蔣武軍,鄒金鋒
?
應(yīng)變軟化圓形隧道圍巖的逐步量綱一化應(yīng)力分析方法
蔣武軍1,鄒金鋒2
(1. 湖南省高速公路管理局,湖南 長(zhǎng)沙,410001;2. 中南大學(xué) 土木工程學(xué)院,湖南 長(zhǎng)沙,410075)
基于線性Mohr?Coulomb強(qiáng)度準(zhǔn)則,采用量綱一化分析方法,改進(jìn)應(yīng)變軟化圍巖應(yīng)力位移求解的逐步應(yīng)力分析法。通過(guò)將軟化圍巖塑性區(qū)分為有限個(gè)圓環(huán),對(duì)每個(gè)圓環(huán)求解其應(yīng)力和應(yīng)變?cè)隽?,得到軟化圍巖應(yīng)力和位移解。利用現(xiàn)有的理論解驗(yàn)證該方法的正確性和可靠性。通過(guò)數(shù)值計(jì)算和參數(shù)分析,揭示部分參數(shù)對(duì)圍巖應(yīng)力和位移的影響規(guī)律。研究結(jié)果表明:當(dāng)圓環(huán)數(shù)量=500時(shí),逐步量綱一化應(yīng)力解與精確解吻合度較高;塑性區(qū)隨臨界塑性應(yīng)變偏差增大而減小,當(dāng)增加到某一定值時(shí),圍巖內(nèi)部不存在殘余區(qū);塑性半徑及圍巖位移隨著的減小而不斷增大,當(dāng)為0時(shí),軟化圍巖近似于脆性狀態(tài)。
應(yīng)變軟化;逐步應(yīng)力法;Mohr?Coulomb強(qiáng)度準(zhǔn)則;圓形隧道
在均質(zhì)巖土圓孔隧道開(kāi)挖過(guò)程中,對(duì)圍巖的應(yīng)力與應(yīng)變進(jìn)行研究是解決巖土工程問(wèn)題的基礎(chǔ)。由于在開(kāi)挖過(guò)程中位移變化取決于應(yīng)力路徑,一般采用非線性方法求出可靠的解,而在目前研究中,彈塑性分析方法被廣泛使用[1?2],此前研究者普遍采用Mohr?Coulomb(M?C)強(qiáng)度準(zhǔn)則對(duì)巖土體的彈塑性進(jìn)行分析。然而,大多數(shù)巖石類(lèi)材料的強(qiáng)度包絡(luò)線是非線性的。在非線性準(zhǔn)則中,HOEK等[3]提出的強(qiáng)度準(zhǔn)則由于提供了可靠的工具預(yù)測(cè)巖體節(jié)理強(qiáng)度而被廣泛認(rèn)同,隨后,HOEK?BROWN強(qiáng)度準(zhǔn)則發(fā)展為廣義形 式[4],其中強(qiáng)度參數(shù)不再是常數(shù),其取值從良好狀態(tài)巖體的0.5到較差狀態(tài)巖體的0.6,并被廣泛應(yīng)用。WANG等[5?8]對(duì)圓孔隧道開(kāi)挖時(shí)的應(yīng)力和變形彈塑性進(jìn)行分析發(fā)現(xiàn):理論分析方面,主要是基于理想彈塑、彈?脆性力學(xué)模型計(jì)算非關(guān)聯(lián)流動(dòng)法則下圍巖應(yīng)力、變形彈塑性解析表達(dá)式。許淵等[9]推導(dǎo)出考慮軸向力和滲透力共同作用下的彈?脆?塑性圍巖的應(yīng)力和位移非線性解。王水林等[10]通過(guò)將巖體應(yīng)變軟化過(guò)程簡(jiǎn)化為一系列脆塑性過(guò)程,基于經(jīng)典彈塑性力學(xué)理論,提出了應(yīng)變軟化過(guò)程模擬方法及其相應(yīng)的有限元求解過(guò)程。從國(guó)內(nèi)外的研究特點(diǎn)可以看出,應(yīng)變軟化分析主要采用理論分析和數(shù)值模擬方法,理論分析可以在本質(zhì)上反映應(yīng)變軟化狀態(tài),但在計(jì)算時(shí)參數(shù)大多是近似估算的,數(shù)值解比理論解有所降低,同時(shí)計(jì)算過(guò)程較復(fù)雜。為此,本文作者在以上理論分析的基礎(chǔ)上,基于M?C強(qiáng)度準(zhǔn)則,引入量綱一化方法進(jìn)行精確求解,排除變量、參數(shù)在量綱上的影響,以期為軟化圍巖隧道的開(kāi)挖設(shè)計(jì)與施工提供理論支持。
1 問(wèn)題定義
