(1.西南交通大學風工程試驗研究中心,四川成都610031;2.風工程四川省重點實驗室,四川成都610031)
(1.西南交通大學風工程試驗研究中心,四川成都610031;2.風工程四川省重點實驗室,四川成都610031)
隨著自激氣動力的非線性部分在橋梁風致振動中地位的顯現(xiàn),非線性自激氣動力參數(shù)的合理確定顯得至關(guān)重要.結(jié)合非線性自激氣動力的解析表達式,基于分狀態(tài)強迫振動風洞試驗,提出了一種特征系統(tǒng)實現(xiàn)算法和非線性最小二乘法相結(jié)合的非線性自激氣動力參數(shù)的解析識別方法.理想平板數(shù)值仿真結(jié)果表明:在無噪聲情況下,識別結(jié)果與理論值完全一致;在20%白噪聲情況下,識別最大誤差僅3.7%,表現(xiàn)出較強的抗噪聲能力.非線性氣動力仿真結(jié)果表明:解析法能夠精確確定非線性自激氣動力諧波階數(shù),在20%白噪聲情況下,各諧波幅值及相位的識別最大誤差僅3.2%.將解析法運用于實際風洞試驗,進一步論證了該方法的可行性和有效性.
強迫振動;非線性自激氣動力;參數(shù)識別
1971年,Scanlan等[1]引入航空領域顫振導數(shù)的概念,將橋梁主梁斷面自激氣動力表達為運動參數(shù)的線性函數(shù).事實上,橋梁斷面的自激氣動力存在明顯的非線性效應.Halfman[2]利用強迫振動法識別機翼顫振導數(shù)時,發(fā)現(xiàn)自激氣動力頻譜存在高階諧波成分.Falco等[3]在利用強迫振動裝置對墨西拿海峽大橋進行顫振導數(shù)識別時觀察到自激氣動力高階諧波分量.陳政清等[4]在利用強迫振動裝置進行顫振導數(shù)識別時,發(fā)現(xiàn)在鈍體斷面的自激氣動力中,高階諧波分量所占比例接近20%.廖海黎等[5]通過對流線型箱梁節(jié)段模型的風洞試驗研究,發(fā)現(xiàn)在大振幅、大攻角條件下,非線性高階諧波分量十分明顯.Diana等[6-7]采用強迫振動裝置對墨西拿大橋主梁斷面的氣動力進行研究,觀測到橋面斷面顯著的高階諧波分量,及自激氣動力存在的明顯遲滯現(xiàn)象.
非線性自激氣動力的存在將直接影響橋梁的氣動穩(wěn)定性,因此需要對其進行數(shù)學描述,而關(guān)于非線性自激氣動力的數(shù)學模型,已有不少研究成果,如:徐旭等[8]基于Maclaurin級數(shù)展開的非線性自激氣動力表達式;Diana等[9]提出了以瞬態(tài)攻角和瞬態(tài)角速度為變量表示的非線性氣動力表達式;Wu等[10]提出了基于Volterra泛函級數(shù)的非線性氣動力模型;王騎等[11]基于Taylor級數(shù),將Scanlan模型進一步拓展,建立了不同諧波分量疊加的非線性自激氣動力數(shù)學模型.由于文獻[11]的數(shù)學模型物理意義明確,能夠清晰地表達各階諧波分量,因此,本文非線性自激氣動力模型采用Taylor展開的非線性自激氣動力表示式.基于強迫振動裝置,提出一種特征系統(tǒng)實現(xiàn)算法和非線性最小二乘法相結(jié)合的非線性自激氣動力參數(shù)的解析識別方法.該方法可以準確地確定自激氣動力的非線性階數(shù),并能精確識別出各階自激氣動力所對應的氣動參數(shù),具有抗噪聲能力強、識別精度高、計算速度快等優(yōu)點.該方法可用于分狀態(tài)強迫振動識別非線性自激氣動力氣動參數(shù),試驗結(jié)果表明了該方法的有效性.
根據(jù)文獻[11],將非線性自激氣動力表示為速壓與非定常氣動力系數(shù)乘積的形式:
式中:
ρ為空氣密度;
U為來流速度;
B為橋梁斷面寬度;
CL、CM為非定常氣動力系數(shù);
(.h,h,.α,α)為斷面的運動狀態(tài).
