王 杰, 夏成宇, 馮 定, 于長(zhǎng)柏
(1.長(zhǎng)江大學(xué) 機(jī)械工程學(xué)院, 湖北 荊州 434023;2.湖北省油氣鉆完井工具工程技術(shù)研究中心, 湖北 荊州 434023;3.中國(guó)石油化工集團(tuán)公司 石油工程機(jī)械有限公司, 湖北 武漢 430000)
?
新型渦輪驅(qū)動(dòng)水力振蕩器設(shè)計(jì)與實(shí)驗(yàn)研究
王杰1,2, 夏成宇1,2, 馮定1,2, 于長(zhǎng)柏3
(1.長(zhǎng)江大學(xué) 機(jī)械工程學(xué)院, 湖北 荊州 434023;2.湖北省油氣鉆完井工具工程技術(shù)研究中心, 湖北 荊州 434023;3.中國(guó)石油化工集團(tuán)公司 石油工程機(jī)械有限公司, 湖北 武漢 430000)
提出了一種新型的石油鉆井用水力振蕩器,可有效降低管柱摩阻,提高鉆井效率.該水力振蕩器采用渦輪驅(qū)動(dòng),并使用雙偏心動(dòng)定閥作為壓力脈沖發(fā)生機(jī)構(gòu).通過(guò)建立雙偏心動(dòng)定閥的運(yùn)動(dòng)特性方程,結(jié)合實(shí)際工況得出閥盤(pán)的最優(yōu)尺寸.通過(guò)選定閥型的水力振蕩器性能測(cè)試實(shí)驗(yàn),得出在模擬鉆壓為30 kN,流量為28 L/s,工作介質(zhì)為清水時(shí)的振動(dòng)沖擊力約為15 859 N,振動(dòng)位移約為4.1 mm,振動(dòng)頻率約為11.4 Hz.該分析與實(shí)驗(yàn)結(jié)果對(duì)水力振蕩器的設(shè)計(jì)與應(yīng)用具有指導(dǎo)意義.
鉆井; 水力振蕩器; 雙偏心動(dòng)定閥; 壓力脈沖; 實(shí)驗(yàn)
隨著油田開(kāi)發(fā)的不斷深入以及鉆井技術(shù)的進(jìn)步,石油鉆井逐漸向大位移井、多分支水平井發(fā)展.然而,水平井鉆井時(shí)會(huì)出現(xiàn)摩阻增大、托壓等問(wèn)題,嚴(yán)重影響機(jī)械轉(zhuǎn)速,特別是在滑動(dòng)鉆井時(shí),由于鉆桿摩阻過(guò)大,鉆壓無(wú)法有效地傳遞到鉆頭,破巖效率降低,鉆井周期延長(zhǎng),作業(yè)效率降低,建井成本大大增加.旋沖鉆具、液力沖擊器、水力振蕩器等一系列降摩減阻工具的開(kāi)發(fā)和應(yīng)用對(duì)提速增效有重要意義[1].水力振蕩器作為一種高效的降摩減阻工具已經(jīng)得到廣泛研究與試驗(yàn)[2-3].文獻(xiàn)[4]提出了一種射流式水力振蕩器,其整體結(jié)構(gòu)簡(jiǎn)單.文獻(xiàn)[5]提出了一種螺桿驅(qū)動(dòng)的水力振蕩器并進(jìn)行了現(xiàn)場(chǎng)試驗(yàn),試驗(yàn)結(jié)果表明該水力振蕩器能有效提高機(jī)械轉(zhuǎn)速.文獻(xiàn)[6]提出了一種利用葉輪旋轉(zhuǎn)實(shí)現(xiàn)流道周期性打開(kāi)與關(guān)閉從而產(chǎn)生壓力脈沖的水力振蕩器,并在多口油井進(jìn)行試驗(yàn),試驗(yàn)效果良好.文獻(xiàn)[7]針對(duì)螺桿水力振蕩器的相關(guān)參數(shù)進(jìn)行了實(shí)驗(yàn)研究,得出了結(jié)構(gòu)參數(shù)對(duì)水力振蕩器性能的影響規(guī)律.文獻(xiàn)[8]根據(jù)振蕩器的結(jié)構(gòu)及工作原理建立了力學(xué)分析模型.以National Oilwell Varco(NOV)公司生產(chǎn)的水力振蕩器為例,該水力振蕩器由振動(dòng)短節(jié)、動(dòng)力短節(jié)、閥門(mén)和軸承系統(tǒng)組成,如圖1所示.其工作原理為:當(dāng)鉆井液經(jīng)過(guò)動(dòng)力短節(jié)時(shí),驅(qū)動(dòng)螺桿旋轉(zhuǎn),同時(shí)鉆井液經(jīng)引流機(jī)構(gòu)進(jìn)入沿螺桿軸線的軸向流道,螺桿末端過(guò)流孔與有偏心過(guò)流孔的定閥盤(pán)緊密配合,根據(jù)單頭螺桿的運(yùn)動(dòng)特性,螺桿軸端的往復(fù)旋轉(zhuǎn)運(yùn)動(dòng)會(huì)使螺桿末端過(guò)流孔與定閥偏心過(guò)流孔形成的過(guò)流面積呈周期性變化,從而導(dǎo)致閥口處壓力產(chǎn)生周期性變化,形成壓力脈沖.脈沖壓力引起工具的軸向振動(dòng),改變鉆柱與井壁的摩擦條件,達(dá)到降低摩阻和提速的目的.
