盧寶巖,趙曉波,佟 華,楊曉翠,梅澤民,王佐成
(白城師范學(xué)院 材料與設(shè)計(jì)計(jì)算中心,白城 137000)
?
MOR分子篩對(duì)布洛芬手性轉(zhuǎn)變反應(yīng)的限域影響
盧寶巖,趙曉波,佟 華,楊曉翠,梅澤民,王佐成
(白城師范學(xué)院 材料與設(shè)計(jì)計(jì)算中心,白城 137000)
采用量子力學(xué)與分子力學(xué)組合的ONIOM方法,研究了布洛芬在MOR分子篩12元環(huán)孔道限域環(huán)境的手性轉(zhuǎn)變.反應(yīng)通道研究發(fā)現(xiàn):標(biāo)題反應(yīng)有7條路徑,質(zhì)子從手性碳的一側(cè)向另一側(cè)遷移可分別以羰基、甲基和羰基聯(lián)合、羧基以及羧基和苯環(huán)聯(lián)合作橋?qū)崿F(xiàn).反應(yīng)勢(shì)能面計(jì)算發(fā)現(xiàn):在羧基內(nèi)實(shí)現(xiàn)質(zhì)子遷移后,手性C上的質(zhì)子以新羰基O為橋遷移到苯環(huán),接著苯環(huán)上的質(zhì)子又以羰基為橋在紙面里遷移到手性碳的手性轉(zhuǎn)變過(guò)程是主反應(yīng)路徑.決速步驟是質(zhì)子從手性碳向新羰基氧的遷移過(guò)程,決速步驟吉布斯自由能壘是263.4kJ·mol-1,相對(duì)于裸反應(yīng)決速步驟的能壘287.1kJ·mol-1有明顯降低.結(jié)果表明:MOR分子篩12元環(huán)孔道對(duì)布洛芬的手性轉(zhuǎn)變反應(yīng)具有限域催化作用.
MOR分子篩; 布洛芬; 手性轉(zhuǎn)變; ONIOM方法; 密度泛函; 微擾論; 過(guò)渡態(tài)
布洛芬(Ibu)的分子式是C13H18O2,根據(jù)其旋光性的不同,可分為左旋布洛芬(S-Ibu)和右旋布洛芬(R-Ibu).Ibu在臨床上廣泛用于治療風(fēng)濕性關(guān)節(jié)炎、強(qiáng)直性脊椎炎和神經(jīng)炎等疾病.由于Ibu的重要作用,學(xué)者們對(duì)它進(jìn)行了廣泛的研究.文獻(xiàn)[1]研究了在有機(jī)溶劑中Ibu的脂肪酶催化對(duì)映選擇性酯化.文獻(xiàn)[2]進(jìn)行了外消旋Ibu的動(dòng)力學(xué)模擬拆分和實(shí)驗(yàn)的研究.文獻(xiàn)[3-5]的研究發(fā)現(xiàn),R-Ibu的藥理活性、療效和安全性遠(yuǎn)遠(yuǎn)優(yōu)于S-Ibu,R-Ibu的活性是S-Ibu的160倍,是外消旋體的1.6倍,S-Ibu在生命體內(nèi)可以緩慢實(shí)現(xiàn)旋光異構(gòu),由左旋體轉(zhuǎn)變?yōu)橛倚w.
文獻(xiàn)[6-7]的研究發(fā)現(xiàn),孤立條件和水環(huán)境下Ibu分子的手性轉(zhuǎn)變反應(yīng)有4條路徑,手性碳上的氫可以羰基和羧基作橋,從手性碳的一側(cè)轉(zhuǎn)移到另一側(cè),實(shí)現(xiàn)手性轉(zhuǎn)變;2個(gè)水分子構(gòu)成的鏈?zhǔn)箾Q速步的吉布斯自由能壘從裸反應(yīng)的287.1kJ·mol-1降為152.2kJ·mol-1.文獻(xiàn)[8]的研究表明,扶椅型單壁碳納米管的尺寸可以調(diào)控Ibu分子的手性轉(zhuǎn)變能壘和反應(yīng)路徑,隨著扶椅型單壁碳納米管直徑的減小,Ibu分子的手性轉(zhuǎn)變反應(yīng)路徑由2條變?yōu)?條,決速步的反應(yīng)能壘逐漸變小.
