龔莉君, 彭 鵬, 袁哲明,2, 柳 傲, 楊中俠,2*
(1. 植物病蟲害生物學(xué)與防控湖南省重點實驗室, 湖南農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院, 長沙 410128; 2. 湖南省生物農(nóng)藥與制劑加工工程技術(shù)研究中心, 長沙 410128)
?
小菜蛾鈣黏蛋白片段對Cry1Ac蛋白的增效作用
龔莉君1,彭鵬1,袁哲明1,2,柳傲1,楊中俠1,2*
(1. 植物病蟲害生物學(xué)與防控湖南省重點實驗室, 湖南農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院, 長沙410128; 2. 湖南省生物農(nóng)藥與制劑加工工程技術(shù)研究中心, 長沙410128)
根據(jù)已報道的昆蟲毒素結(jié)合區(qū)鈣黏蛋白片段對Cry1Ac蛋白有增效作用,本文以3齡小菜蛾幼蟲為研究對象,選取其鈣黏蛋白相同功能區(qū)的兩個片段,將兩個片段進(jìn)行克隆。通過pGEX-6p-1載體,在大腸桿菌中表達(dá)了功能區(qū)片段PxCAD1及PxCAD2。使用致死中濃度劑量的CrylAc蛋白(1 μg/mL)及較高濃度的PxCAD1(556 μg/mL)與PxCAD2(551.25 μg/mL)對小菜蛾幼蟲進(jìn)行體外復(fù)配生測,結(jié)果表明,PxCAD1可使小菜蛾幼蟲的致死率上升為85.56%,PxCAD2則不能增強(qiáng)CrylAc蛋白的殺蟲活性;而PxCAD1與PxCAD2本身對于小菜蛾幼蟲并無毒性。研究結(jié)果為篩選有效的協(xié)同片段提供了理論依據(jù),對于揭示Bt殺蟲蛋白的毒理機(jī)制和害蟲對Bt殺蟲蛋白的抗性機(jī)制具有重要意義。
小菜蛾;鈣黏蛋白片段;Cry1Ac;增效作用;表達(dá)
蘇云金芽胞桿菌(Bacillusthuringiensis,Bt)是目前世界上產(chǎn)量最大、應(yīng)用最廣泛、殺蟲范圍最廣的微生物殺蟲劑[12]。Bt晶體毒素被敏感昆蟲取食后,其在幼蟲腸道堿性環(huán)境和蛋白酶的作用下被激活,釋放出活性毒素蛋白。活性毒素蛋白隨后與幼蟲中腸上皮細(xì)胞的特異性受體結(jié)合形成毒素寡聚體,誘導(dǎo)毒素分子的空間構(gòu)象發(fā)生變化。多個毒性肽分子在細(xì)胞膜中聚集圍成外表面疏水、內(nèi)表面親水的膜離子通道,進(jìn)而破壞細(xì)胞滲透平衡、細(xì)胞吸脹破裂,導(dǎo)致腸壁破裂昆蟲死亡[3]。害蟲抗藥性的增強(qiáng)成為Bt毒素長期有效使用的最大威脅,理解Bt的作用模型及害蟲的抗性機(jī)制對于尋找策略提高Bt的功效及克服害蟲抗性具有重要意義。
據(jù)報道,除殺蟲晶體蛋白和外毒素具有殺蟲作用外,還有許多與殺蟲相關(guān)的增效物質(zhì)可增強(qiáng)Bt的殺蟲功效。鞘翅目、鱗翅目及雙翅目昆蟲中的幾種絲氨酸酶抑制劑(serine protease inhibitors)可增強(qiáng)Cry 毒素的毒性[45];增加昆蟲中腸內(nèi)切幾丁質(zhì)酶(endochitinases)的水平或于Cry毒素制劑中增加外源幾丁質(zhì)酶(chitinase)的水平可將Cry毒素的效果增加10倍[67];Cyt蛋白(Cyt proteins)可與Cry4A、Cry4B 及 Cry11Aa等蛋白協(xié)同作用,克服致倦庫蚊(Culexpipiensquinquefasciatus)種群對Cry毒素的抗性[8];且研究表明Cyt1Aa通過作為膜結(jié)合受體,可增強(qiáng)Cry11Aa對致倦庫蚊的毒性等[9]。另有研究表明,煙草天蛾(Manducasexta)的鈣黏蛋白作為協(xié)同增效劑能顯著增強(qiáng)Bt Cry1A對鱗翅目幼蟲小地老虎(Agrotisipsilon)、甜菜夜蛾(Spodopteraexigua)和玉米夜蛾(Helicoverpazea)的毒性[10]。Hua等[11]的研究表明鈣黏蛋白AdCad1是鞘翅目黑粉蟲(Alphitobiusdiaperinus)幼蟲中Bt毒素Cry3Bb的一個受體,且沉默AdCad1基因后可顯著降低黑粉蟲幼蟲對Cry3Bb的敏感性。
