周阿麗,何秀麗,印凡成
(河海大學 理學院,江蘇 南京 210098)
?
具有Markov切換的隨機Cohen-Grossberg神經(jīng)網(wǎng)絡時滯依賴的指數(shù)同步
周阿麗,何秀麗,印凡成
(河海大學 理學院,江蘇 南京 210098)
基于隨機分析理論以及時滯依賴的反饋控制技術,首先運用Lyapunov函數(shù)方法和Gronwall不等式,其次給出了具有Markov切換的隨機Cohen-Grossberg神經(jīng)網(wǎng)絡時滯依賴的指數(shù)同步的充分性判據(jù),此判據(jù)解除了傳統(tǒng)意義上時滯延遲的可微性以及其導數(shù)的有界性的限制,最后通過一個數(shù)值模擬實例驗證了理論結果的正確性及有效性.
指數(shù)同步; Cohen-Grossberg神經(jīng)網(wǎng)絡; Markov切換; 時變時滯延遲
自從Pecora[1]等最初提出耦合混沌系統(tǒng)的同步性以來,基于其在多種領域中的潛在應用價值,混沌神經(jīng)網(wǎng)絡的同步性理論已被廣泛應用在創(chuàng)造安全的交流系統(tǒng)、化學和生物系統(tǒng)以及自動化控制等領域.因此,關于神經(jīng)網(wǎng)絡帶有噪聲或沒有噪聲的同步性理論也被廣泛研究[2-3].Sun等[4]利用LMI方法研究了混沌系統(tǒng)的指數(shù)同步問題,Zhou等[5]利用M矩陣方法研究了神經(jīng)網(wǎng)絡的隨機同步問題,同時自適應性同步的問題也得到了廣泛的研究[6-7].此外,關于神經(jīng)網(wǎng)絡的指數(shù)穩(wěn)定性問題也取得了很多成果[8-10].特別地,關于Cohen-Grossberg(C-G)神經(jīng)網(wǎng)絡系統(tǒng)的指數(shù)穩(wěn)定性和同步性也取得了很大的成就[11-14].但是在現(xiàn)實應用中,神經(jīng)網(wǎng)絡會出現(xiàn)隨機故障,導致鏈接權值或閥值突然被改變,此類問題可通過Markov切換來模擬,其中,Zhu等[12]運用Halandy不等式等對C-G神經(jīng)網(wǎng)絡系統(tǒng)指數(shù)同步做了深入研究.筆者受以上研究的啟發(fā),將Lyapunov函數(shù)方法、隨機分析技術與Grownwall不等式方法等相結合給出了具有Markov切換的變時滯隨機C-G神經(jīng)網(wǎng)絡的指數(shù)同步的充分性判據(jù),同時不再對傳統(tǒng)意義上的時滯函數(shù)的可微性以及其導數(shù)的有界性做要求.
本文首先介紹了具有Markov切換的C-G神經(jīng)網(wǎng)絡的驅動和響應系統(tǒng)以及所需的一些假設和定義,其次通過構造Lyapunov函數(shù)并結合Grownwall不等式等技術得到了對于誤差系統(tǒng)的指數(shù)同步準則,最后通過一個實例及其數(shù)值模擬驗證了所得結論的有效性和適用性.
設{r(t),t≥0}為狀態(tài)空間S={i=1,2,…,N}的一個連續(xù)時間的Markov鏈,其生成元矩陣∏=(πij)n×n為
考慮下面的帶有時滯依賴的C-G神經(jīng)網(wǎng)絡模型
dx(t)={-α(x(t),r(t))[β(x(t),r(t))-C(r(t))f(x(t))-D(r(t))g(x(t-τ(t)))]+J}dt,
(1)
其中,x(t)=[x1(t),x2(t),…,xn(t)]T是n個神經(jīng)元的狀態(tài)向量,α(x(t),r(t))=diag(α1(x1(t),r(t)),…,αn(xn(t),r(t)))代表放大函數(shù)β(x(t),r(t))=[β1(x1(t),r(t)),β2(x2(t),r(t)),…,βn(xn(t),r(t))]T為行為函數(shù),C(r(t))=(cij(r(t)))n×n和D(r(t))=(dij(r(t)))n×n分別為連接權矩陣和時滯連接權矩陣. f(x(t))=[f1(x1(t)),f2(x2(t)),…,fn(xn(t))]T和g(x(t))=[g1(x1(t)),g2(x2(t)),…,gn(xn(t))]T為神經(jīng)元的激勵函數(shù),J=[J1,J2,…,Jn]T代表一個恒定的外部輸入變量,時滯依賴τ(t)滿足0≤τ(t)≤τ,其中τ是一個正常量.
模型(1)為驅動系統(tǒng),其響應系統(tǒng)為
dy(t)= {-α(y(t),r(t))[β(y(t),r(t))-C(r(t))f(y(t))-D(r(t))g(y(t-τ(t)))]+
J+u(t,r(t))}dt+σ(t,r(t),y(t)-x(t),y(t-τ(t))-x(t-τ(t)))dw(t) ,
(2)
其中,u(t,r(t))表示控制輸入向量,w(t)是一個m維布朗運動,假設Markov鏈r(·)獨立于布朗運動w(·),且取u(t,r(t))=K1(r(t))[f(y(t)-x(t))]+K2(r(t))[g(y(t-τ))-g(x(t-τ(t)))],K1(r(t)),K2(r(t))為增益矩陣.
