国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

混沌神經(jīng)網(wǎng)絡與CPG的作用機制

2016-11-23 13:46:28馬振鵬吳宗法
西安電子科技大學學報 2016年5期
關鍵詞:中樞步態(tài)幅值

馬振鵬,吳宗法

(同濟大學經(jīng)濟與管理學院,上海 201804)

混沌神經(jīng)網(wǎng)絡與CPG的作用機制

馬振鵬,吳宗法

(同濟大學經(jīng)濟與管理學院,上海 201804)

大腦皮層是一個具有混沌特性的非線性系統(tǒng),中樞模式發(fā)生器可產(chǎn)生節(jié)律性運動.依據(jù)生物學經(jīng)驗,中樞模式發(fā)生器受大腦皮層控制,但兩者作用機制的研究對于生物運動控制仍是一個開放性問題.文中建立了混沌神經(jīng)網(wǎng)絡與中樞模式發(fā)生器相互作用的模型和狀態(tài)方程,通過分岔變化對模型的動態(tài)特性進行分析,說明混沌神經(jīng)網(wǎng)絡與中樞模式發(fā)生器間的相互工作機制,以及中樞模式發(fā)生器參數(shù)對模型的影響.同時,提出了大腦皮層有許多穩(wěn)定點模式與步態(tài)模式相對應,大腦皮層模式的改變可控制步態(tài)模式的改變.研究結果表明,可通過調(diào)整大腦皮層自身外部輸入和中樞模式發(fā)生器反饋回大腦皮層的值,來改變大腦皮層模式.

中樞模式發(fā)生器;混沌神經(jīng)網(wǎng)絡;大腦皮層;分岔;仿真

大腦能夠產(chǎn)生腦電信號,這些信號可通過腦表皮或電極的方式檢測到.非線性動力學和混沌理論的最新發(fā)展已經(jīng)證明,腦電圖擁有混沌特性[1].一定條件下,混沌在單個的神經(jīng)元內(nèi)可自然產(chǎn)生.文獻[2]研究表明,巨烏賊軸突神經(jīng)膜的周期性脈沖刺激能夠引起混沌的反應.研究者依照這種生物現(xiàn)象提出了混沌神經(jīng)網(wǎng)絡,其中著名的有Aihara[3]模型.

中樞模式發(fā)生器(Central Pattern Generator,CPG)可產(chǎn)生節(jié)律性運動,文獻[4]建立了CPG模型.文獻[5]提出實現(xiàn)機器人慢跑步態(tài)規(guī)劃的系列型CPG模型.CPG已經(jīng)應用于機器人控制、動物或人類運動的建模和仿真[6-7],并取得了大量研究成果.文獻[8]在CPG模型基礎上設計了類魚的魚鰭.文獻[9]則在CPG模型基礎上設計了機器鰻魚.另外,CPG模型也廣泛應用于蛇形機器人的設計與控制中,文獻[10]對調(diào)節(jié)蛇形機器人的步態(tài)控制相位差進行了研究.文獻[11]基于CPG模型進行了新的蛇形機器人步態(tài)研究.

大腦皮層在人類運動中具有重要作用,文獻[12]提到對于人類的步態(tài),大腦皮層具有認知和方向的作用.文獻[13]提出步態(tài)是一系列的全局狀態(tài),全局狀態(tài)可產(chǎn)生運動和信息處理命令,通過調(diào)整全局狀態(tài),可實現(xiàn)對步態(tài)的調(diào)整.文獻[14]提出由于大腦對CPG有調(diào)節(jié)作用,才能實現(xiàn)人穩(wěn)定的步態(tài).文獻[15]建立了大腦韻律產(chǎn)生器與肌肉骨骼系統(tǒng)的模型,調(diào)整步態(tài),實現(xiàn)避障功能.文獻[16]提出運動需要大腦的調(diào)節(jié),可通過在不同環(huán)境下,不同方法的訓練,可最大程度地恢復大腦受損傷的運動功能.

