張 艷,陳 國,呂 燕,吳銀良*
(寧波市農(nóng)業(yè)科學(xué)研究院,浙江 寧波 315040)
液相色譜串聯(lián)質(zhì)譜法快速測定豬肉中克倫特羅殘留量
張 艷,陳 國,呂 燕,吳銀良*
(寧波市農(nóng)業(yè)科學(xué)研究院,浙江 寧波 315040)
建立快速測定豬肉中克倫特羅殘留量的液相色譜串聯(lián)質(zhì)譜分析方法。豬肉樣品在堿化的條件下用乙酸乙酯提取,提取后用甲酸溶液進(jìn)行反萃取,萃取液經(jīng)正已烷脫脂后直接進(jìn)行液相色譜串聯(lián)質(zhì)譜(liquid chromatography with tandem mass spectrometry,LC-MS/MS)分析。采用Acquity BEH C18色譜柱分離,用0.1%甲酸溶液-甲醇作為流動相進(jìn)行梯度洗脫,電噴霧正離子(ESI+)模式電離,多反應(yīng)監(jiān)測(multiple reaction monitoring,MRM)模式檢測,同位素稀釋內(nèi)標(biāo)法定量。克倫特羅在0.05~10.0 μg/L范圍內(nèi)建立的曲線相關(guān)系數(shù)大于0.999;方法檢測限為0.10 μg/kg,定量限為0.25 μg/kg??藗愄亓_在豬肉中的添加量為0.25、0.50、0.75 μg/kg時,平均回收率在95.9%~101.5%之間,批內(nèi)相對標(biāo)準(zhǔn)偏差(relative standard deviation,RSD)在3.3%~4.6%之間,批間RSD在4.1%~5.1%之間。該方法能滿足豬肉中克倫特羅殘留量快速分析的要求。
克倫特羅;快速測定;液相色譜串聯(lián)質(zhì)譜法;殘留量
DOI∶10.15922/j.cnki.rlyj.2016.10.006
引文格式:
張艷, 陳國, 呂燕, 等. 液相色譜串聯(lián)質(zhì)譜法快速測定豬肉中克倫特羅殘留量[J]. 肉類研究, 2016, 30(10): 30-34. DOI:10.15922/j.cnki.rlyj.2016.10.006. http://rlyj.cbpt.cnki.net
ZHANG Yan, CHEN Guo, Lü Yan, et al. Fast determination of residual clenbuterol in pork by liquid chromatography with tandem mass spectrometry[J]. Meat Research, 2016, 30(10): 30-34. (in Chinese with English abstract) DOI:10.15922/j.cnki. rlyj.2016.10.006. http://rlyj.cbpt.cnki.net
克倫特羅屬于β2-受體激動劑類藥物,該類藥物的主要效應(yīng)為支氣管和腸壁平滑肌松弛,所以在醫(yī)用和獸醫(yī)臨床上主要用于治療支氣管炎。在畜牧生產(chǎn)中,當(dāng)克倫特羅添加在飼料中使用時可導(dǎo)致動物體內(nèi)的脂肪分解代謝增強,提高酮體瘦肉率、增加體質(zhì)量和提高飼料轉(zhuǎn)化率,致使我國在上世紀(jì)未生豬生產(chǎn)中大量使用克倫特羅。但是由于克倫特羅容易在動物組織,特別是肝臟和肺臟中形成殘留,導(dǎo)致人畜中毒。因此,有必要對快速測定動物組織中克倫特羅殘留量的分析方法加強研究。
