王怒濤,張 武,李 琛
帶油環(huán)凝析氣藏物質(zhì)平衡方程新形式
王怒濤1,張武2,李琛2
(1.西南石油大學(xué)石油與天然氣工程學(xué)院,成都610500;2.中國石油新疆油田分公司準(zhǔn)東采油廠,新疆阜康831511)
用物質(zhì)平衡法計(jì)算氣藏動態(tài)儲量是目前最常用的一種方法,但是對于帶油環(huán)的凝析氣藏,其動態(tài)儲量不僅與產(chǎn)油量和產(chǎn)氣量有關(guān),還和反凝析程度有關(guān)。研究發(fā)現(xiàn),不同類型的產(chǎn)出物之間存在質(zhì)量轉(zhuǎn)換,且轉(zhuǎn)化量很難確定,難以用體積平衡或摩爾量平衡來建立物質(zhì)平衡方程;生產(chǎn)井井口產(chǎn)油量、產(chǎn)氣量與相應(yīng)的井底產(chǎn)油量、產(chǎn)氣量不能用體積系數(shù)直接轉(zhuǎn)換,也不能用氣油比得出氣與油的量,其物質(zhì)平衡方程與常規(guī)氣藏相比,有較大差別。根據(jù)質(zhì)量守恒定理,建立了天然水驅(qū)的帶油環(huán)的凝析氣藏在開采條件下的物質(zhì)平衡方程通式,應(yīng)用多相流驅(qū)替理論及曲線插值相應(yīng)的含油飽和度,通過非線性回歸并最優(yōu)化目標(biāo)函數(shù),得到帶油環(huán)的凝析氣藏動態(tài)儲量。不需要采用經(jīng)驗(yàn)公式將凝析油折算為等價氣體,不需要引入兩相偏差系數(shù)以及液體狀態(tài)方程等概念,避免了考慮復(fù)雜相態(tài)變化引起的油、氣組分及體積變化。得出的物質(zhì)平衡方程的理論基礎(chǔ)更強(qiáng),更符合凝析氣藏的實(shí)際情況。
凝析氣藏;油環(huán);物質(zhì)平衡方程;質(zhì)量守恒;反凝析
凝析氣藏作為一種特殊的復(fù)雜氣藏,在開采過程中,凝析油氣體系在地層中的滲流狀態(tài)隨著復(fù)雜的相態(tài)變化而變化,使得其物質(zhì)平衡方程不同于常規(guī)氣藏物質(zhì)平衡方程。很多學(xué)者對凝析氣藏的物質(zhì)平衡方程進(jìn)行了研究[1-5]。文獻(xiàn)[6]推導(dǎo)了不同驅(qū)動力作用下的氣藏物質(zhì)平衡方程,并將方程用于凝析氣藏,只是在凝析氣藏中將凝析油折算為等價氣量,將干氣量與凝析油氣當(dāng)量之和作為總累計(jì)產(chǎn)量,且氣體偏差系數(shù)為流體總偏差系數(shù);文獻(xiàn)[7]利用摩爾量平衡原理,建立了凝析氣藏物質(zhì)平衡方程,但是沒有描述累計(jì)井流體中油、氣的轉(zhuǎn)換;文獻(xiàn)[8]采用摩爾量平衡原理建立了帶油環(huán)的凝析氣藏物質(zhì)平衡通式,同樣沒有論述累計(jì)井流體中的油、氣的轉(zhuǎn)換方式,也未定義井流體偏差因子;文獻(xiàn)[9]依據(jù)烴孔隙體積平衡的基本原理,考慮凝析氣藏儲集層流體組分及相態(tài)變化特征,并引入凝析油體積系數(shù)和生產(chǎn)氣油比概念,建立了凝析氣藏物質(zhì)平衡方程,由于在井底到井口流動中有部分氣相凝析成液相,油、氣質(zhì)量在發(fā)生變化,氣并非溶解在油中,因此在井口的氣油比與井底的氣油比完全不同;文獻(xiàn)[10]對注氣凝析氣藏物質(zhì)平衡方程進(jìn)行了改進(jìn),考慮了注入氣與凝析氣在地層條件下所占的孔隙體積不同,分別采用單相偏差系數(shù)和兩相偏差系數(shù),仍然是將凝析油折算為氣;文獻(xiàn)[11]推導(dǎo)出考慮注采烴類組成差異的凝析氣藏循環(huán)注氣物質(zhì)平衡方程;文獻(xiàn)[12]采用摩爾量平衡原理推導(dǎo)了有天然水驅(qū)、注氣、帶油環(huán)的異常高壓凝析氣藏物質(zhì)平衡方程,存在與文獻(xiàn)[9]相同的問題。
這些研究雖然考慮了凝析氣藏的相變和反凝析特征[13-14],要么采用體積守恒,要么采用摩爾量守恒,但考慮凝析氣累計(jì)產(chǎn)量時都是采用將凝析油折算為氣量,存在一定的偏差。問題在于凝析氣藏的氣油比的概念與油藏的氣油比的概念不同,凝析氣藏的氣油比中油氣存在質(zhì)量交換,而油藏中的氣油比概念僅僅是油與氣的溶解與分離,因此,帶油環(huán)的凝析氣藏的物質(zhì)平衡方程,不能簡單地用氣油比的概念來轉(zhuǎn)化井口與井底流量之間的關(guān)系,必須重新考慮帶油環(huán)凝析氣藏的物質(zhì)平衡方程。