混沌神經(jīng)網(wǎng)絡能模擬人的大腦皮層動態(tài)特性,因此,將混沌神經(jīng)網(wǎng)絡和CPG聯(lián)系起來,發(fā)現(xiàn)它們的相互作用,對于運動神經(jīng)學及機器人的運動控制有著十分重要的作用.

筆者在對研究背景分析的基礎上,構建了CPG與混沌神經(jīng)網(wǎng)絡相互作用的數(shù)學模型和狀態(tài)方程,并對動態(tài)特性進行了分析.同時,對各參數(shù)的系統(tǒng)特性和神經(jīng)的行為影響進行了細致分析,并對結果及進一步的研究進行了討論.

1 數(shù)學模型及動態(tài)特性分析

1.1CPG與混沌神經(jīng)網(wǎng)絡作用模型

大腦皮層發(fā)命令給CPG,CPG將信號反饋回大腦皮層[12,16],因此,可將混沌神經(jīng)網(wǎng)絡的輸出加到CPG的輸入上,將CPG的輸出加到混沌神經(jīng)網(wǎng)絡的輸入上,參照文獻[17]的CPG網(wǎng)絡模型和文獻[3]的混沌神經(jīng)網(wǎng)絡,建立CPG與混沌神經(jīng)網(wǎng)絡相互作用的模型,如圖1所示.

圖1 CPG與混沌神經(jīng)網(wǎng)絡相互作用的模型框圖

CPG模型的數(shù)學表達式為

其中,x1、x2、x3和x4為狀態(tài)變量,參數(shù)h為比例系數(shù),CPG的輸出Routput=h max(0,x1),其他參數(shù)見文獻[17].

混沌神經(jīng)網(wǎng)絡的表達式為

其中,x表示神經(jīng)元在t時刻的內(nèi)部狀態(tài),k是神經(jīng)元不應性衰減指數(shù),A是不應性尺度參數(shù),f是神經(jīng)元的作用函數(shù),a是神經(jīng)元的門限值.在文中,設定f(x)=1(/1+exp(-x/b)),其中,b是作用函數(shù)的梯度參數(shù),當神經(jīng)元處于興奮狀態(tài)時,輸出為1;當神經(jīng)元處于靜息狀態(tài)時,輸出為0.

式(2)可改寫為狀態(tài)方程式,即

選擇a位于[0,1]數(shù)值區(qū)間內(nèi),得到混沌神經(jīng)網(wǎng)絡的分岔圖,如圖2所示.

從分岔圖可以看到,比較明顯的四周期區(qū)間為[0.15,0.18]和[0.82,0.88],三周期區(qū)間為[0.24,0.32]和[0.70,0.78],二周期區(qū)間為[0.42,0.60].

設式(3)中狀態(tài)變量為x5,結合式(1)建立混沌神經(jīng)網(wǎng)絡與CPG相互作用的狀態(tài)方程,得到

圖2 混沌神經(jīng)網(wǎng)絡分岔圖

1.2動態(tài)特性分析

對于式(4),因為其中有max函數(shù),為便于分析,將其分成4種情況,分別是:

將參數(shù)a看作常值,并以a為變量來討論式(4)的動態(tài)特性.設x5=y,當X=(x1,x2,x3,x4,x5)T時,系統(tǒng)式(4)可表示為.通過解F(X,a)=0來得到穩(wěn)定點的解,穩(wěn)定點方程為

由上式看到,x1<0,x2<0和x1<0,x2>0的穩(wěn)定點方程式是一樣的.按照文獻[17]設置參數(shù)值k=0.7,h=1,b=0.02,A=1,Tr=0.25,Ta=0.5,e=1.5,d=2.5和w=2.5,得到穩(wěn)定點曲線如圖3所示.

為進行動態(tài)性能分析,可寫出4種情況下的雅克比行列式,即

圖3 穩(wěn)定點曲線圖

有了雅克比行列式和穩(wěn)定點,就可求得特征根,根據(jù)特征根可分析系統(tǒng)的動態(tài)特性.而新建模型對于x1≤0,x2≤0;x1>0,x2≤0;x1≤0,x2>0這3種情況,通過計算,特征根的實部一直是負值,說明在這3種情況下新建模型是穩(wěn)定的;而對于x1>0,x2>0,存在兩個正的特征根,對應混沌狀態(tài).