自本世紀(jì)初以來,科學(xué)家們對于包括克倫特羅在內(nèi)的β2-受體激動劑類藥物在生物樣品中的殘留分析方法進(jìn)行了大量的研究,建立了許多殘留分析方法,主要有酶聯(lián)免疫吸附法[1-3]、液相色譜法[4-7]、氣相色譜-質(zhì)譜法[8-11]和液相色譜串聯(lián)質(zhì)譜法[12-19]等;然而已建立的絕大部分液相色譜串聯(lián)質(zhì)譜(liquid chromatography with tandem mass spectrometry,LC-MS/MS)方法由于要同時測定多種β2-受體激動劑類藥物,在前處理步驟中不僅包括了費時的酶解步驟,而且通常采用固相萃取方法進(jìn)行樣品凈化,這最終導(dǎo)致這些方法無法滿足克倫特羅單個藥物的快速分析需求。本實驗考慮到克倫特羅在體內(nèi)主要以原形代謝為主[20],軛合物的比例不超過5%,同時克倫特羅易溶于酸性溶液的特點,建立了快速提取和凈化的前處理步驟,該方法的建立能充分滿足動物性食品安全實際監(jiān)管中單一快速確證克倫特羅的需要。
1.1 材料與試劑
空白豬肉樣品 寧波市江東區(qū)歐尚超市。
鹽酸克倫特羅(99%) 中國藥品生物制品檢定所;鹽酸克倫特羅-D9(100 μg/L) 德國Dr. Ehrenstorfer公司;乙腈(色譜純) 美國Thermo-Fisher公司;甲酸(色譜純) 美國天地有限公司;甲醇(色譜純)美國默克公司;其他試劑均為分析純試劑。
1.2 儀器與設(shè)備
配有電噴霧離子源液相色譜串聯(lián)質(zhì)譜聯(lián)用儀美國Waters公司;Ultra-Tyrrax T25型勻質(zhì)器 德國IKA公司;SIGMA3K15離心機(jī) 北京博勵行有限公司;Milli-Q超純水儀 美國Millipore公司。
1.3 方法
1.3.1 標(biāo)準(zhǔn)溶液的配制
1.3.1.1 標(biāo)準(zhǔn)儲備液(100 μg/mL)
準(zhǔn)確稱取適量鹽酸克倫特羅標(biāo)準(zhǔn)品(含克倫特羅10.0 mg)于100 mL容量瓶中,用適量甲醇溶解后,再用甲醇定容至刻度,儲備液含克倫特羅質(zhì)量濃度為100 μg/mL。
1.3.1.2 標(biāo)準(zhǔn)工作液
克倫特羅標(biāo)準(zhǔn)工作液(0.05、0.125、0.25、0.5、2.5、10 μg/L)采用儲備液用流動相稀釋的方式配制,現(xiàn)配現(xiàn)用。
1.3.2 樣品前處理
稱取5.0 g樣品于帶蓋的聚四氟乙烯離心管中,依次加入3 mL質(zhì)量濃度為10 g/100 mL的碳酸鈉溶液和20 mL乙酸乙酯,然后旋渦混合30 s后高速均質(zhì)1 min,再以5 000 r/min速度離心2 min,吸取有機(jī)層于另一離心管中加入5 mL體積分?jǐn)?shù)為2.0%的甲酸溶液進(jìn)行反萃取,旋渦混合30 s,5 000 r/min離心2 min后吸取2 mL下層甲酸溶液于10 mL聚四氟乙烯離心管中,加入2 mL正已烷,旋渦混合30 s,靜置1 min后吸取下層水溶液過0.22 μm濾膜后進(jìn)行儀器分析。
1.3.3 儀器條件
色譜柱:Acquity BEH C18色譜柱(100 mm× 2.1 mm,1.7 μm);流動相:A相:0.1%甲酸溶液,B相:甲醇;梯度洗脫條件:B相在0.5 min內(nèi)保持10%,在2.5 min內(nèi)線性增加到90%,再保持0.5 min,然后在0.1 min內(nèi)降至10%,保持0.9 min,整個梯度洗脫用時4.5 min;流速0.30 mL/min;進(jìn)樣量10 μL。