假設斷面發(fā)生振動頻率ω的單自由度簡諧振動h=h0eiωt和α=α0eiωt,將非定常氣動力系數(shù)在平衡位置展開為n階Taylor級數(shù),以CL為例.
若斷面僅發(fā)生單自由度豎向運動h=h0eiωt,省略定常項,自激升力系數(shù)為
其中一次項與Scanlan線性自激氣動力對應
式中:
hr0=h0/B;
K=ωB/U;
由式(5)可看出,與非定常氣動力系數(shù)一次項相關(guān)的氣動參數(shù)包含了Scanlan自激氣動力模型中的顫振導數(shù).
非定常氣動力系數(shù)二次項為
將與二次項有關(guān)的運動項代入
依此可得其它項的表達式,進而可得非定常氣動力系數(shù)的標準表達式:
借助歐拉公式,將非線性自激氣動力表達式由復數(shù)形式轉(zhuǎn)化為實數(shù)形式,并根據(jù)實際測試和分析的需要取實部或虛部的運動形式.本文研究取虛部,即運動為正弦函數(shù).由此,單自由度豎向運動引起的自激升力非定常氣動力系數(shù)為同理可得其它3項非定常氣動力系數(shù).
由式(9)可知,若橋梁斷面在強迫振動裝置驅(qū)動下只發(fā)生穩(wěn)態(tài)單自由度簡諧運動,且存在非線性自激氣動力分量的話,那么自激氣動力將包含整數(shù)倍的諧波分量.若能識別出非線性自激氣動力信號中各諧波分量所對應的幅值和初始相位參數(shù),就可以從上述表達式中獲得各階自激氣動力對應的氣動參數(shù).
2.1 諧波階次的確定
強迫振動產(chǎn)生的自激氣動力信號為周期諧波信號,在確定信號諧波次數(shù)方面,經(jīng)典的方法為功率譜估計(PSD),此外還有小波變化法、旋轉(zhuǎn)矢量不變技術(shù)、奇異值分解(SVD)等.其中SVD具有抗噪能力高、計算精度高且速度快等優(yōu)點[12-13],SVD方法基本思路如下.
對采集數(shù)據(jù)信號Y構(gòu)造的Hankel矩陣:
奇異值(SVD)分解:
式中:
U、V為奇異向量矩陣;
S為奇異值矩陣.
奇異值分解后可通過奇異值來確定諧波的階次.如果奇異值按大小順序排列有明顯的突變,則突變處即是系統(tǒng)的階次.但是在數(shù)據(jù)采集過程中會有隨機噪聲的存在,奇異值沒有明顯的突變分界線,因此可能無法從奇異值大小出發(fā)直觀對系統(tǒng)進行定階.
由于奇異值存在明顯的特征:真實模態(tài)的值較大,虛假模態(tài)的值很小,隨著階次的增大,奇異值越來越小.基于這種現(xiàn)象,可以采用奇異值差值法來進行定階[14],簡單的說就是將奇異值按大小順序排列,并將相鄰兩值相減,通過差值趨于0這一條件來確定諧波階次.
2.2 自激氣動力的擬合
定義強迫振動測得自激氣動力的模型為
式中:
Ai、fi、φi分別為各諧波信號的幅值、頻率和相位;
n(t)為噪聲.
對強迫振動裝置獲得的自激氣動力信號而言,高階諧波頻率是基頻諧波的整數(shù)倍,只要獲得了基頻諧波頻率,即可知高階諧波頻率.
在理想狀態(tài)下,自激氣動力的基頻諧波頻率應與裝置的驅(qū)動頻率完全一致,此時不需要對信號的頻率進行識別,可直接采用驅(qū)動頻率.但是,試驗誤差的存在會使自激氣動力基頻諧波頻率與驅(qū)動頻率存在微小差異.這時就需要對自激氣動力的諧波頻率進行精確識別,才能對其準確擬合,獲得準確的幅值和相位值.信號頻率的識別方法可以采用特征系統(tǒng)實現(xiàn)算法進行.
在確定系統(tǒng)階數(shù)n之后,保留前n個奇異值和相應的奇異向量矩陣,就可得到系統(tǒng)的狀態(tài)矩陣
對系統(tǒng)狀態(tài)矩陣A進行特征值分解:
由此可以得到A的特征值矩陣:
系統(tǒng)的頻率為
在確定信號頻率之后,各諧波的幅值和相位可以通過非線性最小二乘法來進行識別.