2 參數(shù)影響分析和仿真

以上述的模型來研究混沌神經(jīng)網(wǎng)絡與CPG相互作用的關系,主要是CPG參數(shù)d、e和w的變化對混沌神經(jīng)網(wǎng)絡和CPG本身的影響,參數(shù)d表示神經(jīng)元內(nèi)部抑制部分對興奮部分的抑制作用,w表示其他神經(jīng)元對一個神經(jīng)元的抑制作用,e表示外部輸入[17],其中設置參數(shù)a=0.

首先,討論參數(shù)d對模型的影響.當d∈[0,0.7)時,CPG相圖為穩(wěn)定點,而混沌神經(jīng)網(wǎng)絡的分岔圖開始為一周期,后變?yōu)槎芷?當d∈[0.7,1.6)時,CPG相圖為穩(wěn)定點,而混沌神經(jīng)網(wǎng)絡的分岔圖為從穩(wěn)定一周期到二周期、混沌、三周期、混沌、四周期、再到混沌的變化過程.從d=1.6開始,CPG出現(xiàn)極限環(huán).當d=2.5時,混沌神經(jīng)網(wǎng)絡的分岔圖整個范圍都可以觀察到;隨著d的增大,CPG輸出變小,輸出的頻率加快,混沌神經(jīng)網(wǎng)絡的分岔圖范圍逐漸變小;當d=300時,混沌神經(jīng)網(wǎng)絡只有最初的一周期模式了.從上面仿真可以看到,隨著參數(shù)d的增大,CPG輸出頻率加大,輸出幅值減小,輸出幅值范圍為[0,1],混沌神經(jīng)網(wǎng)絡模式從二周期吸引子,到混沌與周期吸引子交替出現(xiàn),并最終變?yōu)閱沃芷谖?

其次,討論參數(shù)w對模型的影響.當w=0.0時,CPG為穩(wěn)定點,混沌神經(jīng)網(wǎng)絡為二周期吸引子.隨著w的增大,CPG相圖逐漸變?yōu)榉€(wěn)定焦點,當w=1.5時,出現(xiàn)極限環(huán),混沌神經(jīng)網(wǎng)絡為周期吸引子與混沌交替;當w=2.5時,混沌神經(jīng)網(wǎng)絡的分岔整個范圍都可以觀察到.并且隨著w的增大,CPG輸出頻率降低;當w=3.5時,CPG和混沌神經(jīng)網(wǎng)絡的狀態(tài)和w=0.0時的情況一樣,并一直保持.由以上變化狀況可以看到,隨著參數(shù)w的增大,CPG輸出頻率降低,輸出幅值范圍為[0,1],混沌神經(jīng)網(wǎng)絡模式從二周期吸引子,到混沌與周期吸引子交替出現(xiàn),并最終變?yōu)槎芷谖?

最后,討論參數(shù)e對模型的影響.當e=0.0時,CPG為穩(wěn)定點,混沌神經(jīng)網(wǎng)絡為一些離散的點;當e=0.1時,CPG就出現(xiàn)極限環(huán),混沌神經(jīng)網(wǎng)絡為一周期吸引子.隨著參數(shù)e的增大,CPG輸出頻率加大,幅值加大,混沌神經(jīng)網(wǎng)絡逐漸出現(xiàn)完整分岔.隨后,CPG輸出幅值不斷加大,混沌神經(jīng)網(wǎng)絡為混沌與周期吸引子共存的一種模式.由此可知,隨著參數(shù)e的增大,CPG輸出幅值不斷加大,混沌神經(jīng)網(wǎng)絡模式從單周期吸引子,到混沌與周期吸引子交替出現(xiàn).