本研究依據(jù)Peng等[12]報道的棉鈴蟲氨基酸毒素結(jié)合區(qū)HaCad1(GenBank登錄號:AF519180)第1 217~1 461位氨基酸能增強(qiáng)Cry毒素活性,及Chen等[6]報道的對Bt毒素具有增效作用的煙草天蛾CR12MPED片段(GenBank登錄號:AF319973)第1 362~1 567位序列,克隆并表達(dá)了2個小菜蛾鈣黏蛋白編碼基因相應(yīng)片段,并進(jìn)一步測定了原核表達(dá)并純化后的相應(yīng)蛋白PxCAD1及PxCAD2對小菜蛾的毒力,明確了PxCAD1對Cry1Ac殺蟲蛋白的增效特性。
1.1供試?yán)ハx、試劑、質(zhì)粒及菌株
小菜蛾(Plutellaxylostella)美國敏感品系(Cry1Ac-S),由中國農(nóng)業(yè)科學(xué)院蔬菜花卉研究所昆蟲組惠贈,于室內(nèi)飼養(yǎng)多年,期間未施任何殺蟲劑。
RNA抽提所用TRIzol、cDNA合成試劑盒、T4DNA連接酶購自TaKaRa公司;限制性內(nèi)切酶EcoRI、XholI及SalI,購自NEB及Thermo公司;TaqDNA聚合酶、瓊脂糖凝膠回收試劑盒購自Tiangen公司;抗生素、溶菌酶及其他主要生化試劑購自長沙布蘭哲生物科技、上海生工生物工程有限公司和北京全式金生物技術(shù)有限公司;細(xì)菌蛋白抽提試劑、普通DNA產(chǎn)物純化試劑盒、SDS-PAGE凝膠制備試劑盒、Bradford蛋白測定試劑盒購于康為世紀(jì)公司;pEASY-T1 Cloning Kit、表達(dá)載體pGEX-6p-1購自全式金生物技術(shù)有限公司;SanPrep柱式質(zhì)粒DNA小量抽提試劑盒購自上海生工生物工程有限公司;GST標(biāo)簽蛋白純化試劑盒購自Merck Millipore公司。
1.2總RNA的抽提及檢測
按照TRIzoL抽提RNA法的說明書提取小菜蛾幼蟲中腸總RNA,抽提的總RNA純度符合試驗要求后,存于-80℃?zhèn)溆谩?/p>
1.3RT-PCR法克隆基因片段PxCAD1及PxCAD2
按照說明書合成cDNA第一鏈。根據(jù)Peng等[12]報道的棉鈴蟲氨基酸毒素結(jié)合區(qū)HaCad1第1 217~1 461位氨基酸能增強(qiáng)Cry毒素活性。在NCBI上下載其棉鈴蟲(AF519180)及小菜蛾(EF541176)的氨基酸序列,通過DNAMAN軟件比對,找出對應(yīng)的核苷酸序列,并以此為依據(jù)設(shè)計引物Cad-1f:ACGATCAGGGCCACCGACG;Cad-1r:GTACACCTTCACCTCCGCAC對PxCAD-1 (735 bp)片段進(jìn)行PCR擴(kuò)增。以合成的cDNA第一鏈為模板,進(jìn)行第2步PCR反應(yīng),反應(yīng)參數(shù)和程序為:94℃ 5 min;94℃ 1 min;62.2℃ 1 min;72℃ 1 min,30個循環(huán);72℃ 10 min。PCR產(chǎn)物經(jīng)電泳檢測后,回收產(chǎn)物,與pEASY-T1載體連接,轉(zhuǎn)化大腸桿菌,挑選陽性克隆進(jìn)行酶切與PCR鑒定,后由上海生工生物工程公司進(jìn)行測序。