由式(12)可知各諧波的幅值和相位可表示為
式中:Mi=sin φi;Ni=cos φi.
將自激氣動力表達式寫成矩陣形式:
式中:e為識別誤差向量.
2.3 氣動力相位的確定
在進行分狀態(tài)強迫振動試驗識別氣動參數(shù)時,不僅要采集自激氣動力時程信號,還要同步采集位移時程信號.由式(9)可知,在利用解析方法識別自激氣動力參數(shù)時,需要確定位移零相位所對應的自激氣動力相位.具體方法如下:
(1)首先對采集的位移時程信號進行擬合,得到位移信號的初始相位φ.如單自由度扭轉(zhuǎn)振動時位移擬合
(2)通過計算找到位移0相位所對應的時刻t0.如上面位移0相位對應的時刻
t0=(2π-φ)/2πf.
(3)自激氣動力t0時刻的相位值即為所需要的相位值.在得到氣動力相位值后就可以通過解析的方式識別氣動參數(shù).
3.1 理想平板顫振導數(shù)識別
模擬理想平板分狀態(tài)強迫振動,通過解析方法識別平板的顫振導數(shù)來驗證該方法的可行性.
分狀態(tài)強迫振動頻率設為2 Hz,強迫振動振幅3°,平板寬450 mm,試驗風速10 m/s,采樣頻率為128 Hz.為計算方便,將純扭轉(zhuǎn)強迫振動位移初相位設定為0,理論位移諧波信號為
理論氣動力動態(tài)系數(shù)諧波信號為
向位移信號和非定常氣動力系數(shù)信號中各加入20%的白噪聲,含噪聲的非定常氣動力系數(shù)時程信號如圖1所示.對不含噪聲和含噪聲的信號進行氣動參數(shù)識別,采用上述解析方法對顫振導數(shù)進行識別,表1為識別結(jié)果.由結(jié)果可知,在無噪聲情況下,解析方法對顫振導數(shù)能精確地識別,在含20%噪聲情況下,該方法的識別誤差最大僅為3.706%,可見上述識別方法可以應用于小振幅下分狀態(tài)強迫振動的顫振導數(shù)識別,并且具有較強的抗噪聲能力和較高的識別精度.
3.2 非線性氣動力參數(shù)識別
以自激升力動態(tài)系數(shù)為例,構(gòu)造四階正弦諧波信號,其中一階基頻f=2 Hz.各諧波參數(shù)分別設定為
諧波模型為
可以看出,高階諧波振幅分別為一階諧波振幅的20%、10%和5%.可見該信號為非線性較強的信號.向原始信號中加入20%的白噪聲,然后運用解析法對各諧波的參數(shù)進行識別,表2為參數(shù)識別結(jié)果.
圖1 含噪聲非定常氣動力系數(shù)信號Fig.1 Unsteady aerodynamics coefficient signal with noise
由識別結(jié)果可知,識別誤差最大僅為3.224 7%,這說明解析法具有很好的抗噪聲能力,能夠較精確地對非線性自激氣動力諧波信號的參數(shù)進行識別.
在進行參數(shù)識別時,還需利用該方法對同步采集的時程位移信號進行參數(shù)識別,找到相位為0所對應的時刻,然后利用自激力解析表達式識別出各階諧波對應的氣動參數(shù).
表1 理想平板顫振導數(shù)識別結(jié)果Tab.1 Identification results of flutter derivatives for ideal flat plate
表2 非線性氣動力參數(shù)識別結(jié)果Tab.2 Identification results of nonlinear aerodynamic parameter
利用強迫振動裝置,基于1∶70的剛性節(jié)段測壓模型和電子壓力掃描閥,運用解析方法對斷面的非線性自激氣動力參數(shù)進行識別,以驗證該方法的可行性.
橋梁節(jié)段模型強迫振動系統(tǒng)具有4套伺服電機驅(qū)動系統(tǒng),可單獨驅(qū)動節(jié)段模型作單自由度豎向或扭轉(zhuǎn)運動,驅(qū)動時可實現(xiàn)常振幅、常頻率的穩(wěn)態(tài)振動.試驗選取某一流線型箱梁斷面進行,模型高0.050 m,寬0.554 m,長1.500 m,采用玻璃鋼纖維和碳纖維制作.斷面如圖2所示.試驗采樣頻率設置為128 Hz,采樣時長為32 s,氣動力在不同時刻對應的位移由強迫振動裝置的測量系統(tǒng)采集.圖2為模型斷面圖,圖3為試驗現(xiàn)場圖片.