電噴霧(electron spray ionization,ESI)離子源正離子模式電離;多反應(yīng)監(jiān)測(multiple reaction monitoring,MRM)模式監(jiān)測;毛細(xì)管電壓:2.5 kV;萃取錐孔電壓:20 V;離子源溫度:150 ℃;脫溶劑氣溫度:500 ℃;RF透鏡電壓:0.5 V;脫溶劑氣流速:1 000 L/h;錐孔氣流速:50 L/h;倍增器電壓:650 V;二級碰撞氣:氬氣;克倫特羅監(jiān)測離子對分別為277.16>131.87和277.16>202.96;克倫特羅-D9監(jiān)測離子對286.29>132.78。
2.1 儀器條件的建立
克倫特羅分子結(jié)構(gòu)中含有一個氨基基團(tuán),易形成較為穩(wěn)定的[M+H]+準(zhǔn)分子離子,因此目前所建立的LC-MS/MS分析方法均采用ESI+模式。本研究利用儀器配備的IntelliStart軟件,采用“T”三通方式,進(jìn)行了克倫特羅及其內(nèi)標(biāo)物的定性定量離子對等質(zhì)譜分析參數(shù)的研究和優(yōu)化,所獲得的最佳質(zhì)譜條件詳見1.3.3節(jié)。
利用LC分析克倫特羅時,采用乙腈為有機(jī)相時,同樣色譜條件下出峰時間明顯快于甲醇為有機(jī)相時;當(dāng)分別采用0.1%甲酸溶液-乙腈和0.1%甲酸溶液-甲醇進(jìn)行梯度洗脫分析克倫特羅時,前一種溶液作為流動相時克倫特羅的響應(yīng)小于后一種溶液作為流動相時克倫特羅的響應(yīng),但靈敏度差異較小,而本研究考慮到0.1%甲酸溶液-甲醇作為流動相時的響應(yīng)較高,采用0.1%甲酸溶液-甲醇作為流動相對克倫特羅進(jìn)行分析。利用上述色譜和質(zhì)譜條件獲得的標(biāo)準(zhǔn)溶液圖譜詳見圖1a,克倫特羅保留時間為2.93 min左右。
2.2 前處理條件的研究
本研究中的提取凈化的步驟主要參照農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)NY/T 468—2006《動物組織中鹽酸克倫特羅的測定 氣相色譜/質(zhì)譜法》,但首先考慮到方法快速,一定要盡量精簡前處理過程,于是結(jié)合本研究中的定量方法為同位素內(nèi)標(biāo)稀釋定量的特點,將原標(biāo)準(zhǔn)中2 次乙酸乙酯提取改為1 次乙酸乙酯提取,改動后雖然絕對回收率從原來約85%左右降為現(xiàn)約65%,但大大簡化了步驟;其次本研究將原標(biāo)準(zhǔn)中鹽酸溶液反萃取改變?yōu)榧姿崛芤悍摧腿?,并對甲酸溶液中甲酸體積分?jǐn)?shù)對反萃取回收率的影響進(jìn)行了實驗,實驗發(fā)現(xiàn)當(dāng)甲酸體積分?jǐn)?shù)分別為0.5%、1.0%、2.0%、5.0%時,反萃取回收率分別為85.5%、92.8%、95.2%、95.6%,因此本研究將甲酸溶液中的甲酸體積分?jǐn)?shù)設(shè)為2.0%;最后考慮到本研究中的儀器方法為LC-MS/MS法,直接將反萃取的甲酸溶液進(jìn)樣,然而發(fā)現(xiàn)克倫特羅出峰出現(xiàn)分叉,詳見圖2,根據(jù)前處理過程所用的試劑和步驟,很可能是由于甲酸溶液中帶有的乙酸乙酯造成的,于是為去掉殘余的乙酸乙酯,增加了一步正已烷去脂步驟,結(jié)果發(fā)現(xiàn)克倫特羅出峰較好,且克倫特羅出峰處無雜峰干擾,如圖1b、c所示。
圖1 0.12255 μgg/L克倫特羅標(biāo)準(zhǔn)溶液(aa11~~44)、空白樣品(bb11~~44)和添加樣品(00..5500 μgg//kkgg(cc11~~44)MRRMM色譜圖Fig. 1 MRM chromatograms of clenbuterol standard solution (0.125 μg/L) (a1-4), blank (b1-4) and fortified sample (0.50 μg/kg) (c1-4)