根據(jù)已發(fā)表的對Bt毒素具有增效作用的煙草天蛾鈣黏蛋白基因序列信息CR12MPED片段(序列登錄號AF319973),通過DNAMAN軟件比對,找出小菜蛾(序列登錄號EF541176)相對應(yīng)的鈣黏蛋白核苷酸序列,并設(shè)計其引物Cad-2f:ATCAACAGGGAACTATTTACGG;Cad-2r:GCCCAACAGGTAGATGATGACG用于PxCAD2的PCR擴(kuò)增,產(chǎn)物大小約627 bp。以合成的cDNA第一鏈為模板,進(jìn)行第2步PCR反應(yīng),反應(yīng)參數(shù)和程序為:94℃ 5 min;94℃ 1 min;61.7℃ 1 min;72℃ 1 min,30個循環(huán);72℃ 10 min。PCR產(chǎn)物經(jīng)電泳檢測后,回收產(chǎn)物,與pEASY-T1載體連接,轉(zhuǎn)化大腸桿菌,挑選陽性克隆進(jìn)行酶切與PCR鑒定,后由上海生工生物工程公司進(jìn)行測序。
1.4重組蛋白的表達(dá)及純化
目的片段先與pEASY-T1載體連接轉(zhuǎn)入大腸桿菌DH5α感受態(tài)細(xì)胞,挑選陽性克隆提取質(zhì)粒后用雙酶切,回收目的片段,再與表達(dá)載體pGEX-6p-1連接,轉(zhuǎn)入大腸桿菌感受態(tài)BL21(DE3)中,挑取單菌落陽性鑒定,將陽性鑒定子加入含Chl及Amp抗生素的LB液體培養(yǎng)基中37℃過夜培養(yǎng)。經(jīng)最適溫度加入IPTG誘導(dǎo)表達(dá),檢測是否成功獲得與預(yù)測大小一致的總蛋白,后裂解檢測總蛋白為包涵體還是可溶性蛋白,確定可溶性蛋白后,通過改變誘導(dǎo)溫度、誘導(dǎo)IPTG濃度和誘導(dǎo)時間來篩選最優(yōu)的表達(dá)條件,盡可能多地獲得可溶性蛋白。最后用GST蛋白純化試劑盒純化篩選出單一的目的蛋白,操作方法按照試劑盒內(nèi)的說明書進(jìn)行,先加入樹脂和洗滌緩沖液洗滌,再加入樣品懸浮樹脂進(jìn)行孵育結(jié)合后漂洗,最后加入洗脫液收集純化后的蛋白溶液。通過SDS-PAGE檢測后,用Brandford標(biāo)準(zhǔn)曲線法對蛋白進(jìn)行定量。
1.5表達(dá)蛋白的生物活性測定
小菜蛾的生物測定方法同Yang等[13]。將定量后的PxCAD1(556 μg/mL)蛋白與Cry1Ac混合液、PxCAD2(551.25 μg/mL)蛋白與Cry1Ac混合液、Cry1Ac(1 μg/mL)溶液、PxCAD1(556 μg/mL)蛋白溶液及PxCAD2(551.25 μg/mL)蛋白溶液,分別采用葉片浸漬法對小菜蛾幼蟲進(jìn)行毒力測定,以表達(dá)載體pGEX-6p-1與Cry1Ac毒素的混合液為對照。藥后72 h觀察并記錄死亡蟲數(shù),每個蛋白的生物測定重復(fù)3次,數(shù)據(jù)統(tǒng)一采用SPSS 11.5統(tǒng)計軟件進(jìn)行分析。
2.1PxCAD1及PxCAD2基因片段的獲得
PCR擴(kuò)增得到了大小為735 bp與627 bp的PxCAD1及PxCAD2特異性DNA片段(圖1),前者編碼245個氨基酸,后者編碼209個氨基酸序列。為明確棉鈴蟲及煙草天蛾源增效位置片段與得到的小菜蛾相應(yīng)位置片段PxCAD1與PxCAD2的異同,故將得到的小菜蛾P(guān)xCAD1與棉鈴蟲毒素結(jié)合區(qū)相對應(yīng)的序列(序列登錄號AF519180)比對,結(jié)果發(fā)現(xiàn)具有50.83%的相似性(圖2);PxCAD2片段為根據(jù)已報道的煙草天蛾毒素結(jié)合區(qū)相對應(yīng)的序列進(jìn)行克隆,故將得到的小菜蛾P(guān)xCAD2與煙草天蛾毒素結(jié)合區(qū)相對應(yīng)的序列(序列登錄號AF319973)比對,結(jié)果發(fā)現(xiàn)具有55.56%的相似性(圖3)。
