国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一維生物趨化模型的初邊值問(wèn)題

2016-11-05 08:22:50張映輝
關(guān)鍵詞:趨化拋物理工學(xué)院

張映輝, 李 聰, 王 易

(湖南理工學(xué)院 數(shù)學(xué)學(xué)院, 湖南 岳陽(yáng) 414006)

一維生物趨化模型的初邊值問(wèn)題

張映輝, 李 聰, 王 易

(湖南理工學(xué)院 數(shù)學(xué)學(xué)院, 湖南 岳陽(yáng) 414006)

主要研究一維生物趨化模型的初邊值問(wèn)題. 在L2范數(shù)充分小, H2范數(shù)不作任何約束的情況下, 通過(guò)構(gòu)造一個(gè)非負(fù)凸熵, 再作它的L2能量估計(jì)、一階能量估計(jì)、二階能量估計(jì), 從而得到初邊值問(wèn)題解的整體存在性和指數(shù)衰減估計(jì).

生物趨化模型; 整體存在性; 指數(shù)衰減估計(jì); 凸熵; 初邊值問(wèn)題

引言

考慮下面的生物趨化模型初邊值問(wèn)題解的整體存在性和指數(shù)衰減估計(jì):

主要結(jié)果及證明

本文的主要結(jié)果為:

[1] H. G. Othmer, A. Stevens. Aggregation, blowup, and collapse: the ABCs of tax is in reinforced random walks [J]. SIAM J. Appl. Math, 1997(57):1044~1081

[2] H. A. Levine, B. D. Sleeman. A system of reaction diffusion equations arising in the theory of reinforced random walks[J]. SIAM J. Appl. Math, 1997(57):683~730

[3] M. Zhang, C. J. Zhu. Global existence of solutions to a hyperbolic-parabolic system[J]. Proc. Amer. Math. Soc, 2007, 135(4): 1017~1027

[4] J. Guo, J. X. Xiao, H. J. Zhao, C. J. Zhu. Global solutions to a hyperbolic-parabolic coupled system with largr initial data[J]. Acta Math. Sci. Ser. B Engl. Ed, 2009, 29(3): 629~641

[5] 張映輝, 譚 忠, 孫明保.一個(gè)耦合雙曲—拋物系統(tǒng)的全局光滑解[J].數(shù)學(xué)年刊, 2013, 34A(1): 29~46

[6] 張映輝, 譚 忠, 賴(lài)柏順, 等.一個(gè)模擬趨化現(xiàn)象的廣義雙曲—拋物系統(tǒng)的光滑解的全局分析[J]. 數(shù)學(xué)年刊, 2012, 33A(1): 27~38

[7] L. Corrias, B. Perthama, H. Zaag. A chemotaxis model motivated by angiogenesis[J]. C. R. Acrd. Sci. Paris. Ser. I, 2003(336): 141~146

[8] S. Gueron, N. Liron. A model of herd grazing as a traveling wave: chemotaxis and stability[J]. J. Math. Boil, 1989(27): 595~608

[9] D. Horstmann, A. Stevens. A constructive approach to travelling waves in chemotaxis[J]. J. Nonlinear Sci, 2004(14): 1~25

[10] R. Lui, Z. A. Wang. Ttaveling wave solutions from microscopic to macroscopic chemotaxis models[J]. J. Math. Biol, 2010(61): 739~761

[11] T. Nagai, T. Ikeda. Traveling waves in a chemotaxis model[J]. J. Math. Biol, 1991, 30: 169~184

[12] R. J. Duan, A. Lorz, P. Markowich. Global Solutions to the coupled chemotaxis-fluid equations[J]. Comm. Partial Differential Equations, 2010, 35(9):1635~1673

[13] D. Horstmanna, M. Winklerb. Boundedness vs. blow-up in a chemotaxis system[J]. J. Differential Equations, 2005, 215: 52~107

[14] Y. Yang, H. Chen, W. A. Liu. On existence of global solutions and blow-up to a system of reaction-diffusion equations modeling chemotaxis[J]. SIAM J Math Anal, 2001, 33: 763~785

[15] S. Kawashima. Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynmics[J]. Kyoto University, 1983

[16] S. Kato. On local and global existence theorems for a nonautonomous differential equations in a Banach space[J]. Funkcial. Ekvac, 1976, 19: 279~286

[17] T. Nishida. Nonlinear hyperbolic equations and related topics in fluid dynamics[J]. Publ. Math, 1978, 128: 1053~1068

[18] J. Smoller. Shock Waves and Reaction-Diffusion Equations[M]. New York-Berlin: Springer-Verlag, 1983

[19] L. Nirenberg. On elliptic partial differential equations[J]. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1959, 13(2): 115~162

Initial Boundary Value Problem for One Dimensional Biological Chemotaxis Model

ZHANG Ying-hui, LI Cong, WANG Yi
(College of Mathemaics, Hunan Institute of Science and Technology Yueyang 414006)

In this paper, we mainly study the initial boundary value problem of one-dimensional biological chemotaxis model. In the case of sufficiently small L2-norm, and H2-norm without any constraints, by constructing a nonnegative convex entropy,and then making its L2-energy estimates, first-order and second-order energy estimates, we get the global existence and exponential decay estimates of solution to the initial boundary value problem.

biological chemotaxis model; global existence; exponential decay estimation; convex entropy; initial boundary value problem

O175.2

A

1672-5298(2016)03-0004-04

2016-07-11

湖南省大學(xué)生研究性學(xué)習(xí)和創(chuàng)新性實(shí)驗(yàn)計(jì)劃項(xiàng)目(湘教通[2016]283號(hào)); 湖南省教育廳優(yōu)秀青年項(xiàng)目(14B077)

張映輝(1981- ), 男, 湖南祁陽(yáng)人, 博士, 湖南理工學(xué)院數(shù)學(xué)學(xué)院副教授. 主要研究方向: 偏微分方程

猜你喜歡
趨化拋物理工學(xué)院
高空拋物罪的實(shí)踐擴(kuò)張與目的限縮
法律方法(2022年2期)2022-10-20 06:45:28
三維趨化流體耦合系統(tǒng)整體解的最優(yōu)衰減估計(jì)
帶非線性擴(kuò)散項(xiàng)和信號(hào)產(chǎn)生項(xiàng)的趨化-趨觸模型解的整體有界性
江蘇理工學(xué)院
常熟理工學(xué)院
具不同分?jǐn)?shù)階擴(kuò)散趨化模型的衰減估計(jì)
關(guān)于拋物-拋物Keller-Segel類(lèi)模型的全局解和漸近性
理工學(xué)院簡(jiǎn)介
不要高空拋物!
高空莫拋物
常宁市| 海林市| 南昌市| 宁海县| 和政县| 华宁县| 晋州市| 凤台县| 和平县| 亳州市| 民乐县| 盐池县| 东莞市| 营口市| 弥勒县| 莲花县| 澄江县| 潞城市| 腾冲县| 辛集市| 买车| 双辽市| 溧阳市| 香河县| 阿巴嘎旗| 婺源县| 左贡县| 洛川县| 汉中市| 长岛县| 阿巴嘎旗| 秀山| 永德县| 庄河市| 芒康县| 青岛市| 桑植县| 睢宁县| 平湖市| 漠河县| 松阳县|