圖2 豬肉添加樣品總離子色譜圖Fig. 2 Total ion chromatogram of fortified pork sample
2.3 線性實驗
采用流動相稀釋的方式配制標(biāo)準(zhǔn)工作溶液后,每個質(zhì)量濃度標(biāo)準(zhǔn)工作溶液進(jìn)樣3 次,然后對克倫特羅在0.05~10 μg/L質(zhì)量濃度范圍內(nèi)根據(jù)待測物定量離子對(277.16>131.87)與內(nèi)標(biāo)離子對峰面積比值對質(zhì)量濃度作圖,得到的標(biāo)準(zhǔn)曲線方程為y=1.956 4x+0.010 5,相關(guān)系數(shù)為0.999 8,大于0.999,說明本研究建立的儀器分析條件適用于克倫特羅殘留量的分析。
2.4 回收率、精密度和檢出限
采取稱取空白豬肉樣品加入標(biāo)準(zhǔn)工作溶液的方式配制添加樣品,添加量分別為0.25、0.50、0.75 μg/kg,配制后按照1.3.2節(jié)進(jìn)行前處理操作,每個添加水平重復(fù)3 次,每個添加量每次進(jìn)行5 個添加樣品的定量分析,獲得的結(jié)果見表1。
表1 豬肉添加樣品中克倫特羅的平均回收率和變異系數(shù)Table 1 Mean recoveries (MR) and variation coefficients (CV) of clenbuterol in blank pork sample
由表1可知,本方法的平均添加回收率在95.9%~101.5%之間。批內(nèi)相對標(biāo)準(zhǔn)偏差和批間相對標(biāo)準(zhǔn)偏差分別為3.3%~4.6 %和4.1%~5.1%,相對標(biāo)準(zhǔn)偏差均小于10%,可見方法能滿足現(xiàn)行獸藥殘留分析的要求。然后根據(jù)研究中響應(yīng)最低的0.50 μg/kg添加樣品進(jìn)行檢出限和定量限的研究,克倫特羅的檢出限和定量限分別為0.10 μg/kg和0.25 μg/kg。
2.5 方法應(yīng)用
在2015年12月抽取了寧波市江東區(qū)3 個大型超市所售的20 個豬肉樣品,利用本方法進(jìn)行克倫特羅的快速確證,經(jīng)研究發(fā)現(xiàn)20 個樣品均不存在克倫特羅。
通過研究建立了快速測定豬肉中克倫特羅的LC-MS/MS方法,單個樣品從稱樣到分析完成整個過程需要約12 min。在堿性條件下豬肉樣品中的克倫特羅利用乙酸乙酯提取,然后經(jīng)甲酸溶液反萃取,再通過正已烷快速脫脂,凈化后獲得的樣品可以直接利用色譜柱進(jìn)行分離,LC-MS/MS法測定。方法定量限達(dá)0.25 μg/kg,相對標(biāo)準(zhǔn)偏差均小于10%,因此利用該方法可滿足動物性食品實際監(jiān)控中快速確證克倫特羅的需要。
[1] SHELVER W L, SMITH D J. Enzyme-linked immunosorbent assay development for the beta-adrenergic agonist zilpaterol[J]. Journal of Agricultural and Food Chemistry, 2004, 52(8)∶ 2159-2166. DOI∶10.1021/jf049919i.
[2] SHELVER W L, SMITH D J. Development of an immunoassay for the beta-adrenergic agonist ractopamine[J]. Journal of Immunoassay,2000, 21(1)∶ 1-23. DOI∶10.1080/01971520009349496.