圖2 小菜蛾P(guān)xCAD1片段與棉鈴蟲鈣黏蛋白片段序列比對Fig.2 Sequence alignment between PxCAD1 fragment and cadherin fragment of Helicoverpa armigera
圖3 小菜蛾P(guān)xCAD2片段與煙草天蛾鈣黏蛋白片段序列比對Fig.3 Sequence alignment between PxCAD2 fragment and cadherin fragment of Manduca sexta
2.2小菜蛾鈣黏蛋白毒素結(jié)合區(qū)PxCAD1及PxCAD2的表達(dá)與純化
2.2.1目的片段與載體pEASY-T1重組質(zhì)粒的雙酶切
根據(jù)Primer 5.0軟件找到合適的酶切位點,PxCAD1片段用EcoRI和SalI進(jìn)行雙酶切,結(jié)果其重組質(zhì)粒幾乎被酶完全切開,獲得了含有黏性末端的735 bp的PxCAD1目的片段和剩下切開的線性質(zhì)粒片斷,PxCAD2用EcoRI和XhoI進(jìn)行雙酶切,結(jié)果其重組質(zhì)粒大部分被酶切成功,少量酶切失敗,獲得了大部分含黏性末端的627 bp的PxCAD2目的片段、剩下已切開的大部分的線性質(zhì)粒片段及少量的未切開的環(huán)狀重組質(zhì)粒(圖4)。
圖4 PxCAD1(a)和PxCAD2(b)重組質(zhì)粒的雙酶切Fig.4 Double enzyme digestion of the recombinant plasmid with PxCAD1(a) and PxCAD2(b) fragment
2.2.2重組表達(dá)載體的構(gòu)建及其表達(dá)與純化
(1)PxCAD1可溶性蛋白誘導(dǎo)表達(dá)條件的優(yōu)化
首先選擇最適生長溫度 37℃,轉(zhuǎn)速160 r/min,參考已發(fā)表文獻(xiàn)中所采用的IPTG終濃度1 mmol/L及誘導(dǎo)時間3 h進(jìn)行誘導(dǎo),SDS-PAGE結(jié)果如圖5,在3泳道55 kDa左右出現(xiàn)與預(yù)測GST-PxCAD1大小一致的目的條帶,可知重組蛋白PxCAD1成功表達(dá)。
圖5 37℃條件下誘導(dǎo)PxCAD1表達(dá)的總蛋白Fig.5 Expression of total PxCAD1 protein induced at 37℃
經(jīng)檢測后發(fā)現(xiàn)在上清中獲得的PxCAD1可溶性蛋白只有少量,為獲得更多的可溶性蛋白對誘導(dǎo)條件進(jìn)行了一系列的優(yōu)化。優(yōu)化條件為22℃、0.5 mmol/L IPTG、4 h時,擴(kuò)大培養(yǎng),超聲波裂解菌體,純化篩選出單一目的蛋白,如圖6(a),用Brandford標(biāo)準(zhǔn)曲線法對蛋白進(jìn)行定量,得到PxCAD1的濃度為556 μg/mL。
(2)PxCAD2可溶性蛋白誘導(dǎo)表達(dá)條件的優(yōu)化
首先選擇最適生長溫度 37℃下誘導(dǎo),參考已發(fā)表文獻(xiàn)中所采用的IPTG終濃度1 mmol/L,誘導(dǎo)時間6 h,轉(zhuǎn)速150 r/min進(jìn)行誘導(dǎo),SDS-PAGE結(jié)果如圖6(b),在2泳道51 kDa左右出現(xiàn)與預(yù)測GST-PxCAD2大小一致的目的條帶,可知重組蛋白PxCAD2成功得到表達(dá)。