圖1所示為在無(wú)限均質(zhì)巖體中開(kāi)挖半徑為的圓孔隧道,初始地應(yīng)力0在開(kāi)挖之前均布在隧道周?chē).?dāng)內(nèi)在支撐力i低于臨界值ic時(shí),隧道周?chē)鷷?huì)產(chǎn)生塑性破壞。對(duì)于彈脆塑或者理想彈塑性情況,可以推導(dǎo)出塑性區(qū)半徑表達(dá)式[11?12]。若考慮應(yīng)變軟化情況,則可根據(jù)圖1中的s處邊界面將塑性區(qū)分為軟化區(qū)和殘余區(qū),對(duì)這種情況一般無(wú)法求出閉合形式的解,同時(shí)塑性區(qū)和軟化區(qū)的半徑、應(yīng)力分布和位移只能通過(guò)數(shù)值解進(jìn)行估算。
圖1 開(kāi)孔過(guò)程中塑性區(qū)形成圖
1.1 屈服函數(shù)
對(duì)于M?C屈服準(zhǔn)則,有
1.2 塑性勢(shì)函數(shù)
選用M?C準(zhǔn)則作為塑性勢(shì)函數(shù),故塑性勢(shì)函數(shù)可以表示為
1.3 強(qiáng)度參數(shù)演化
其中:代表剪脹角、黏聚力及內(nèi)摩擦角中的任意1個(gè);為臨界塑性應(yīng)變偏差即殘余區(qū)初始值,可通過(guò)實(shí)驗(yàn)得到;下標(biāo)p和r分別表示材料參數(shù)的峰值和殘余值。
1.4 臨界支撐力
只有當(dāng)內(nèi)在支撐力i低于臨界值ic時(shí),圓孔周?chē)苄詤^(qū)才會(huì)形成。對(duì)于M?C準(zhǔn)則巖土體,ic為
后,在彈塑性邊界面上(見(jiàn)圖1),徑向應(yīng)力R等于ic,且R獨(dú)立于半徑,
2 應(yīng)變軟化近似值
2.1 預(yù)處理
假設(shè)塑性區(qū)被分成個(gè)圓環(huán),塑性半徑為p。第個(gè)圓環(huán)在半徑分別為和之間,如圖2所示。在彈塑性邊界上,應(yīng)力和應(yīng)變分別為:
圖2 塑性區(qū)分環(huán)圖
2.2 應(yīng)力和彈性應(yīng)變?cè)隽?/p>
本文采用一種新的量綱一化計(jì)算方法,將圓形隧道簡(jiǎn)化為軸對(duì)稱(chēng)模型,將開(kāi)挖過(guò)程中應(yīng)變軟化圍巖中塑性區(qū)按應(yīng)力分成有限個(gè)滿(mǎn)足平衡方程和幾何相容方程的同心圓環(huán),基于M?C強(qiáng)度準(zhǔn)則,求解每環(huán)的平衡方程和相容方程得到應(yīng)力應(yīng)變?cè)隽?,從而得出軟化區(qū)應(yīng)力和徑向位移解。用量綱一化變量將物理平面 (,)轉(zhuǎn)化成以為坐標(biāo)系的單位面(其中,為半徑,為塑性區(qū)半徑與隧道半徑比值),變換式為[6, 13]:
轉(zhuǎn)化的塑性區(qū)在單位半徑的圓內(nèi),由變換式定義的空間被稱(chēng)為單位面。在單位平面上,彈塑性交界面被固定在=1處,而孔壁位于=1/處[14?15]。
對(duì)于M?C強(qiáng)度準(zhǔn)則,根據(jù)式(2)和式(3),令
內(nèi)壓力和外壓力分別轉(zhuǎn)化為
屈服條件改寫(xiě)為
根據(jù)CARRANZA-TORRES[4]提出的量綱一化方法,在變量的單位平面上,將式(14)或式(15)進(jìn)行量綱一處理:
根據(jù)BROWN等[1]提出的方法,將軟化區(qū)應(yīng)力分成份,同時(shí)注意到塑性區(qū)從外部邊界=p處的b到內(nèi)部邊界=處的i,應(yīng)力增量可以轉(zhuǎn)化為
故第個(gè)圓環(huán)應(yīng)力可以近似求解為
式(19)中假設(shè)每一環(huán)應(yīng)力增量為常量,而每一環(huán)的實(shí)際厚度取決于平衡方程。若足夠大,則相應(yīng)的環(huán)向應(yīng)力為
2.3 位移近似解
上述方法將應(yīng)力分成份,當(dāng)足夠大時(shí),假設(shè)每一環(huán)巖體參數(shù)不變,根據(jù)量綱一化平衡方程可以表示為
第環(huán)的應(yīng)力平衡方程可以近似為
而量綱一化的應(yīng)變?yōu)?/p>