雖然采出油、氣在地面和地下條件下體積差異較大,但油、氣的總質(zhì)量保持不變。本文根據(jù)質(zhì)量守恒基本原理,建立了有天然水驅(qū)的帶油環(huán)的凝析氣藏在開采條件下的物質(zhì)平衡方程通式。
在原始條件下,凝析氣體積為
油環(huán)體積為
地下油、氣總體積為
原始凝析氣藏的孔隙體積為
原始含水體積為
凝析氣藏含氣的質(zhì)量為
凝析氣藏油環(huán)的質(zhì)量為
凝析氣藏中油、氣總質(zhì)量為
從原始地層壓力下降到生產(chǎn)狀態(tài)地層壓力時,束縛水膨脹體積為
由于考慮水侵,凝析氣藏中存水體積為
從原始地層壓力下降到生產(chǎn)地層壓力,油、氣的總地下體積為
地下含水體積為
地下凝析氣藏的總孔隙體積為
地下含水飽和度為
隨著壓力變化,凝析氣藏中的含油量在變化,一部分被采出去,另一部分來源于氣體凝析出油,難以確定其變化量的大小,因此,假設(shè)生產(chǎn)中凝析氣藏含油飽和度為So,則凝析氣藏中含氣飽和度為
凝析氣藏地下含油體積為
凝析氣藏地下含氣體積為
凝析氣藏地下油、氣的總質(zhì)量為
地面條件下產(chǎn)出的油、氣的總質(zhì)量為
根據(jù)質(zhì)量守恒基本原理得
將(8)式、(18)式和(19)式代入(20)式并整理可以得到
(21)式即為真正的帶油環(huán)的凝析氣藏的物質(zhì)平衡方程,如果沒有油環(huán),即n=0,(21)式可簡化為
(22)式與前人推導(dǎo)的凝析氣藏物質(zhì)平衡方程完全一致[15]。由于(21)式是一個非線性方程,含有多個未知數(shù),即凝析氣藏地質(zhì)儲量G、油環(huán)指數(shù)n、含油飽和度So、含水飽和度Sw等,難以求解,下面介紹如何求解帶油環(huán)的凝析氣藏物質(zhì)平衡方程。
假設(shè)帶油環(huán)的凝析氣藏沒有邊水或底水的影響,則(21)式改寫為
令Y=ρgscGp+ρoscNp,
建立目標(biāo)函數(shù)
由于在衰竭開發(fā)過程中,帶油環(huán)的凝析氣藏一開始就出現(xiàn)了油、氣兩相流動,所以一定用到多相流驅(qū)替理論。如反凝析油飽和度隨壓力變化曲線(圖1),根據(jù)地層壓力變化,利用圖1曲線插值相應(yīng)的含油飽和度,即可以對(23)式進(jìn)行非線性回歸,步驟如下。①輸入基礎(chǔ)參數(shù),凝析氣、油環(huán)油等物性參數(shù)變化數(shù)據(jù);②輸入動態(tài)數(shù)據(jù)及累計(jì)產(chǎn)氣量GP、累計(jì)產(chǎn)油量NP及相應(yīng)的地層壓力P;③給定待定參數(shù)初始值G和n;④根據(jù)地層壓力用實(shí)驗(yàn)數(shù)據(jù)插值得相應(yīng)的含油飽和度So,利用(24)式計(jì)算Y1;⑤判斷目標(biāo)函數(shù)是否最小,是最小就結(jié)束,否則轉(zhuǎn)到步驟③調(diào)整參數(shù),直到目標(biāo)函數(shù)最小為止,輸出結(jié)果。
圖1 不同壓力下衰竭開發(fā)含油飽和度變化
為了驗(yàn)證這種新形式的物質(zhì)平衡方程,以塔里木油田某帶油環(huán)的凝析氣藏為例,其基礎(chǔ)參數(shù)見表1,生產(chǎn)動態(tài)數(shù)據(jù)見表2,此凝析氣藏為一封閉凝析氣藏,不產(chǎn)水,可以不考慮邊底水的影響。
表1 塔里木盆地某帶油環(huán)凝析氣藏基礎(chǔ)數(shù)據(jù)
表2 塔里木盆地某帶油環(huán)凝析氣藏生產(chǎn)動態(tài)數(shù)據(jù)
通過此氣藏的恒質(zhì)膨脹實(shí)驗(yàn)和定容衰竭實(shí)驗(yàn)結(jié)果,可得到不同壓力下的氣體偏差系數(shù)、反凝析液量,用狀態(tài)方程可求得不同壓力下的油、氣相密度的變化(表3)。
表3 塔里木盆地某帶油環(huán)凝析氣藏在不同壓力下的氣、油相各項(xiàng)物性參數(shù)
將各物性參數(shù)及生產(chǎn)數(shù)據(jù)代入(25)式計(jì)算Y和Y1(圖2),得到G=157×108m3,n=0.2,油環(huán)儲量為nGBgi/Boi= 0.2×157×108×0.003/1.24=760×104m3,理論計(jì)算結(jié)果與實(shí)際數(shù)據(jù)吻合程度較高,擬合結(jié)果可靠。