圖6 PxCAD1(a)和PxCAD2(b)的SDS-PAGE檢測Fig.6 SDS-PAGE of PxCAD1(a)and PxCAD2(b)polypeptides
為獲得更多的可溶性蛋白,對誘導(dǎo)條件優(yōu)化后選擇乳糖自誘導(dǎo)法的表達(dá),并根據(jù)優(yōu)化條件擴(kuò)大培養(yǎng),超聲波裂解菌體,純化篩選出單一目的蛋白(圖7),用Brandford標(biāo)準(zhǔn)曲線法對蛋白進(jìn)行定量,得到PxCAD2的濃度為551.25 μg/mL。
圖7 PxCAD2的SDS-PAGE檢測Fig.7 SDS-PAGE of PxCAD2 peptide
2.3表達(dá)蛋白的生物測定
制備用作生物測定的經(jīng)過純化的Cry1Ac蛋白、PxCAD1及PxCAD2,并分別測定其濃度。以小菜蛾敏感品系3齡幼蟲(LC50=1.873 μg/mL,見表1)作為生物測定對象,分別測定了在Cry1Ac致死中濃度(1 μg/mL),及較高濃度的PxCAD1(556 μg/mL)或PxCAD2(551.25 μg/mL)存在時的死亡率(圖8)。結(jié)果表明,1 μg/mL的Cry1Ac可引起小菜蛾幼蟲46.7%的死亡率;當(dāng)加入濃度為556 μg/mL的PxCAD1時,小菜蛾3齡幼蟲的死亡率為85.6%,當(dāng)加入濃度為551.25 μg/mL的PxCAD2時,死亡率為45%;而對照組在1 μg/mL的Cry1Ac中,加入濃度為300.27μg/mL的pGEX-6p-1載體時,小菜蛾3齡幼蟲的死亡率為45.6%,處理與對照之間差異顯著。濃度為556 μg/mL的GST-PxCAD1蛋白溶液與濃度為551.25 μg/mL的GST-PxCAD2蛋白溶液均不會顯著引起小菜蛾幼蟲的死亡,表明表達(dá)后的PxCAD1與PxCAD2蛋白本身并無毒性,而PxCAD1蛋白可增強(qiáng)Cry1Ac蛋白的殺蟲活性,而較高濃度的PxCAD2也無增效作用。
表1 小菜蛾對Cry1Ac毒素的敏感性測定
圖8 PxCAD1與PxCAD2對Cry1Ac殺蟲活性的增效作用Fig.8 Enhancement of PxCAD1 and PxCAD2 of Plutella xylostella to Cry1Ac insecticidal activity
鈣黏蛋白屬依賴于鈣離子的跨膜蛋白家族中的一類,在多細(xì)胞間起連接和保持細(xì)胞完整性的作用,還在細(xì)胞增殖、分化過程中起連接蛋白的作用,并能調(diào)節(jié)胞外結(jié)構(gòu)域與胞質(zhì)結(jié)構(gòu)域的信號轉(zhuǎn)導(dǎo)途徑[14]。其作為Bt Cry毒素的初級受體,介導(dǎo)Bt Cry毒素毒殺害蟲的過程,在鱗翅目[12,1518,22]、鞘翅目[8, 23]及雙翅目[10]等多種昆蟲中鈣黏蛋白的氨基酸序列均已確定。昆蟲的鈣黏蛋白從N端至C端依次是信號肽、由9~12個重復(fù)子(cadherin repeats,CR)組成的重復(fù)區(qū)、近膜區(qū)(membrane proximal extracellular domain,MPED)、跨膜區(qū)(transmembrane domain)及胞質(zhì)區(qū)(intracellular domain)[11, 18]5個功能區(qū)域。鈣黏蛋白已被證實為鱗翅目害蟲Cry1Ac毒素的首選靶標(biāo)[18]。
