王春艷,關(guān)寶玲
?
萊布尼茲-n-代數(shù)的Frattini-子代數(shù)
王春艷,關(guān)寶玲
(齊齊哈爾大學(xué) 理學(xué)院,黑龍江 齊齊哈爾 161006)
研究了萊布尼茲-代數(shù)的Frattini-子代數(shù)的性質(zhì),得到了萊布尼茲-代數(shù)的Frattini-子代數(shù)的幾個(gè)性質(zhì)定理.
萊布尼茲-代數(shù);Frattini-子代數(shù);極大理想
定義1[6]184設(shè)是一個(gè)向量空間,且?guī)в?線性括號(hào)運(yùn)算,如果滿足等式,則稱是萊布尼茲-代數(shù).
(ii)它的證明與(i)類似. 證畢.
必要性.由定義2,結(jié)論顯然成立. 證畢.
根據(jù)定理1可得到推論.
由結(jié)果(i)易知,結(jié)果(ii)和(iii)成立. 證畢.
[1] Bai R P,Bai C M,Wang J X.Realizations of 3-Lie algebras[J].J Math Phys,2010,51:063505
[2] Alekseevsky D,Guha P.On decomposability of Nambu-Poisson Tensor[J].Acta Mathematica Universitatis Comenianae,1996, 65:1-9
[3] Gautheron P.Simple facts concerning Nambu algebras[J].Commun Math Phys,1998,195:417-434
[4] Bagger J,Lambert N.Gauge symmetry and supersymmetry of multiple- branes[J].Phys Rev,2008,77:065008
[5] Ho P,Hou R,Matsuo Y.Lie 3-algebra and multiple M2-branes[J].a(chǎn)rXiv,2010,21:0804
[6] Casas J M,Loday J L,Pirashvili T.Leibniz-Algebras[J].Forum Math,2002,14(2):189-207
[9] Bai R P,Chen L Y,Meng D J.On Frattini subalgebra of-Lie algebras[J].Acta Math Sinica Ser,2007,23(5):847-856
The Frattini subalgebras of Leibniz-n-algebras
WANG Chun-yan,GUAN Bao-ling
(School of Science,Qiqihar University,Qiqihar 161006,China)
Researched some properties of the Frattini subalgebras for Leibniz--algebras,and several property theorems for the Frattini subalgebras of Leibniz--algebras were obtained.
Leibniz--algebras;Frattini subalgebras;maximal ideal
1007-9831(2016)10-0001-02
O152.5
A
10.3969/j.issn.1007-9831.2016.10.001
2016-08-01
國家自然科學(xué)基金項(xiàng)目(11301061;11301062); 齊齊哈爾大學(xué)青年教師科學(xué)技術(shù)類科研啟動(dòng)支持計(jì)劃項(xiàng)目(2011k-Z05)
王春艷(1965-),女,黑龍江齊齊哈爾人,副教授,從事代數(shù)學(xué)研究.E-mail:wangcy9933@163.com