令e(t)=y(t)-x(t)為同步誤差,且A(r(t))=C(r(t))+K1(r(t))=(aij(r(t)))n×n,B(r(t))=D(r(t))+K2(r(t))=(bij(r(t)))n×n,則系統(tǒng)(1)和系統(tǒng)(2)誤差系統(tǒng)可以表示為
de(t)= {-[α(y(t),r(t))β(y(t),r(t))-α(x(t),r(t))β(x(t),r(t))]+α(y(t),r(t))A(r(t))×
[f(y(t))-f(x(t))]+α(y(t),r(t))B(r(t))[g(y(t-τ(t))-g(x(t-τ(t))]+
[α(y(t),r(t))-α(x(t),r(t))]×[C(r(t))f(x(t)+D(r(t))g(x(t-τ(t)))]}dt+
σ(t,r(t),e(t),e(t-τ(t)))dw(t).
(3)
LV(t,i,e(t))= Vt(t,i,e(t))+Ve(t,i,e(t))·F(t,i,e(t),e(t-τ(t)))+1/2trace[σT(t,i,e(t),
(4)
為了得到本文主要結果,給出以下假設:
5) f(0)≡0,g(0)≡0,σ(t,0,0)≡0.
定義1 如果存在正常數(shù)γ,λ對于t≥0有E|u(t)-v(t)|2≤γE|u(0)-v(0)|2e-λt,則稱2個耦合的神經(jīng)網(wǎng)絡系統(tǒng)(1)和(2)為指數(shù)同步的.
δ1|e(t)|2≤V(t,i,e(t))≤δ2|e(t)|2
(5)以及不等數(shù)τ<τ*成立,其中τ*=(δ2/λ1)log(λ1δ1/λ2δ2),則系統(tǒng)(1)和系統(tǒng)(2)是時滯依賴指數(shù)同步的.
(6)
由假設(1)可得
|ej(t)‖fk(yk(t))-fk(xk(t))|≤u1k|ej(t)‖ek(t)|≤u1k(|ej(t)|2+|ek(t)|2)/2,
|ej(t)‖gk(yk(t-τ(t)))- gk(xk(t-τ(t)))|≤u2k|ej(t)‖ek(t-τ(t))|≤
u2k(|ej(t)|2+|ek(t-τ(t))|2)/2,
(7)
將式(7)代入式(6)并整理可得
λ1|e(t)|2+|eτ(t)|2,
(8)
另由定理條件可得
(9)
對于任意t≥τ,存在整數(shù)K>2使得(K-1)τ≤t≤Kτ.
定義Lyapunove 函數(shù)V1(tm,r(tm),e,eτ),
對于0≤m≤K-1,tm=t-mτ.
又
由式(5)和(8)條件可以得到
因此
由上述條件可得
由Gronwall不等式可得
即
因此,由定義可以得出系統(tǒng)(1)和(2)是時滯依賴指數(shù)同步的.
注:本文所研究的為時滯依賴的神經(jīng)網(wǎng)絡模型,同時不再對傳統(tǒng)意義上時滯函數(shù)的可微性以及其導數(shù)的有界性做要求.例如文獻[11]要求時滯函數(shù)可微且其導函數(shù)小于1,而本文定理的條件只需時滯函數(shù)有界.另外,本文所考慮的激勵函數(shù)弱化了傳統(tǒng)的Lipschitz 條件[4]及函數(shù)的單調性及連續(xù)可微性[7].
將給出具體例子來說明所得結論的有效性和可行性.
例1 考慮如下二維C-G神經(jīng)網(wǎng)絡模型
dx(t)={-α(x(t),r(t))[β(x(t),r(t))-C(r(t))f(x(t))-D(r(t))g(x(t-τ(t)))]+J}dt,dy(t)= {-α(y(t),r(t))[β(y(t),r(t))-C(r(t))f(y(t))-D(r(t))g(y(t-τ(t)))]+J+u(t)}dt+
σ(t,r(t),y(t)-x(t),y(t-τ(t))-x(t-τ(t)))dw(t),
其中,u(t,r(t))=K1(r(t))[f(y(t))-f(x(t))]+K2(r(t))[g(y(t-τ(t)))-g(x(t-τ(t)))],J=(0,0)T,x(t)=(x1(t),x2(t))T,y(t)=(y1(t),y1(t))T,w(t)是二維布朗運動,r(t)為Markov鏈,S={1,2},生成元矩陣及其他參數(shù)為βj(xj(t),i)=2xj(t)(i,j=1,2),αj(xj(t),i)=0.6+0.2cos(xj(t)),τ(t)=0.1|cos t|+1,f(xj(t))=g(xj(t))=(|xj(t)+1|-|xj(t)-1|)/2,
容易驗證假設1)~5)成立,其他條件給出如下
圖1 a和b分別顯示出系統(tǒng)(1)和系統(tǒng)(2)的混沌現(xiàn)象,取q1=1,q2=0.5,定理中的條件均滿足.因此系統(tǒng)(1)和系統(tǒng)(2)是指數(shù)同步的,圖1 c驗證了2個系統(tǒng)的同步性.