綜合國(guó)內(nèi)外水力振動(dòng)器的應(yīng)用及發(fā)展情況[9-11],
1—振動(dòng)短節(jié);2—?jiǎng)恿Χ坦?jié);3—閥門(mén)組.圖1 NOV水力振蕩器結(jié)構(gòu)圖Fig.1 Structure diagram of NOV hydraulic oscillator
螺桿驅(qū)動(dòng)水力振動(dòng)器能有效提高鉆井速度,但同時(shí)也存在工作壽命短、零件沖蝕嚴(yán)重、自身壓耗偏大等許多問(wèn)題,需要進(jìn)一步改善[12].渦輪鉆具轉(zhuǎn)速高,壓耗低,不含橡膠件,耐高溫(工作溫度可達(dá)250~300 ℃),適用于深井、超深井和高溫高壓井的鉆井作業(yè)[13-14].閥門(mén)組作為水力振蕩器核心零部件,決定了渦輪驅(qū)動(dòng)水力振蕩器的功能實(shí)現(xiàn),其周期性地改變閥口過(guò)流面積來(lái)產(chǎn)生節(jié)流效應(yīng)從而產(chǎn)生沖擊力,閥口的結(jié)構(gòu)及運(yùn)動(dòng)特性也決定了水力振蕩器的工作性能.雙偏心動(dòng)定閥組加工制造簡(jiǎn)單,參數(shù)可調(diào),可很好地輔助渦輪驅(qū)動(dòng)水力振蕩器的功能實(shí)現(xiàn).為此,本文基于渦輪理論設(shè)計(jì)了一款新型的渦輪驅(qū)動(dòng)水力振蕩器,并就該水力振蕩器所采用的雙偏心動(dòng)定閥組的特性進(jìn)行分析,推導(dǎo)出該水力振動(dòng)器的振動(dòng)頻率、振動(dòng)位移以及振動(dòng)軸向力,同時(shí),通過(guò)室內(nèi)實(shí)驗(yàn)對(duì)特定閥型的水力振蕩器相關(guān)性能進(jìn)行了測(cè)試.
渦輪驅(qū)動(dòng)水力振蕩器(如圖2所示)利用鉆井液驅(qū)動(dòng)渦輪組作為旋轉(zhuǎn)動(dòng)力輸出實(shí)現(xiàn)動(dòng)閥門(mén)的周期性旋轉(zhuǎn),動(dòng)閥門(mén)與定閥門(mén)的相對(duì)運(yùn)動(dòng)導(dǎo)致流道口的周期性變化,從而產(chǎn)生周期性壓力脈沖,實(shí)現(xiàn)工具的周期性振動(dòng).