試驗針對單自由度扭轉(zhuǎn)振動進行.由文獻[5]可知,在大攻角、大振幅條件下,橋梁斷面自激力的非線性特性較明顯.因此,試驗選擇在攻角α=5°,振幅A=10°下進行.表3為試驗具體工況.
圖2 流線型箱梁斷面Fig.2 Streamlined box girder section
圖3 強迫振動風洞試驗Fig.3 Wind tunnel test for forced vibration
表3 試驗參數(shù)Tab.3 Test parameters
采用上述解析方法對試驗獲得的非線性自激氣動力信號進行擬合.擬合結(jié)果顯示:非線性自激氣動力諧波階次均為3次;氣動力的頻率與驅(qū)動頻率存在微小的差異(見表3);自激氣動力具有明顯的非線性性質(zhì),其中,升力的基頻諧波幅值比重在88%~91%之間,升力矩相應的值在64%~76%之間;自激氣動力線性成分隨折算風速增大而減弱.圖4為折算風速23的非線性自激氣動力諧波信號及擬合結(jié)果.基于同步采集獲取的位移信號,識別出斷面的非線性自激氣動力參數(shù)(見圖5).
圖4 自激氣動力諧波信號及曲線擬合Fig.4 Harmonic signal of motion-induced aerodynamic forces and curve fitting
圖5 非線性自激氣動力參數(shù)Fig.5 Parameters of nonlinear motion-induced aerodynamic force
結(jié)合分狀態(tài)強迫振動試驗,提出一種解析方法用于橋梁非線性自激氣動力參數(shù)識別.該方法具有較強的抗噪聲能力,識別精度較高,能夠?qū)Ψ蔷€性高階諧波項做出很好的辨識,可以應用于分狀態(tài)強迫振動法識別非線性自激氣動力參數(shù),具有一定的實際意義.
數(shù)值仿真實驗結(jié)果表明,該方法能夠直接識別出含噪自激力信號的頻率、振幅及相位參數(shù),并可以準確地判定非線性自激氣動力中高階諧波的階數(shù),在此條件下,運用非線性自激力解析表達式可以識別相應的氣動參數(shù).風洞試驗也進一步證明了該方法的可行性.
[1] SCANLAN R H,TOMKO J.Airfoil and bridge deck flutter derivatives[J]. Journal of Engineering Mechanics,ASCE,1971,97(6):1717-1737.
[2] HALFMANR L.Experimental aerodynamic derivatives of a sinusoidally oscillationg airfoil in two-dimensional flow[R].USA:NationalAdvisoryCommitteefor Aeronautics,1948.
[3] FALCO M,GURAMI A,ZASSO A.Nonlinear effects in sectional model aeroelastic parameters identification[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,42(1/3):1321-1332.
[4] 陳政清,于向東.大跨橋梁顫振自激力的強迫振動法研究[J].土木工程學報,2002,35(5):34-41.
CHEN Zhengqing,YU Xiangdong.A new method for measuring flutter self-excited forces of long-span bridges[J].China Civil Engineering Journal,2002,35(5):34-41.
[5] LIAO H L,WANG Q,Li M S,et al.Aerodynamic hysteresis effects of thin airfoil and streamline box girder under large amplitude oscillation[C]∥Proceedings of the 13th International Conference on Wind Engineering(ICWE 2011).Amsterdam:Multi-science Publishing Co.Ltd.,2011:539-540.
[6] DIANA G,BRUNI S,ROCCHI D.A numerical and experimental investigation on aerodynamic nonlinearities in bridge response to turbulent wind[C]∥Proceedings of the 4th European&African Conference on Wind Engineering(EACWE 2005).Prague:the Academy of Science of the Czech Republic,2005:84-85.
[7] DIANA G,RESTA F,ROCCHI D.A new approach to model the aeroelastic response of bridges in time domain by means of a rheological model[C]∥Proceedings of the 12th International Conference on Wind Engineering(ICWE 2007). Cairns:TheAustralasian Wind Engineering Society,2007:207-214.
