葛蕓
摘要:針對(duì)人工蜂群算法在求解復(fù)雜函數(shù)時(shí)收斂速度較慢、容易陷入局部最優(yōu)的缺陷,提出一種基于概率選擇基向量的人工蜂群算法。新算法在雇傭蜂和觀察蜂執(zhí)行搜索策略時(shí),利用輪賭法從整個(gè)種群中選擇一個(gè)個(gè)體,并將其作為基向量,在其鄰域內(nèi)生成候選食物源,新算法能較好的平衡局部搜索能力和全局搜索能力。仿真實(shí)驗(yàn)結(jié)果表明所提出的算法具有較快的收斂速度和較高的求解精度。
關(guān)鍵詞: 人工蜂群算法;基向量;搜索策略
中圖分類號(hào):TP311 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1009-3044(2016)26-0185-02
5 結(jié)論
為解決ABC算法存在的收斂速度慢且容易陷入早熟收斂的問(wèn)題,提出一種基于概率選擇基向量的人工蜂群算法,新算法在雇傭蜂和觀察蜂執(zhí)行搜索策略時(shí)把從整個(gè)種群中利用輪賭法選擇出的個(gè)體作為基向量,并在其鄰域內(nèi)進(jìn)行搜索,生產(chǎn)候選食物源。仿真實(shí)驗(yàn)結(jié)果表明,新算法比基本人工蜂群算法在優(yōu)化性能和魯棒性等方面都有了較大的改善。
參考文獻(xiàn):
[1] Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Erciyes University, 2005.
[2] Zhu G P, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
[3] Gao W F, Liu S Y. A modified artificial bee colony algorithm[J]. Computer & Operations Research, 2012, 39(3):687-697.
[4] Gao W F, Liu S Y, Huang L L. A global best artificial bee colony algorithm for global optimization[J]. Journal of Computational and Applied Mathematics, 2012, 236(11): 2741-2753.
[5] Kiran M S, Hakli H, Gunduz M, et al. Artificial bee colony algorithm with variable search strategy for continuous optimization[J]. Information Sciences, 2015, 300(1): 140-157.
[6] Banharnsakun A, Achalakul T, Sirinaovakul B. The bset-so-far selection in artificial bee colony algorithm[J]. Applied Soft Computing, 2011, 11(2): 2888-2901.
[7] Gao W F, Liu S Y, Huang L L. A novel artificial bee colony algorithm based on modified search equation and orthogonal learning [J]. IEEE Transactions on Cybernetics, 2013, 43(3): 1011-1024.
[8] Gao W F, Liu S Y. Improved artificial bee colony algorithm for global optimization[J]. Information Processing Letters, 2011, 111(17): 687-697.