1—下接頭;2—定閥盤(pán);3—?jiǎng)娱y盤(pán);4—下扶正軸承;5—主軸;6—連接套;7—推力軸承;8—限流套;9—分流套;10—渦輪組;11—隔環(huán);12—上接頭;13—振動(dòng)短節(jié).圖2 渦輪驅(qū)動(dòng)水力振蕩器結(jié)構(gòu)圖Fig.2 Structure diagram of turbine driven hydraulic oscillator
其工作原理為:泥漿經(jīng)過(guò)渦輪組驅(qū)動(dòng)轉(zhuǎn)子旋轉(zhuǎn),轉(zhuǎn)子帶動(dòng)主軸旋轉(zhuǎn),流出渦輪組的泥漿經(jīng)過(guò)分流套進(jìn)入主軸內(nèi)沿軸線方向的流道;流道的末端安裝有動(dòng)閥盤(pán),動(dòng)閥盤(pán)的流道通孔為偏心,動(dòng)閥盤(pán)的下端為定閥盤(pán),固定在下接頭上,定閥盤(pán)的流道通孔也為偏心,動(dòng)閥盤(pán)的旋轉(zhuǎn)會(huì)使過(guò)流面積周期性地改變,從而在閥口處形成節(jié)流并產(chǎn)生周期性壓力脈沖;壓力脈沖引起振動(dòng)短節(jié)軸向振動(dòng),該軸向振動(dòng)傳遞至鉆桿使鉆桿外壁與井壁的接觸情況發(fā)生改變,有效降低管柱減阻.
1—定閥盤(pán);2—?jiǎng)娱y盤(pán).圖3 動(dòng)定閥結(jié)構(gòu)圖Fig.3 Structure diagram of moving valve and fixed valve
圖4 閥口過(guò)流面積變化示意圖Fig.4 Schematic diagram of the change of flow area of valve
過(guò)流面積的變化影響節(jié)流效果,也決定了水力振蕩器的工作性能.為得到該雙偏心動(dòng)定閥的面積變化規(guī)律,建立圖5所示的坐標(biāo)系.圖中O1為定閥盤(pán)流道孔截面的圓心,O2為動(dòng)閥盤(pán)流道孔截面的圓心,圓O1的偏心距為e1,圓O2的半徑為e2,O點(diǎn)既為坐標(biāo)系原點(diǎn),也為動(dòng)閥盤(pán)液體作用面的圓心(直徑為80 mm),同時(shí)也為動(dòng)閥盤(pán)的旋轉(zhuǎn)中心,A,B為圓O1和圓O2的交點(diǎn),α為兩圓心與O點(diǎn)連線之間的夾角,即動(dòng)閥盤(pán)的旋轉(zhuǎn)角度.
圖5 閥口過(guò)流面積計(jì)算模型Fig.5 The calculating model of flow area of valve
根據(jù)雙偏心動(dòng)定閥的運(yùn)動(dòng)規(guī)律建立過(guò)流面積的表達(dá)式.
1)假設(shè)圓O1的半徑與圓O2的半徑相等,即r1=r2,則:
S△O1AB=S△O2AB=
S過(guò)流面積=S扇形O1AB+S扇形O2AB-S△O1AB-S△O2AB.
將式進(jìn)行整理可以得到
2)假設(shè)圓O1的半徑與圓O2的半徑不相等,即r1≠r2,同理可得
式中r為r1與r2的較小值.
現(xiàn)場(chǎng)實(shí)踐表明,水力振蕩器的最大壓耗不得超過(guò)4 MPa[15],其中渦輪短節(jié)壓耗為0.145 MPa[16],綜合局部水力損失約為0.8 MPa[17],現(xiàn)要求盡可能增加沖擊作用力,降低沖擊力平均作用時(shí)間,提高沖擊力動(dòng)載效應(yīng).依據(jù)MATLAB軟件的優(yōu)化工具箱建立關(guān)于動(dòng)定閥尺寸的優(yōu)化函數(shù)X=fminimax(‘F’,x,A,b),根據(jù)薄壁圓孔節(jié)流理論可以得到動(dòng)定閥組所能產(chǎn)生的沖擊力F表達(dá)式為
式中:ρ——泥漿密度,取1.1×103kg/m3;
Q——流量,取28 L/s;
Cd——流量系數(shù),取0.61[18].
根據(jù)MATLAB軟件的優(yōu)化結(jié)果可以得到,動(dòng)定閥盤(pán)的流道通孔內(nèi)徑與偏心距相等,且r1=r2=40 mm,e1=e2=39.5 mm,該動(dòng)定閥的過(guò)流面積和沖擊力變化規(guī)律如圖6、圖7所示.