[3] HE L, PU C, YANG H, et al. Development of a polyclonal indirect ELISA with sub-ng g-1 sensitivity for the analysis of clenbuterol in milk, animal feed, and liver samples and a small survey of residues in retail animal products[J]. Food Additives and Contaminants, Part A,2009, 26(8)∶ 1153-1161. DOI∶10.1080/02652030902906142.
[4] RASHID B A, KWASOWSKI P, STEVENSON D. Solid phase extraction of clenbuterol from plasma using immunoaffi nity followed by HPLC[J]. Journal of Pharmaceutical and Biomedical Analysis,1999, 21∶ 635-639. DOI∶10.1016/S0731-7085(99)00165-X.
[5] LAWRENCE J F, MENARD C. Determination of clenbuterol in beef liver and muscle tissue using immunoaffi nity chromatograhic cleanup and liquid chromatography with ultraviolet absorbance detection[J]. Journal of Chromatography B, 1997, 696∶ 291-297. DOI∶10.1016/ S0378-4347(97)00240-5.
[6] ARESTA A, PALMISANO C F, ZABONIN C G. Determination of clenbuterol in human urine and serum by solid-phase microectraction coupled to liquid chromatography[J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47∶ 641-645. DOI∶10.1016/ j.jpba.2008.02.001.
[7] POSYNIAK A, ZMUDZKI J, NIEDZIELSKA J. Screening procedures for clenbuterol residue determination in bovine urine and liver matrices using enzyme-linked immunosorbent assay and liquid chromatography[J]. Analytica Chimica Acta, 2003, 483∶ 61-67. DOI∶10.1016/S0003-2670(02)01021-8.
[8] ZHU Y H, LIU X Y, JIANG X F. Identification of ractopamine glucuronides and determination of bioactive ractopamine residues and its metabolites in food animal urine by ELISA, LC-MS/MS and GCMS[J]. Food Additives and Contaminants, Part A, 2014, 31(1)∶ 29-38. DOI∶10.1080/19440049.2013.855327.
[9] DI C D, MORRA V, PAZZI M, et al. Simultaneous determination of beta2-agonists in human urine by fast-gas chromatography/ mass spectrometry∶ method validation and clinical application[J]. Biochemical Chromatography. 2010, 24(4)∶ 358-366. DOI∶10.1002/ bmc.1300.
[10] LEHNER A F, HUGHES C G, HARKINS J D, et al. Detection and confirmation of ractopamine and its metabolites in horse urine after Paylean administration[J]. Journal of Analytical Toxicology, 2004,28(4)∶ 226-238. DOI∶10.1093/jat/28.4.226.
[11] 吳銀良, 李曉薇, 劉素英, 等. 氣相色譜-質(zhì)譜法測定肝臟組織中鹽酸克倫特羅和鹽酸萊克多巴胺[J]. 分析化學(xué), 2006, 34(8): 1083-1086. DOI:10.3321/j.issn:0253-3820.2006.08.007.
[12] DUVIVIER W F, van BEEK T A, MEIJER T, et al. Ultratrace LCMS/MS analysis of segmented calf hair for retrospective assessment of time of clenbuterol administration in Agriforensics[J]. Journal of Agricultural and Food Chemistry, 2015, 63(2)∶ 493-499. DOI∶10.1021/ jf5056437.
[13] CAO B, HE G, YANG H, et al. Development of a highly sensitive and specific enzyme-linked immunosorbent assay (ELISA) for the detection of phenylethanolamine A in tissue and feed samples and confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS)[J]. Talanta, 2013, 115∶ 624-630. DOI∶10.1016/ j.talanta.2013.06.026.
[14] CHO Y J, CHAE Y S, KIM J Y, et al. Improvement of an simultaneous determination for clenbuterol and ractopamine in livestock products using LC-MS/MS[J]. Korean Journal of Food Science and Technology,2013, 45(1)∶ 25-33. DOI∶10.9721/KJFST.2013.45.1.25.