已有的報道證明,煙草天蛾、煙芽夜蛾及甜菜夜蛾體內(nèi)的鈣黏蛋白毒素結(jié)合片段,在Bt毒素反應(yīng)過程中起著協(xié)同作用,且在煙草天蛾中無論鈣黏蛋白片段大小,均能在不同水平上影響毒素毒性的增強(qiáng)[10]。Pacheco等[24]的分析表明,殺蟲活性的增強(qiáng)是由于鈣黏蛋白片段CR12與Cry1A毒素結(jié)合促進(jìn)了低聚物的形成。除此之外,他還指出鈣黏蛋白片段CR7和CR11增強(qiáng)了Cry1Ac、Cry1Ab毒素對煙草天蛾幼蟲的殺蟲活性,但是效率不如CR12片段。
Peng等[19]的研究結(jié)果表明棉鈴蟲鈣黏蛋白片段毒素結(jié)合區(qū)HaCad1顯著增強(qiáng)了Cry1A毒素的毒性。本研究選取了小菜蛾鈣黏蛋白的相同位置序列PxCAD1,測序后與棉鈴蟲的該段序列氨基酸比對的相似性為50.83%,經(jīng)表達(dá)純化后,加入Cry1Ac毒素對小菜蛾進(jìn)行室內(nèi)毒力測定,致死率與對照有顯著差異,由此表明,該肽段對Cry1Ac毒素有顯著增效作用。
Chen等[1]的研究結(jié)果表明,煙草天蛾鈣黏蛋白片段毒素結(jié)合區(qū)CR12MPED顯著增強(qiáng)了Cry1A毒素的毒性,并發(fā)現(xiàn)CR12MPED 片段能夠高親和力地結(jié)合煙草天蛾中腸上皮細(xì)胞膜(Kd = 32 nM),并認(rèn)為增效作用的產(chǎn)生是由于CR12MPED 片段在昆蟲中腸BBMV 上增加了毒素結(jié)合位點,這些結(jié)合位點能夠吸引Cry1A毒素與中腸上皮細(xì)胞膜結(jié)合[1]。本研究選取了小菜蛾鈣黏蛋白的相同位置序列PxCAD2,其與煙草天蛾的該段序列氨基酸比對的相似性為55.56%,經(jīng)表達(dá)純化后,加入Cry1Ac毒素并對小菜蛾進(jìn)行室內(nèi)毒力測定,結(jié)果發(fā)現(xiàn)處理組與對照組對小菜蛾的致死率并無顯著差異,顯然該肽段對Cry1Ac毒素并無增效作用。
鄭曉旭等[26]用大腸桿菌進(jìn)行表達(dá)的條件,構(gòu)建了小菜蛾鈣黏蛋白片段基因的重組載體,優(yōu)化了一系列條件,但發(fā)現(xiàn)溫度的改變對融合蛋白的可溶性幾乎沒有影響,其得到的蛋白均為包涵體蛋白。本研究選擇了與其不同位置的鈣黏蛋白片段,并選用了適合的原核表達(dá)載體pGEX-6p-l,經(jīng)一系列優(yōu)化條件后,得到了大量的可溶性蛋白,并將其純化后對小菜蛾幼蟲進(jìn)行體外復(fù)配生測,本文首次針對小菜蛾的CAD1及CAD2兩個片段研究了它們的增效作用。另有研究結(jié)果表明,多肽片段的空間結(jié)構(gòu)是影響Cry毒素協(xié)同增效的因素之一,鈣黏蛋白片段對Cry毒素起增效作用的多肽片段大都為包涵體,處于展開狀態(tài)[6],也有報道可溶性鈣黏蛋白片段對毒素呈減效作用[27]。本研究中,表達(dá)的PxCAD1及PxCAD2蛋白均為可溶性蛋白片段,其中較高濃度的PxCAD1蛋白片段表現(xiàn)出了增效活性,但PxCAD2蛋白片段即使高濃度對Cry1Ac毒素也沒有表現(xiàn)出增效或減效作用,具體原因尚需進(jìn)一步研究。該結(jié)果將為篩選有效的小菜蛾鈣黏蛋白增效片段即尋找Cry1A毒素新的增效因子提供理論基礎(chǔ)。
[1]Sanahuja G, Banakar R, Twyman R M, et al.Bacillusthuringiensis:a century of research, development and commercial applications [J]. Plant Biotechnology Journal, 2011, 9(3):283300.