圖6 閥口過(guò)流面積變化規(guī)律Fig.6 The change rule of flow area of valve
圖7 閥口沖擊力變化規(guī)律Fig.7 The change regularity of impact force of valve
1—泵及水箱;2—水力振蕩器測(cè)試臺(tái)架;3—位移信號(hào)接收器;4—應(yīng)變信號(hào)接收器;5—循環(huán)管路;6—工裝件;7—位移傳感器.圖8 渦輪驅(qū)動(dòng)水力振蕩器實(shí)驗(yàn)方案Fig.8 Experimental plan of turbine driven hydraulic oscillator
圖9 傳感器安裝示意圖Fig.9 Schematic diagram of sensor installation
根據(jù)動(dòng)定閥組優(yōu)化設(shè)計(jì)結(jié)果,加工相應(yīng)尺寸的動(dòng)定閥盤(pán),并開(kāi)展渦輪驅(qū)動(dòng)水力振蕩器的室內(nèi)實(shí)驗(yàn).實(shí)驗(yàn)設(shè)備包括水力振蕩器測(cè)試臺(tái)架、BDI應(yīng)變測(cè)試儀、4根工裝件、位移傳感器、泥漿泵.實(shí)驗(yàn)方案如圖8所示.其測(cè)試原理為:水力振蕩器測(cè)試臺(tái)架的2組限位鎖死機(jī)構(gòu)分別固定在水力振蕩器的動(dòng)力短節(jié)和振動(dòng)短節(jié)上,鎖死機(jī)構(gòu)通過(guò)4根連桿連接,連桿上安裝工裝件,通過(guò)測(cè)試工裝件的應(yīng)變即可測(cè)得連桿所受軸向力,連桿的合力即為水力振蕩器的振動(dòng)力,與此同時(shí),水力振蕩器測(cè)試臺(tái)架可調(diào)節(jié)振動(dòng)短節(jié)與動(dòng)力短節(jié)的預(yù)壓力以模擬鉆壓;在振動(dòng)短節(jié)與動(dòng)力短節(jié)連接處安裝位移傳感器,通過(guò)測(cè)量2個(gè)短節(jié)的相對(duì)位置關(guān)系來(lái)測(cè)試振動(dòng)短節(jié)的位移變化情況.位移傳感器及應(yīng)變傳感器的安裝方法如圖9所示.實(shí)驗(yàn)時(shí)控制模擬鉆壓為30 kN,流量為28 L/s,通過(guò)拉力實(shí)驗(yàn)機(jī)測(cè)得4根工裝件的軸向力與應(yīng)變比例系數(shù)分別為K1,K2,K3,K4,水力振蕩器穩(wěn)定工作狀態(tài)下4根工裝件的應(yīng)變分別為ε1,ε2,ε3,ε4,由此可以得到水力振蕩器的振動(dòng)力為
F=K1ε1+K2ε2+K3ε3+K4ε4.
實(shí)驗(yàn)測(cè)得位移數(shù)據(jù)和軸力數(shù)據(jù)如圖10、圖11所示.利用頻域響應(yīng)分析軟件對(duì)測(cè)試數(shù)據(jù)進(jìn)行分析可以得到水力振蕩器的振動(dòng)頻率,如圖12所示.
圖10 振蕩器軸力變化情況Fig.10 The variation of the axial force of the oscillator
圖11 振動(dòng)短節(jié)位移變化情況Fig.11 The displacement of vibration short-segment
圖12 位移數(shù)據(jù)頻域響應(yīng)分析Fig.12 Frequency response analysis of displacement data
根據(jù)圖示結(jié)果可以得到實(shí)驗(yàn)狀況下該渦輪驅(qū)動(dòng)水力振蕩器軸力的平均振幅,即振動(dòng)沖擊力約為15 859 N,振動(dòng)位移約為4.1 mm,振動(dòng)頻率約為11.4 Hz.
1)本文提出了一種新型的渦輪驅(qū)動(dòng)水利振蕩器,并采用了雙偏心動(dòng)定閥作為壓力脈沖發(fā)生器,具有振動(dòng)頻率高、壓耗低、壽命長(zhǎng)等特點(diǎn).
2)本文分析了雙偏心動(dòng)定閥的運(yùn)動(dòng)特性,建立了過(guò)流面積計(jì)算方程,并依據(jù)實(shí)際工況設(shè)計(jì)出最優(yōu)的動(dòng)定閥尺寸.