[15] WANG L, ZENG Z, WANG X, et al. Multiresidue analysis of nine β-agonists in animal muscles by LC-MS/MS based on a new polymer cartridge for sample cleanup[J]. Journal of Separation Science, 36(11)∶1843-1852. DOI∶10.1002/jssc.201201088.
[16] LOPEZ-SERNA R, KASPRZYK-HORDEM B, PETROVI M, et al. Multi-residue enantiomeric analysis of pharmaceuticals and their active metabolites in the Guadalquivir River basin (South Spain) by chiral liquid chromatography coupled with tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2013, 405(18)∶ 5859-5873. DOI∶10.1007/s00216-013-6900-7.
[17] WANG L, HE L, WANG Z, et al. Selection of a representative matrix for the multiresidue analysis of nine β-agonists in animal tissues and urine with LC-MS/MS[J]. The Analyst, 2013, 138(16)∶ 4579-4584. DOI∶10.1039/c3an36806h.
[18] LU J, HE G, WANG X, et al. An improved LC-MS-MS method for the determination of clenbuterol in human urine[J]. Lc Gc North America,2013, 31(3)∶ 240-247.
[19] 陳國, 劉勇軍, 呂燕, 等. 液相色譜串聯(lián)質(zhì)譜法測定豬肉中克倫特羅手性對映體殘留量[J]. 肉類研究, 2015, 29(5): 22-26. DOI:10.7506/ rlyj1001-8123-201505006.
[20] HOOIJERINK H, SCHILT R, HAASNOOT W, et al. Determination of clenbuterol in urine of calves by high-performance liquid chromatography with in series ultraviolet and electrochemical detection[J]. Journal of Pharmaceutical and Biomedical Analysis,1991, 9(6): 485-492. DOI:10.1016/0731-7085(91)80250-D.
Fast Determination of Residual Clenbuterol in Pork by Liquid Chromatography with Tandem Mass Spectrometry
ZHANG Yan, CHEN Guo, Lü Yan, WU Yinliang1,*
(The Ningbo Academy of Agricultural Sciences, Ningbo 315040, China)
A method was developed for determining residual clenbuterol in pork by liquid chromatography with tandem mass spectrometry. Five grams of pork samples were extracted with ethyl acetate under basic condition. Then, clenbuterol was extracted from the extract using formic acid solution. After defatting with hexane, the extract was directly used for determination of clenbuter by liquid chromatography with tandem mass spectrometry (LC-MS-MS) on an Acquity BEH C18column with a mixture of 0.1% formic acid solution and methanol as the mobile phase under gradient elution conditions. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode using positive electrospray ionization. The analyte was quantifi ed with the isotope dilution and internal standard methods. Good linearity was obtained for clenbuterol in the concentration range of 0.05-10.0 μg/L with correlation coeffi cient more than 0.999. The recoveries of pork samples were 95.9%-101.5% at fortifi ed levels of 0.25-0.75 μg/kg. The proposed method exhibited a limit of detection of 0.10 μg/kg and a limit of quantitation of 0.25 μg/kg for clenbuterol. The relative standard deviations of intra-assay and inter-assay precision were between 3.3% and 4.6%, and between 4.1% and 5.1%, respectively. The method is demonstrated to be suitable for the fast determination of clenbuterol in pork.
clenbuterol; fast determination; liquid chromatography with tandem mass spectrometry (LC-MS-MS); residue
TS251.7
A
1001-8123(2016)10-0030-05
2016-04-28
寧波市重大科技攻關(guān)項目(2013C11003)
張艷(1978—),女,工程師,碩士,研究方向為農(nóng)產(chǎn)品中農(nóng)獸藥殘留分析。 E-mail:zhangsky001@tom.com
吳銀良(1975—),男,教授級高級工程師,博士,研究方向為農(nóng)產(chǎn)品中農(nóng)獸藥殘留分析。E-mail:wupaddyfield@sina.com