塑性區(qū)總應(yīng)變是由彈性部分和塑性區(qū)部分組成,可以寫(xiě)成下列形式[16?17]:
相容方程又可以表示為
根據(jù)胡克定律,在平面應(yīng)變條件下應(yīng)變與應(yīng)力的關(guān)系為
結(jié)合式(23),(27)和(28),可知
則第個(gè)圓環(huán)的總應(yīng)力為
由于
其中:u為徑向位移;為量綱一化徑向位移。故量綱一化環(huán)向應(yīng)變計(jì)量綱一化位移為:
將上述計(jì)算方法重復(fù)次求出結(jié)果,則塑性區(qū)半徑為
3 算例驗(yàn)證
3.1 理論解可靠性驗(yàn)證
選取SHARAN[8]得出的應(yīng)力與位移精確解進(jìn)行對(duì)比,同時(shí)采用HOEK?BROWN(H?B)和M?C強(qiáng)度參數(shù)轉(zhuǎn)換技術(shù),對(duì)同一種巖體參數(shù)的理論解進(jìn)行對(duì)比。參照SHARAN[8]的精確解參數(shù),設(shè)定相同的輸入?yún)?shù):隧道半徑=5 m,初始地應(yīng)力0=30 MPa,圍巖支護(hù)力i=5 MPa,圍巖彈性模量=5 GPa,圍巖泊松比=0.25,圍巖單軸抗壓強(qiáng)度峰值和殘余值cp=cr=30 MPa,采用H?B強(qiáng)度參數(shù)與M?C強(qiáng)度參數(shù)進(jìn)行轉(zhuǎn)換的技術(shù)[13, 18],獲得的M?C強(qiáng)度參數(shù)p=2.146 78 MPa,p=26.364 5°,r=01.724 92 MPa,p=22.497 7°?;贛?C準(zhǔn)則解的結(jié)果如圖3和圖4所示。
圖3 量綱一化彈脆塑應(yīng)力與精確應(yīng)力轉(zhuǎn)化解對(duì)比
圖4 量綱一化彈脆塑位移與精確位移轉(zhuǎn)化解對(duì)比
從圖3可以看出:基于M?C強(qiáng)度準(zhǔn)則解的應(yīng)力分布情況符合軟化分布規(guī)律,塑性區(qū)的徑向和環(huán)向應(yīng)力分布解均與精確解較吻合;當(dāng)=0時(shí),圍巖為彈脆塑材料,由于不存在圍巖軟化區(qū),在塑性區(qū)和彈性區(qū)交界面上,環(huán)向應(yīng)力存在突變。圖4所示為基于M?C強(qiáng)度準(zhǔn)則的量綱一化彈?脆?塑位移與精確位移對(duì)比結(jié)果。從圖4可以看出:基于M?C強(qiáng)度準(zhǔn)則方法求得的位移比精確解略小,整體上誤差滿(mǎn)足要求。從計(jì)算效率看,本文量綱一化逐步應(yīng)力法的計(jì)算時(shí)間為0.003 562 s,SHARAN[8]的計(jì)算時(shí)間為0.000 024 s。雖然本文計(jì)算效率比SHARAN[8]的計(jì)算效率低,但在本文計(jì)算中,由于兩者計(jì)算時(shí)間都極短,本文的逐步應(yīng)變方法考慮了圍巖軟化過(guò)程,故具有一定的理論 意義。
在應(yīng)變軟化特性分析中,為求得應(yīng)力和位移,只對(duì)計(jì)算結(jié)果有較大影響的參數(shù)進(jìn)行分析。選取分別為0,0.004,0.008,0.012和100,并選取100對(duì)M?C強(qiáng)度準(zhǔn)則的解進(jìn)行分析。其中=0時(shí)代表彈脆塑狀態(tài),=100時(shí)可以近似認(rèn)為彈塑性狀態(tài),其他值代表軟化狀態(tài)。參照文獻(xiàn)[4]設(shè)置計(jì)算參數(shù):隧道半徑=2 m,初始地應(yīng)力0=15 MPa,圍巖支護(hù)力i=25 MPa,圍巖彈性模量=5.7 GPa,圍巖泊松比=0.3,圍巖單軸抗壓強(qiáng)度峰值和殘余值cp=cr=30 MPa,采用H?B強(qiáng)度參數(shù)與M?C強(qiáng)度參數(shù)進(jìn)行轉(zhuǎn)換的技術(shù),獲得的M?C強(qiáng)度參數(shù)p=1.781 46 MPa,p=26.869°,r=1.070 76 MPa,p=21.110 5°,計(jì)算結(jié)果如圖5和圖6所示。