研究了具有Markov切換的隨機延遲的Cohen-Grossberg神經(jīng)網(wǎng)絡的指數(shù)同步問題,基于隨機分析理論以及時滯依賴的反饋控制技術,首先運用Lyapunov函數(shù)方法和Gronwall不等式,給出了具有Markov切換的變時滯隨機Cohen-Grossberg神經(jīng)網(wǎng)絡的指數(shù)同步的充分性判據(jù),該判據(jù)不在對時滯延遲具有可微性及導數(shù)有界性作要求,最后數(shù)值模擬實例驗證了理論結果的正確性及有效性.
[1] Carroll T L, Pecora L M. Synchronization chaotic circuits [J]. IEEE Trans. Circuits Syst., 1991, 38(4): 453-456.
[2] Li X, Ding C, Zhu Q. Synchronization of stochastic perturbed chaotic neural networks with mixed delays [J]. J. Franklin Inst, 2010, 347(7): 1 266-1 280.
[3] Zhou J, Chen T, Xiang L. Robust synchronization of delayed neural networks based on adaptive control and parameters identification [J]. Chaos Solitons Fractals, 2006, 27(4): 905-913.
[4] Sun Y, Cao J, Wang Z. Exponential synchronization of stochastic perturbed chaotic delayed neural networks [J]. Neurocomputing, 2007, 70(13/15):2 477-2 485.
[5] Zhou X, Zhou W, Yang J, et al. Stochastic synchronization of neural networks with multiple time-varying delays and Markovian jumps [J]. J.Franklin Inst, 2015, 352(3): 1 265-1 283.
[6] Zhang C, Deng F, Peng Y, et al. Adaptive synchronization of Cohen-Grossberg neural network with mixed time-varying delays and stochastic perturbation [J]. Applied Mathematics and Computation, 2015, 269(4): 792-801.
[7] Li X, Cao J. Adaptive synchronization for delayed neural networks with stochastic perturbation [J]. J.Franklin Inst., 2008, 345(7):779-791.
[8] Liu Z, Lü S, Zhong S, et al. pth moment exponential synchronization analysis for a class of stochastic neural networks with mixed delays [J]. Commun Nonlinear Sci Numer Simul, 2010, 15(7): 1 899-1 909.
[9] Zhu Q, Cao J. Stability analysis for stochastic neural networks of neutral type with both Markovian jump parameters and mixed time delays [J]. Neurocomputing, 2010, 73(13/15): 2 671-2 680.
[10] Zhu Q, Cao J. Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays [J]. IEEE Trans Syst Man Cybern Part B, Cybern , 2011, 41(2) : 341-353.
[11] Zhu Q, Cao J. Exponential input-to-state stability of stochastic Cohen-Grossberg neural networks with mixed delays [J].Nonlinear Dyn, 2015,79(2):1 085-1 098.
[12] Zhu Q, Cao J. pth moment exponential synchronization for stochastic delayed Cohen-Grossberg neural networks with Markovian switching [J]. Nonlinear Dyn, 2012,67(1):829-845.
[13] Zhu Q, Cao J. Exponential stability analysis of stochastic reaction-diffusion Cohen-Grossberg neural networks with mixed delays [J]. Neurocomputing, 2011,74(17):3 084-3 091.
[14] Zhu Q, Cao J. Robust exponential stability of Markovian jump impulsive stochastic Cohen-Grossberg neural networks with mixed time delays [J], IEEE Trans On Neural Networks, 2010, 21(8):1 314-1 325.
[15] 胡適耕.隨機微分方程[M].北京:科學教育出版社, 2008.
Exponential Synchronization of Cohen-Grossberg Neural Networks with Time-varying Delays and Markovian Switching
Zhou Ali, He Xiuli,Yin Fancheng
(College of Science, Hohai University, Nanjing 210098, China)
Based on the stochastic analysis theory and delay-dependent feedback control technique, the Lyapunov function and Gronwall inequality were used, and the sufficient criteria of the exponential synchronization of random Cohen-Grossberg neural network time-delay dependent with Markov change was proposed, which removed the differentiability of the time varying delay and the boundness of its derivative. Lastly, a numerical example and its simulation were proposed to demonstrate the effectiveness and correctness of the theoretical results.
exponential synchronization; Markovian switching; time-varying delay; Cohen-Grossberg neural network
2016-03-29
中央高校科研業(yè)務費青年教師科研創(chuàng)新能力培育項(A)(2015B19814)
周阿麗(1990-),女,安徽利辛人,河海大學2014級碩士研究生,研究方向:隨機神經(jīng)網(wǎng)絡系統(tǒng)穩(wěn)定性和同步性分析,E-mail:zhoualiahut@126.com
1004-1729(2016)03-0203-06
O 175
A DOl:10.15886/j.cnki.hdxbzkb.2016.0031