3)通過(guò)渦輪驅(qū)動(dòng)水利振蕩器性能測(cè)試實(shí)驗(yàn)得到該水力振蕩器在模擬鉆壓為30 kN,流量為28 L/s,工作介質(zhì)為清水時(shí)的振動(dòng)沖擊力約為15 859 N,振動(dòng)位移約為4.1 mm,振動(dòng)頻率約為11.4 Hz.
[1] 賈承造,鄭民,張永峰.中國(guó)非常規(guī)油氣資源與勘探開(kāi)發(fā)前景[J].石油勘探與開(kāi)發(fā),2012,39(2):129-136.
JIA Cheng-zao, ZHENG Min, ZHANG Yong-feng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J].Petroleum Exploration and Development,2012, 39(2):129-136.
[2] 王建龍,王豐,張?chǎng)┉?,?水力振蕩器在復(fù)雜結(jié)構(gòu)井中的應(yīng)用[J].石油機(jī)械,2015,43(4):54-58.
WANG Jian-long,WANG Feng, ZHANG Wen-qiong,et al. Application of hydraulic oscillator in complex wells[J]. China Petroleum Machinery, 2015,43(4):54-58.
[3] 許京國(guó),陶瑞東,楊靜,等.水力振蕩器在大位移井張海29-38L井的應(yīng)用[J].斷塊油氣田,2014,21(4):527-529.
XU Jing-guo, TAO Rui-dong, YANG Jing,et al. Application of hydraulic oscillator in Zhanghai 29-38L extended reach well[J]. Fault-Block Oil and Gas Field, 2014,21(4):527-529.
[4] 王建張.?120型射流式水力振蕩器結(jié)構(gòu)設(shè)計(jì)[J].石油礦場(chǎng)機(jī)械,2015,44(9):68-72.
WANG Jian-zhang. Structure design of ?120 type liquid jet oscillation tool[J]. Oil Field Equipment,2015,44(9):68-72.
[5] 王層芳,賈吉冉,楊成永,等.水力振蕩器的研制與應(yīng)用[J].石油礦場(chǎng)機(jī)械,2015,44(7):83-85.
WANG Ceng-fang,JIA Ji-ran, YANG Cheng-yong,et al.Study and application of agitator[J]. Oil Field Equipment, 2015,44(7):83-85.
[6] 李博.水力振蕩器的研制與現(xiàn)場(chǎng)試驗(yàn)[J].石油鉆探技術(shù),2014,42(1):111-113.
LI Bo. Development and pilot test of hydro-oscillator[J]. Petroleum Drilling Technology, 2014,42(1):111-113.
[7] 羅朝東,鄢標(biāo),夏成宇,等.水力振蕩器性能影響因素試驗(yàn)研究[J].石油機(jī)械,2016,44(1):25-28.
LUO Chao-dong, YAN Biao, XIA Cheng-yu,et al. Experimental study on the factors impacting the performance of the hydraulic oscillator[J]. China Petroleum Machinery,2016,44(1):25-28.
[8] 田家林,楊志,楊琳,等.新型鉆井振蕩器工作原理與振動(dòng)特性研究[J].中國(guó)機(jī)械工程,2015,26(21):2946-2951.
TIAN Jia-lin, YANG Zhi, YANG Lin,et al.Research on operation principles and vibration features of new drilling oscillator[J]. China Mechanical Engineering,2015,26(21):2946-2951.
[9] KJELL-INGE Sola, BJORNAR Lund. New downhole tool for coiled tubing extended reach[R].Houston: SPE/ICoTA Coiled Tubing Roundtable, 2000.
[10] RASHEED W. Extending the reach and capability of non-roating BHAs by reducing axial friction[R].Houston: SPE/ICoTA Coiled Tubing Roundtable, 2001.
[11] MUHAMMAND H Al-Buali, ALLA A Dashash, Alaa S Shawly, et al. Maximizing coiled tubing reach during logging extended horizontal wells using E-line agitator[R].Kuwait: Kuwait International Petroleum Conference and Exhibition, 2009.
[12] 明瑞卿,張時(shí)中,王海濤,等.國(guó)內(nèi)外水力振蕩器的研究現(xiàn)狀及展望[J].石油鉆探技術(shù),2015,43(5):116-122.
MING Rui-qing, ZHANG Shi-zhong, WANG Hai-tao,et al. Research status and prospect of hydraulic oscillator worldwide[J].Petroleum Drilling Technology, 2015,43(5):116-122.
[13] 馮定.國(guó)產(chǎn)渦輪鉆具結(jié)構(gòu)及性能分析[J].石油機(jī)械,2007,35(1):59-61.