圖5 徑向和環(huán)向應(yīng)力隨變化分布
圖6 量綱一化位移隨變化分布
4 結(jié)論
1) 本文解的應(yīng)力分布情況符合軟化分布規(guī)律,塑性區(qū)的徑向和環(huán)向應(yīng)力及位移分布與精確解較吻合,證明了本文逐步應(yīng)力量綱一化解的正確性和有效性。
[1] BROWN E T, BRAY J W, LADANYI B, et al. Ground response curves for rock tunnels[J]. Journal of Geotechnical Engineering, 1983, 109(1): 15?39.
[2] ALONSO E, ALEJANO L R, VARAS F, et al. Ground response curves for rock masses exhibiting strain-softening behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(13): 1153?1185.
[3] HOEK E, CARRANZA-TORRES C, CORKUM B. Hoek?Brown failure criterion-2002 edition[C]//Proceedings of the 5th North American Rock Mechanics Symposium. Toronto, Canada, 2001: 267?273.
[4] CARRANZA?TORRES C, FAIRHURST C. The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek?Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(6): 777?809.
[5] WANG Yang. Ground response of circular tunnel in poorly consolidated rock[J]. Journal of Geotechnical Engineering, 1996, 122(9): 703?708.
[6] PARK K H, KIM Y J. Analytical solution for a circular opening in an elastic-brittle-plastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(4): 616?622.
[7] PARK K H, TONTAVANICH B, LEE J G. A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses[J]. Tunnelling and Underground Space Technology, 2008, 23(2): 151?159.
[8] SHARAN S K. Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek–Brown rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(1): 78?85.
[9] 許淵, 李亮, 鄒金鋒, 等. 考慮軸向力和滲透力時(shí)圓形隧道廣義Hoek-Brown解[J]. 巖土力學(xué), 2015, 36(10): 2837?2846.
XU Yuan, LI Liang, ZOU Jingfeng, et al. Generalized Hoek-Brown solution of circular tunnel considering the effect of the out-of-plane stress and seepage force[J]. Chinese Journal of Rock Mechanics, 2015, 36(10): 2837?2846.
[10] 王水林, 鄭宏, 劉泉聲, 等. 應(yīng)變軟化巖體分析原理及其應(yīng)用[J]. 巖土力學(xué), 2014, 35(3): 609?622.