這里用混沌神經(jīng)網(wǎng)絡來模擬人的大腦皮層,通過混沌神經(jīng)網(wǎng)絡分岔情況可以看到,混沌神經(jīng)網(wǎng)絡不僅有混沌狀態(tài),并且存在一周期、二周期、三周期和四周期吸引子.將這些周期吸引子看作大腦皮層模式,其與CPG相對應.這樣大腦皮層模式的轉(zhuǎn)變,就能引起步態(tài)的變換.這里以a為[0.42,0.60]區(qū)間上的二周期為例,來實現(xiàn)這種模式對應.通過上面仿真,將CPG輸出限制在區(qū)間[0,1],確定參數(shù)e=2.1,h=0.18,a=0.42,進行仿真,如圖4所示.

從圖4可以看到,通過設置參數(shù),可將二周期吸引子與CPG的極限環(huán)相對應,可調(diào)整參數(shù)h和a就可實現(xiàn)模式的轉(zhuǎn)換.

圖4 CPG輸出、相面和分岔圖

3 結束語

文中建立了混沌神經(jīng)網(wǎng)絡與CPG相互作用的模型和狀態(tài)方程,通過分岔描述對狀態(tài)方程的動態(tài)特性進行了分析,并利用MATALB進行數(shù)字仿真,說明了CPG參數(shù)d、e和w的變化對混沌神經(jīng)網(wǎng)絡的影響,并對其生物特性進行了說明.仿真結果表明,可通過調(diào)整大腦皮層自身外部輸入和CPG反饋回大腦皮層的值,來改變大腦皮層模式.當然,大腦是由許多神經(jīng)元相互作用而形成的一個復雜網(wǎng)絡體,所以與CPG相互作用模型與機制將作為以后研究的重點.

[1]LU Q,LI W,TIAN J,et al.Effects on Hypothalamus when CPG is Fed Back to Basal Ganglia Based on KIV Model [J].Cognitive Neurodynamics,2015,9(1):85-92.

[2]MEES A,AIHARA K,ADACHI M,et al.Deterministic Prediction and Chaos in Squid Axon Response[J].Physics Letters A,1992,169(1):41-45.

[3]AIHARA K,TAKABE T,TOYODA M.Chaotic Neural Networks[J].Physics Letters A,1990,144(6):333-340.

[4]MATSUOKA K.Sustained Oscillations Generated by Mutually Inhibiting Neurons with Adaptation[J].Biological Cybernetics,1985,52(6):367-376.

[5]ZHANG J Q,GAO F,HAN X L,et al.Trot Gait Design and CPG Method for a Quadruped Robot[J].Journal of Bionic Engineering,2014,11(1):18-25.

[6]LU Q,TIAN J.Research on Walking Gait of Biped Robot Based on a Modified CPG Model[J].Mathematical Problems in Engineering,2015,2015:793208.

[7]ROSTRO-GONZALEZ H,CERNA-GARCIA P A,TREJO-CABALLERO G,et al.A CPG System Based on Spiking Neurons for Hexapod Robot Locomotion[J].Neurocomputing,2015,170:47-54.

[8]SFAKIOTAKIS M,FASOULAS J,KAVOUSSANOS M M,et al.Experimental Investigation and Propulsion Control for a Bio-inspired Robotic Undulatory Fin[J].Robotica,2015,33(5):1062-1084.

[9]WILLIAMS T L,MCMILLEN T.Strategies for Swimming:Explorations of the Behaviour of a Neuro-musculomechanical Model of the Lamprey[J].Biology Open,2015,4(3):253-258.

[10]MATSUO T,ISHII K.The Adjustment System of Phase Difference Using Neural Oscillator Network for a Snake-like Robot[C]//Proceedings of the SICE Annual Conference.Tokyo:SICE,2012:502-507.

[11]HASANZADEH S,AKBARZADEH A.Development of a New Spinning Gait for a Planar Snake Robot Using Central Pattern Generators[J].Intelligent Service Robotics,2013,6(2):109-120.

[12]BUSCHMANN T,EWALD A,TWICKEL A V,et al.Controlling Legs for Locomotion-insights from Robotics and Neurobiology[J].Bioinspiration&Biomimetics,2015,10:041001.