圖2 參數(shù)Y與Y1隨地層壓力變化
(1)本文推導(dǎo)的帶油環(huán)凝析氣藏物質(zhì)平衡方程建立在質(zhì)量守恒基本定理上,在凝析氣藏開采過程中,不論井口還是井底,油、氣兩相的總質(zhì)量保持不變,避免了考慮復(fù)雜相態(tài)變化引起的油、氣組分及體積變化。
(2)不需要采用經(jīng)驗(yàn)公式將凝析油折算為等價氣體,得出的物質(zhì)平衡方程理論基礎(chǔ)更強(qiáng),更符合凝析氣藏的實(shí)際情況。
(3)在凝析氣藏物質(zhì)平衡方程推導(dǎo)過程中不需要引入兩相偏差系數(shù)以及液體狀態(tài)方程等概念,推導(dǎo)過程簡單,求解更容易。
符號注釋
Boi——原始條件下油的體積系數(shù),無因次;
Bgi——原始條件下氣的體積系數(shù),無因次;
Bw——水的體積系數(shù),無因次;
cp——巖石壓縮系數(shù),MPa-1;
cw——水壓縮系數(shù),MPa-1;
Gp——累計(jì)產(chǎn)氣量,108m3;
i——數(shù)據(jù)序列號;
m——動態(tài)數(shù)據(jù)個數(shù);
N——油環(huán)地質(zhì)儲量,104m3;
Np——累計(jì)產(chǎn)油量,104m3;
n——油環(huán)指數(shù)(即地下油環(huán)體積與凝析氣氣體體積之比),f;
Swc——束縛水飽和度,f;
Sw——?dú)獠睾柡投?,f;
So——?dú)獠睾惋柡投龋琭;
Wp——累計(jì)產(chǎn)水量,104m3;
We——累計(jì)水侵量,104m3;
ρoi——原始條件下油環(huán)油密度,g/cm3;
ρgi——原始條件下凝析氣藏氣體密度,g/cm3;
ρo——某壓力條件下油密度,g/cm3;
ρg——某壓力條件下氣體密度,g/cm3;
ρgsc——地面條件下產(chǎn)出氣密度,g/cm3;
ρosc——地面條件下產(chǎn)出油密度,g/cm3.
[1]CRAFT B C,HAWKINS M F,TERRY R E.Applied petroleum reservoir engineering[M].New York:Prentice-Hall Inc.,1959:59-96.
[2]MOSES P L.Engineering applications of phase behavior of crude oil and condensate systems[J].Journal of Petroleum Technolony,1986,38(7):715-723.
[3]VO D T,JONES J R,RAGHAVAN R.Performance predications for gas-condensate reservoirs[J].SPE Formation Evaluation,1989,4(4):576-584.
[4]RAYES D G,PLPER L D,MCCALN WD,et al.Two-phase compressibility factors for retrograde gases[J].SPE Formation Evaluation,1992,7(1):87-92.
[5]SUTTON R P.Compressibility factors for high-molecular-weight reservoir gases[R].SPE 14265,1985.
[6]陳元千,董寧宇.氣藏和凝析氣藏物質(zhì)平衡方程式的新推導(dǎo)[J].斷塊油氣田,1999,6(3):24-28. CHEN Yuanqian,DONG Ningyu.New deriving method material for balance equation of gas and gas-condensate reservoirs[J].Fault-Block Oil&Gas Field,1999,6(3):24-28.
[7]馬永祥.對凝析氣藏物質(zhì)平衡方程的研討[J].石油勘探與開發(fā),1997,24(6):45-50. MA Yongxiang.A study on material balance equation for gas condensate reservoir[J].Petroleum Exploration and Development,1997,24(6):45-50.