WANG Shuilin, ZHENG Hong, LIU Quansheng, et al. Analysis principle and application of strain softening rock mass[J]. Chinese Journal of Rock Mechanics, 2014, 35(3): 609?622.
[11] 李宗利, 任青文, 王亞紅. 考慮滲流場(chǎng)影響深埋圓形隧洞的彈塑性解[J]. 巖石力學(xué)與工程學(xué)報(bào), 2004, 23(8): 1291?1295.
LI Zongli, REN Qingwen, WANG Yahong. Elasto-plastic analytical solution of deep-buried circle tunnel considering fluid flow field[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(8): 1291?1295.
[12] LEE Y K, PIETRUSZCZAK S. A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass[J]. Tunnelling and Underground Space Technology, 2008, 23(5): 588?599.
[13] FAHIMIFAR A, MOHAMMAD R Z. A new closed-form solution for analysis of unlined pressure tunnels under seepage forces[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(11): 1591?1613.
[14] YANG Xiaoli, PAN Qiujin. Three dimensional seismic and static stability of rock slopes[J]. Geomechanics and Engineering, 2015, 8(1): 97?111.
[15] YANG Xiaoli, YIN Jianhua. Slope equivalent Mohr-Coulomb strength parameters for rock masses satisfying the Hoek-Brown criterion[J]. Rock Mechanics and Rock Engineering, 2010, 39(4): 505?511.
[16] WANG Shuilin, ZHENG Hang, LI Chunguan, et al. A finite element implementation of strain-softening rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 67?76.
[17] WANG Shuilin, YIN Shunde, WU Zhenjun. Strain-softening analysis of a spherical cavity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(2): 182?202.
[18] 朱合華, 張琦, 章連洋. Hoek-Brown 強(qiáng)度準(zhǔn)則研究進(jìn)展與應(yīng)用綜述[J]. 巖石力學(xué)與工程學(xué)報(bào), 2013, 32(10): 1945?1963.
ZHU Hehua, ZHANG Qi, ZHANG Lianyang. Review of research progresses and applications of Hoek-Brown strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 1945?1963.
(編輯 陳燦華)
Dimensionless analysis of stress numerical stepwiseprocedure in strain-softening rock mass
JIANG Wujun1, ZOU Jinfeng2
(1. Hunan Provincial Expressway Administration Bureau of Hunan Province, Changsha 410001, China;2. School of Civil Engineering, Central South University, Changsha 410075, China)
Based on generalized Mohr?Coulomb failure criterion, an improved numerical method and stepwise procedure for the stress and displacement analysis of a circular opening excavated in a strain-softening rock mass were proposed by using the dimensionless analysis method. By deviding the plastic region of strain-softening rocks into finite annuli and calculating the stress and strain increments, the stress and displacement in the plastic region were obtained. The stress and displacement increments of the annulus were obtained through the stress equilibrium and compatibility equation of the annulus, and the stress and displacement of strain-softening region were obtained. The validity and reliability of the proposed solution were confirmed by the existing theoretical solution. The influence of partial parameters on the stress and displacement was revealed by numerical calculation and parameter analysis. The results show that the dimensionless solution is in agreement with the exact solution when the number of the annulus is enough. The plastic region decreases with the increase of the critical plastic strain deviation, and the plastic residual area vanishes when the critical plastic strain deviation increases to a certain definite value. The plastic radius and displacement increase with the decrease of the critical plastic strain deviation. The softened region turns into brittle when the softening control parameter is equal to zero.
strain-softening; numerical stepwise stress procedure; Mohr?Coulomb failure criterion; circular tunnel
10.11817/j.issn.1672-7207.2016.08.040
TU921
A
1672?7207(2016)08?2842?06
2016?01?11;
2016?03?03
國(guó)家自然科學(xué)基金資助項(xiàng)目(51208523)(Project (51208523) supported by the National Natural Science Foundation of China)
鄒金鋒,博士,副教授,從事巖土與地下工程的研究;E-mail:zoujinfeng_csu@163.com