FENG Ding. Structure and performance analysis of domestic turbine drill[J].China Petroleum Machinery,2007,35(1):59-61.
[14] 楊利強(qiáng),巴魯軍,薛江平.等壁厚螺桿鉆具研制與現(xiàn)場(chǎng)試驗(yàn)[J].石油鉆探技術(shù),2012,40(2):109-112.
YANG Li-qiang, BA Lu-jun, XUE Jiang-ping,et al.Development and field experiment on PDM with uniform wall thickness[J].Petroleum Drilling Technology,2012,40(2):109-112.
[15] 張輝,吳仲華,蔡文軍.水力振蕩器的研制及現(xiàn)場(chǎng)試驗(yàn)[J].石油機(jī)械,2014,42(6):12-15.
ZHANG Hui,WU Zhong-hua, CAI Wen-jun. Development and field testing of hydraulic oscillator[J]. China Petroleum Machinery, 2014,42(6):12-15.
[16] 譚春飛,夏彬,夏柏如,等.172組合減速渦輪鉆具的研究與應(yīng)用[J].鉆采工藝,2010,33(5):77-80.
TAN Chun-fei, XIA Bin, XIA Bo-ru,et al.Research and application of 172mm combined reduction turbodrill[J].Drilling and Production Technology, 2010,33(5):77-80
[17] 馮進(jìn),江龍,鄧曦,等.渦輪鉆具花鍵軸流道水力損失分析及尺寸優(yōu)選[J].石油機(jī)械,2012,40(7):41-44.
FENG Jin,JIANG Long,DENG Xi,et al. Hydraulic loss analysis of turbodrill spline shaft flow channel and optimization of dimensions[J]. China Petroleum Machinery,2012,40(7):41-44.
[18] 李明濤.振蕩剪切閥式連續(xù)波信號(hào)發(fā)生器的研制[D].東營(yíng): 中國(guó)石油大學(xué)(華東)機(jī)電工程學(xué)院,2013:7-10.
LI Ming-tao.Development of continuous wave signal generator based on oscillating shear valve[D].Dongying: China University of Petroleum, College of Mechanical and Electronic Engineering, 2013: 7-10.
Design and experimental study on a new type of turbine driven hydraulic oscillator
WANG Jie1,2, XIA Cheng-yu1,2, FENG Ding1,2, YU Chang-bo3
(1. School of Mechanical Engineering, Yangtze University, Jingzhou 434023, China;2. Oil and Gas Drilling and Well Completion Tools Research Center of Hubei Province, Jingzhou 434023, China;3. Oilfield Equipment Corporation, Sinopec Group, Wuhan 430000, China)
A new type of hydraulic oscillator for oil drilling is presented, which can effectively reduce the frictional resistance and increase the drilling efficiency. The hydraulic oscillator was driven by a turbine, and double eccentric valve was used as the pressure pulse generating mechanism. By establishing the motion characteristic equation of the double eccentric valve, the optimal size of the valve disc was obtained based on the actual working conditions. The performance test experiment of the hydraulic oscillator with selected valve was carried out, the experimental results showed that the vibration impact force of the hydraulic oscillator was about 15 859 N, the vibration displacement was about 4.1 mm, and the vibration frequency was about 11.4 Hz when the drilling pressure was 30 kN, the flow rate was 28 L/s, and the working medium was water. The analysis and experimental results have guiding significance for the design and application of the hydraulic oscillator.
drilling; hydraulic oscillator; double eccentric valve; pressure pulse; experiment
2016-04-25.
本刊網(wǎng)址·在線期刊:http://www.journals.zju.edu.cn/gcsjxb
國(guó)家自然科學(xué)基金資助項(xiàng)目(51405032,51275057).
王杰(1991—),男,碩士生,湖北荊州人,從事流體機(jī)械設(shè)計(jì)及CAD技術(shù)研究,E-mail: 1105625343@qq.com.
http://orcid.org//0000-0001-5641-0672通信聯(lián)系人:夏成宇(1981—),男,四川眉山人,副教授,博士,從事管柱力學(xué)與井下工具研究,E-mail: qlq1010@126.com.
10.3785/j.issn. 1006-754X.2016.04.015
TE 921.2
A
1006-754X(2016)04-0391-05
http://orcid.org//0000-0001-7896-9506