[2]Raymond B, Wright D J, Bonsall M B. Effects of host plant and genetic background on the fitness costs of resistance toBacillusthuringiensis[J]. Heredity, 2011, 106(2):281288.
[3]Griffitts J S, Aroian R V. Many roads to resistance:how invertebrates adapt to Bt toxins [J].Bioessays, 2005, 27(6):614624.
[4]MacIntosh S C, Kishore G M, Perlak F J, et al. Potentiation ofBacillusthuringiensisinsecticidal activity by serine protease inhibitors [J]. Journal of Agricultural Food Chemistry, 1990,38(4):11451152.
[5]Hilder V A, Gatehouse A M R, Sheerman S E, et al. A novel mechanism of insect resistance engineered into tobacco[J]. Nature,1987,330:160163.
[6]Ding Xuezhi, Luo Zhaohui, Xia Liqiu, et al. Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferousBacillusthuringiensis[J]. Current Microbiology, 2008,56(5):442446.
[7]Regev A, Keller M, Strizhov N. Synergistic activity of aBacillusthuringiensisdelta-endotoxin and a bacterial endochitinase againstSpodopteralittoralislarvae [J]. Applied and Environmental Microbiology, 1996,62(10):35813856.
[8]Wirth M C, Georghiou G P, Federici B A. CytA enables CryIV endotoxins ofBacillusthuringiensisto overcome high levels of CryIV resistance in the mosquitoCulexquinquefasciatus[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997;94(20):1053610540.
[9]Pardo-Lopez L, Munoz-Garay C, Porta H, et al. Strategies to improve the insecticidal activity of Cry toxins fromBacillusthuringiensis[J]. Peptides, 2009, 30(3):589595.
[9]Pérez C, Fernandez L E, Sun J, et al.BtiCry11Aa and Cyt1Aa toxins interactions support the synergism-model that Cyt1Aa functions as membrane-bound receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102:1830318308.
[10]Abdullah M A, Moussa S, Taylor M D, et al.Manducasexta(Lepidoptera:Sphingidae) cadherin fragments function as synergists for Cry1A and Cry1CBacillusthuringiensistoxins against noctuid mothsHelicoverpazea,AgrotisipsilonandSpodopteraexigua[J]. Pest Management Science, 2009, 65(10):10971103.
[11]Hua G, Park Y, Adang M J. Cadherin AdCad1 inAlphitobiusdiaperinuslarvae is a receptor of Cry3Bb toxin fromBacillusthuringiensis[J]. Insect Biochemistry and Molecular Biology, 2014, 45:1117.
[12]Peng Donghai, Xu Xiaohui, Ye Weixing, et al.Helicoverpaarmigeracadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation [J]. Applied Microbiology and Biotechnology, 2010, 85(4):10331040.
[13]Yang Zhongxia, Zhang Wenli, Wu Qingjun, et al. Effects of injecting cadherin gene dsRNA on growth and development in diamondback mothPlutellaxylostella(Lep.:Plutellidae)[J]. Journal of Applied Entomology, 2009, 133(2):7581.
[14]Angst B D, Marcozzi C, Magee A I. The cadherin superfamily:diversity in form and function [J]. Journal of Cell Science, 2001, 114:629641.
[15]Gahan L J, Gould F, Heckel D G. Identification of a gene associated with Bt resistance inHeliothisvirescens[J]. Science, 2001,293(5531):857860.
[16]Jurat-Fuentes J L, Adang M J. TheHeliothisvirescenscadherin protein expressed inDrosophilaS2 cells functions as a receptor forBacillusthuringiensisCry1A but not Cry1Fa toxins[J]. Biochemistry, 2006, 45(32):96889695.
[17]Xie R, Zhuang M, Ross L S, et al. Single amino acid mutations in the cadherin receptor fromHeliothisvirescensaffect its toxin binding ability to Cry1A toxins [J].Journal of Biological Chemistry, 2005, 280(9):84168425.
