德夢”
四天三夜 LAND CRUISER 200蘭德酷路澤探塞北
“小鮮肉”蜘蛛俠
武夷山:作為“文化景觀”的歷史演變
平乐县| 荆州市| 仲巴县| 花莲市| 绩溪县| 信宜市| 陵川县| 霍山县| 商城县| 大邑县| 黄陵县| 高阳县| 公主岭市| 水城县| 鲁甸县| 开阳县| 册亨县| 博罗县| 永康市| 阿图什市| 禹城市| 姜堰市| 榆社县| 思南县| 黄浦区| 嘉峪关市| 湘阴县| 延庆县| 云梦县| 托克逊县| 六枝特区| 五原县| 惠安县| 平阴县| 廉江市| 寻甸| 金山区| 遂昌县| 承德市| 平塘县| 柳江县|