[8]戚志林,唐海,杜志敏.帶油環(huán)的凝析氣藏物質(zhì)平衡方程[J].天然氣工業(yè),2003,23(1):70-72. QI Zhilin,TANG Hai,DU Zhimin.Material balance equation of oilrimming condensate gas reservoir[J].Natural Gas Industry,2003,23(1):70-72.
[9]陳玉祥,馬發(fā)明,王霞,等.凝析氣藏物質(zhì)平衡方程計(jì)算新方法[J].天然氣工業(yè),2005,25(2):104-106. CHEN Yuxiang,MA Faming,WANG Xia,et al.New calculation method of material equilibrium equation for condensate reservoirs[J].Natural Gas Industry,2005,25(2):104-106.
[10]余元洲,楊廣榮,田金海,等.凝析氣藏物質(zhì)平衡方程的改進(jìn)與應(yīng)用[J].油氣地質(zhì)與采收率,2002,9(4):66-68. YU Yuanzhou,YANG Guangrong,TIAN Jinhai,et al.Improvement and application of material balance equation for condensate gas reservoir[J].Petroleum Geology and Recovery Efficiency,2002,9(4):66-68.
[11]康曉東,李相方,李敬松,等.考慮注采差異的循環(huán)注氣開發(fā)凝析氣藏物質(zhì)平衡方程[J].天然氣工業(yè),2005,25(3):118-120. KANG Xiaodong,LI Xiangfang,LI Jingsong,et al.Material balance equation of condensate gas reservoirs exploited by cycle gas injection considering the injuction/production difference[J].Natural Gas Industry,2005,25(3):118-120.
[12]李騫,李相方,郭平,等.異常高壓凝析氣藏物質(zhì)平衡方程推導(dǎo)[J].天然氣工業(yè),2010,30(5):58-60. LI Qian,LI Xiangfang,GUO Ping,et al.Deduction of the material balance equation of abnormal high pressure gas condensate reservoirs[J].Natural Gas Industry,2010,30(5):58-60.
[13]馬世煜.凝析油氣藏開采技術(shù)[M].北京:石油工業(yè)出版社,1996. MA Shiyu.Development technology of condensate oil and gas reservoirs[M].Beijing:Petroleum Industry Press,1996.
[14]李仕倫,王鳴華,何江川,等.氣田與凝析氣田開發(fā)[M].北京:石油工業(yè)出版社,2000. LI Shilun,WANG Minghua,HE Jiangchuan,et al.Gas and condensate field development[M].Beijing:Petroleum Industry Press,2000.
[15]LUO Zhifeng,WANG Nutao,LIU Pingli,et al,A new form of material balance equation of condensate gas reservoir[J].Journal of Chemical and Pharmaceutical Research,2013,5(12):1 440-1 445.
(編輯曹元婷)
A New Form of Material Balance Equation for Condensate Gas Reservoirs with Oil Rings
WANG Nutao1,ZHANG Wu2,LI Chen2
(1.School of Petroleum and Natural Gas Engineering,Southwest Petroleum University,Chengdu,Sichuan 610500,China;2.Zhundong Oil Production Plant,Xinjiang Oilfield Company,PetroChina,F(xiàn)ukang,Xinjiang 831511,China)
Material balance equation is one of the most commonly-used methods to calculate dynamic reserves of gas reservoirs,but for condensate gas reservoirs with oil rings,their dynamic reserves are not only related to oil and gas production,but also to retrograde condensation degree.Since mass conversion occurs among different products,it is difficult to accurately calculate the amount of conversions and to establish material balance equation with volume balance or molar balance.Also,conversion from wellhead oil and gas flow rate to bottomhole inflow rate can’t be realized by the direct use of the volume factor and the gas-oil ratio,hence the material balance equation for conventional gas reservoirs greatly differs from that for condensate gas reservoirs with oil rings.On the basis of the law of mass conservation,this paper proposes a general formula of the material balance equation for natural water-drive condensate gas reservoirs with oil rings under production conditions,in which multi-phase flow displacement theory and oil saturations corresponding to curve interpolation are used to get the dynamic reserves of such reservoirs with oil rings by optimizing the objective function through non-linear regression,without converting condensate oil into equivalent gas with empirical formula and without by means of concepts of two-phase deviation factor and state equation of liquid.Therefore,the new formula can avoid the variations in oil and gas components and their volumes resulted from complicated phase changes.The obtained material balance equation has a stronger theoretical foundation and can better reflect the actual status of condensate gas reservoirs.
condensate gas reservoir;oil ring;material balance equation;mass conservation;retrograde condensation
TE15
A
1001-3873(2016)05-0556-05DOI:10.7657/XJPG20160510
2016-03-02
2016-07-07
國家科技重大專項(xiàng)(2011ZX05030-005-06)
王怒濤(1968-),男,四川岳池人,副教授,油氣藏工程和油氣井試井技術(shù),(Tel)13980431010(E-mail)wnt_3993@163.com