[18]Xu Xijun, Yu Liangying, Wu Yidong. Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin ofBacillusthuringiensisinHelicoverpaarmigera[J].Applied and Environmental Microbiology, 2005, 71(2):948954.
[19]Wang Guirong, Wu Kongming, Liang Gemei, et al. Gene cloning and expression of cadherin in midgut ofHelicoverpaarmigeraand its Cry1A binding region [J].Science in China Series C:Life Sciences, 2005, 48(4):346356.
[20]Flannagan R D, Yu C G, Mathis J P, et al. Identification, cloning and expression of a Cry1Ab cadherin receptor from European corn borer,Ostrinianubilalis(Hübner) (Lepidoptera:Crambidae)[J].Insect Biochemistry and Molecular Biology, 2005, 35(1):3340.
[21]Morin S, Biggs R W, Sisterson M S, et al. Three cadherin alleles associated with resistance toBacillusthuringiensisinpinkbollworm[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9):50045009.
[22]楊峰山,張友軍,張文吉,等. 小菜蛾類鈣黏蛋白cDNA片段的克隆和序列分析[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報, 2005, 13(3):396397.
[23]Fabrick J, Oppert C, Lorenzen M D, et al. A novel Tenebrio molitor cadherin is a functional receptor forBacillusthuringiensisCry3Aa toxin [J]. Journal of Biological Chemistry, 2009, 284(27):1840118410.
[24]Pacheco S, Gomez I, Gill S S, et al. Enhancement of insecticidal activity ofBacillusthuringiensisCry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation [J]. Peptides, 2009, 30(3):583588.
[25]Dorsch J A, Candas M, Griko N B, et al.Cry1A toxins ofBacillusthuringiensisbind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R1 inManducasexta:involvement of a cadherin in the entomopathogenicity ofBacillusthuringiensis[J]. Insect Biochemistry and Molecular Biology, 2002, 32:10251036.
[26]鄭曉旭,楊峰山,朱勛,等. 小菜蛾類鈣黏蛋白片段的原核融合表達(dá)載體構(gòu)建及其條件優(yōu)化[J]. 中國蔬菜, 2013(14):715.
[27]Liu Chenxi, Wu Kongming, Wu Yidong, et al. Reduction ofBacillusthuringiensisCry1Ac toxicity againstHelicoverpaarmigeraby a soluble toxin-binding cadherin fragment [J].Journal of Insect Physiology, 2009, 55(8):686693.
(責(zé)任編輯:田喆)
Synergistic effects of two cadherin gene fragments in functional region fromPlutellaxylostellato CrylAc protein toxicity
Gong Lijun1,Peng Peng1,Yuan Zheming1,2,Liu Ao1,Yang Zhongxia1,2
(1. Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha410128, China; 2. Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha410128, China)
It was reported that peptide from toxin-binding region of cadherin receptor in some insects had a synergistic effect on Cry1Ac toxin. Two cadherin gene fragments (PxCAD1 andPxCAD2) fromPlutellaxylostellawere cloned. The functional region fragmentsPxCAD1 andPxCAD2 were expressed inEscherichiacoliby using vector pGEX-6p-1. Bioassays with CrylAc (1 μg/mL) in the presence ofPxCAD1(556 μg/mL) polypeptide andPxCAD2(551.25 μg/mL)polypeptide were performed againstP.xylostellalarvae. The results showed thatPxCAD1 caused a mortality of 85.56% to the larvae, while there was no significant enhancement of CrylAc toxicity toP.xylostellalarvae withPxCAD2 peptide. Meanwhile,PxCAD1 andPxCAD2 alone were non-toxic toP.xylostellalarvae. Our results provided theoretical basis for screening effective synergistic fragments, and had great significance in revealing the mechanism of Bt insecticidal protein and insect resistance to Bt.
Plutellaxylostella;cadherin fragment;CrylAc;synergism;expression
20150407
20150420
國家自然科學(xué)基金(31171861);湖南省高等學(xué)??茖W(xué)研究青年項目(12B065)
E-mail:yzxmichelle@aliyun.com
Q 966
A
10.3969/j.issn.05291542.2016.03.007