[8] XU X,CaoZ Y.New expressionsofnonlinear aerodynamic forces in civilengineering[C]∥Proceedings of the 3rd International Conference on NonlinearMechanics (ICNM 1998). Shanghai:Shanghai University Press,1998:396-401.
[9] DIANA G,RESTA F,ROCCHI D.A new numerical approach to reproduce bridge aerodynamic nonlinearities in time domain[J]. JournalofWind Engineering and Industrial Aerodynamics, 2008, 96(10/11):1871-1884.
[10] WU T,KAREEM A.Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network[J]. Journal of Wind Engineering and IndustrialAerodynamics,2011,99(4):378-388.
[11] 王騎,廖海黎,李明水,等.橋梁斷面非線性自激氣動力經(jīng)驗模型[J].西南交通大學學報,2013,48(2):271-277.
WANG Qi,LIAO Haili,LI mingshui,et al.Empirical mathematicalmodelfor nonlinear motion-Induced aerodynamic force of bridge girder[J].Journal of Southwest Jiaotong University,2013,48(2):271-277.
[12] 喻勝,陳光矩.一種檢測噪聲中正弦信號的SVD方法[J].電子學報,2000,28(6):108-110.
YU Sheng,CHEN Guangju.Detecting the sinusoidal signal in noise by the SVD method[J]. ACTA Electronica Sinica,2000,28(6):108-110.
[13] 李天云,袁明哲,鄭波等.諧波和間諧波三參數(shù)識別的SSI-LS方法[J].電力系統(tǒng)保護與控制,2011,39(10):42-46.
LI Tianyun,YUAN Mingzhe,ZHENG Bo,et al.A method of three parameters of harmonics and interharmonics high accuracy detection based on SSI-LS[J].Power System Protection and Control,2011,39(10):42-46.
[14] 周幫友,胡紹全,杜強.特征系統(tǒng)實現(xiàn)算法中的模型定階方法研究[J].科學技術(shù)與工程,2009,9(10):2715-2722.
ZHOU Bangyou,HU Shaoquan,DU Qiang.Study about calculating the order of model in eigensystem realization algorithm[J]. Science Technology and Engineering,2009,9(10):2715-2722.
橋梁非線性自激氣動力參數(shù)解析識別
熊 龍1,2, 廖海黎1,2,王 騎1,2, 馬存明1,2
Analytic Identification of Bridge Nonlinear Motion-Induced Aerodynamic Parameter
XIONG Long1,2, LIAO Haili1,2,WANG Qi1,2, MA Cunming1,2
(1.Research Center for Wind Engineering,Southwest Jiaotong University,Chengdu 610031,China;2.Key Laboratory for Wind Engineering of Sichuan Province,Chengdu 610031,China)
As nonlinearity component of motion-induced force plays a key role in wind-induced vibration of bridge,it is very important to reasonably determine the nonlinear aerodynamic parameters. According to the detached-forced vibration wind tunnel tests,an analytic identification method for nonlinear aerodynamic parameters,which combines the eigensystem realization algorithm and nonlinear least square,was proposed with consideration of the analytical expression of nonlinear self-excited force.Numerical simulation results of ideal flat plate show that the identification results are in good agreement with the theoretical values in the noise-free case,and the maximum identification error is only 3.7%when there is additional 20%Gaussian noise.It means that the proposed analytic method has strong anti-noise ability.In addition,the numerical simulation results of nonlinear aerodynamic force show that the analytic method can accurately estimate the order of nonlinear motion-induced aerodynamic force,and with additional 20%Gaussian noise,the maximum identification error of the phase and amplitude of each harmonic is only 3.2%.Finally,wind tunnel tests were carried out to verify the feasibility and effectiveness of proposed method.
forced vibration;nonlinear motion-induced aerodynamic force;parameter identification
熊龍,廖海黎,王騎,等.橋梁非線性自激氣動力參數(shù)解析識別[J].西南交通大學學報,2016,51(5):824-831.
0258-2724(2016)05-0824-08
10.3969/j.issn.0258-2724.2016.05.002
TU997;U448.27
A
2015-07-29
國家重點基礎研究發(fā)展計劃資助項目(2013CB036300);國家自然科學基金資助項目(51308478,51378442)
熊龍(1983—),男,博士研究生,研究方向為大跨度橋梁抗風,E-mail:xionglong210@126.com
(中文編輯:徐 萍 英文編輯:周 堯)