[13]TAGA G.A Model of the Neuro-musculo-skeletal System for Human Locomotion[J].Biological Cybernetics,1995,73 (2):97-111.

[14]GISZTER S F.Motor Primitives—New Data and Future Questions[J].Current Opinion in Neurobiology,2015,33: 156-165.

[15]TAGA G.A Model of the Neuro-musculo-skeletal System for Anticipatory Adjustment of Human Locomotion During Obstacle Avoidance[J].Biological Cybernetics,1998,78(1):9-17.

[16]KNIKOU M.Neural Control of Locomotion and Training-induced Plasticity After Spinal and Cerebral Lesions[J]. Clinical Neurophysiology,2010,121(10):1655-1668.

[17]MATSUOKA K.Analysis of a Neural Oscillator[J].Biological Cybernetics,2011,104(4/5):297-304.

(編輯:齊淑娟)

Interaction between the chaotic neural network and the CPG

MA Zhenpeng,WU Zongfa
(School of Economics&Management,Tongji Univ.,Shanghai 201804,China)

The cerebral cortex is a chaotic nonlinear system.The Central Pattern Generator(CPG)can generate a rhythmic movement.According to biological knowledge,the CPG is controlled by the central nervous.But the study of the mechanism for biological motion control is still an open question.In this paper,we establish the model for depicting the interaction between the chaotic neural network and CPG. Bifurcation analysis and phase are used to describe changes in system behavior and show the interaction mechanism.In addition,the influences of CPG parameters on the model are discussed.Many modes described at state equilibrium points in the cerebral cortex correspond to gait patterns,and the change of state equilibrium points in the cerebral cortex leads to the change of gait patterns.At the same time,the results show that the brain cortex patterns can be changed by adjusting the value of the brain cortex’external input and CPG’s feedback to the cerebral cortex.

central pattern generator;chaotic neural network;cerebral cortex;bifurcation;simulation

N945.1

A

1001-2400(2016)05-0173-05

10.3969/j.issn.1001-2400.2016.05.030

2015-09-22

國家自然科學基金資助項目(51179081)

馬振鵬(1974-),男,同濟大學博士研究生,E-mail:mazhen7@126.com.

吳宗法(1963-),男,教授,E-mail:gjwzf@263.net.

猜你喜歡
中樞步態(tài)幅值
小螞蟻與“三角步態(tài)”
科學大眾(2024年5期)2024-03-06 09:40:34
試議文化中樞的博物館與“進”“出”兩種行為
基于面部和步態(tài)識別的兒童走失尋回系統(tǒng)
電子制作(2018年18期)2018-11-14 01:48:04
基于Kinect的學步期幼兒自然步態(tài)提取
自動化學報(2018年6期)2018-07-23 02:55:42
基于S變換的交流電網(wǎng)幅值檢測系統(tǒng)計算機仿真研究
電子制作(2017年7期)2017-06-05 09:36:13
正序電壓幅值檢測及諧波抑制的改進
小兒推拿治療中樞協(xié)調(diào)障礙163例
低壓電力線信道脈沖噪聲的幅值與寬度特征
電源技術(2015年5期)2015-08-22 11:18:30
基于零序電壓幅值增量的消弧線圈調(diào)諧新方法
電測與儀表(2015年7期)2015-04-09 11:40:10
辨證取穴針刺治療對慢性緊張型頭痛中樞調(diào)控的影響
三穗县| 南投市| 沙洋县| 龙南县| 邵阳市| 蒙城县| 华阴市| 满洲里市| 峨边| 合阳县| 乾安县| 高密市| 英德市| 会宁县| 红安县| 若羌县| 博湖县| 横山县| 城固县| 安塞县| 色达县| 准格尔旗| 双牌县| 汶上县| 九台市| 阿坝县| 远安县| 高平市| 金昌市| 福建省| 揭西县| 建湖县| 大英县| 正镶白旗| 浦城县| 西和县| 海伦市| 双鸭山市| 天长市| 唐山市| 新竹市|