目前臨床上使用的Ibu多數(shù)為消旋體,光學(xué)純R-Ibu的價(jià)格極其昂貴[9].原因是利用不對(duì)稱合成方法獲得光學(xué)純R-Ibu的成本很高,利用拆分方法獲得R-Ibu的同時(shí)會(huì)產(chǎn)生幾乎同等數(shù)量的“劣構(gòu)體”S-Ibu.因此,尋找一個(gè)既經(jīng)濟(jì)又環(huán)保的方法使S-Ibu轉(zhuǎn)化為R-Ibu極其重要.分子篩的價(jià)格低廉和綠色環(huán)保,研究分子篩對(duì)Ibu分子手性轉(zhuǎn)變反應(yīng)的催化具有實(shí)際意義.文獻(xiàn)[10]研究了全硅MOR分子篩12元環(huán)孔道對(duì)α-Ala手性轉(zhuǎn)變反應(yīng)的限域催化作用.基于文獻(xiàn)[8,10]的研究經(jīng)驗(yàn),考慮到Ibu分子的線度為1.01nm×0.53nm,MOR分子篩八元環(huán)和12元環(huán)窗口直徑分別為0.26nm×0.57nm和0.65nm×0.70 nm,Ibu分子只能進(jìn)入12元環(huán),并且對(duì)MOR分子篩12元環(huán)孔道的組裝不會(huì)太困難,本工作研究了MOR分子篩12元環(huán)孔道對(duì)Ibu分子手性轉(zhuǎn)變過(guò)程的限域催化.
為了比較充分地考慮孔道限域效應(yīng),采用周期性模型把含有12元環(huán)和部分8元環(huán)直孔道分子篩骨架包括進(jìn)來(lái),用含有240T的簇模型作為限域催化環(huán)境,用氫原子飽和模型截?cái)嗵幍墓柙?,并把硅氫鍵長(zhǎng)固定為1.46 nm,如圖1(a)所示.
采用QM/MM組合的ONIOM(our own n-layered integrated molecule orbit and molecule mechanics)方法[11],研究標(biāo)題反應(yīng),將分子篩與其內(nèi)部的反應(yīng)物等形成的包結(jié)物分為兩層處理:內(nèi)層反應(yīng)底物為QM區(qū),考慮到分子篩和其內(nèi)部反應(yīng)底物的長(zhǎng)程作用,用CAM(Coulomb-attenuated hybrid exchange-correlation functional)結(jié)合DFT的長(zhǎng)程校正泛函CAM-B3LYP[12-13]方法,基組采用6-31G(d,p);外層分子篩為MM區(qū),采用分子力學(xué)的UFF(universal force field)力場(chǎng)[14]處理,為不使分子篩骨架形變,把外層固定,全參數(shù)優(yōu)化極小點(diǎn)和過(guò)渡態(tài)[15-16].QM區(qū)采用微擾理論的MP2[17-18]方法,在ONIOM(MP2/6-311++G(2df, pd):UFF)理論水平,計(jì)算各包結(jié)物的單點(diǎn)能,利用Gtotal=ESP+Gtc(Gtotal、ESP和Gtc分別為高水平熱校正的總吉布斯自由能、高水平的單點(diǎn)能和吉布斯自由能熱校正)計(jì)算高水平的總吉布斯自由能,繪制出反應(yīng)過(guò)程的吉布斯自由能勢(shì)能面.通過(guò)對(duì)過(guò)渡態(tài)進(jìn)行內(nèi)稟反應(yīng)坐標(biāo)(IRC)計(jì)算[19],確認(rèn)過(guò)渡態(tài)的可靠性.Ibu分子限域在MOR分子篩內(nèi)的包結(jié)物記為Ibu@MOR,其他體系表示法類似.文中計(jì)算均采用Gaussian 09軟件包[20]完成.
在B3LYP/6-31+G(d, p)水平,優(yōu)化的單體S型和R型Ibu的幾何構(gòu)型[6],見圖1(b)和(c).
通過(guò)對(duì)圖1的分析與計(jì)算發(fā)現(xiàn),限域在MOR內(nèi)的S-Ibu向R-Ibu異構(gòu)反應(yīng)通道總體可以分為2個(gè),一個(gè)是手性碳上的質(zhì)子以羰基氧為橋遷移,實(shí)現(xiàn)手性轉(zhuǎn)變,我們稱之為a通道;第二個(gè)是羧基內(nèi)先實(shí)現(xiàn)質(zhì)子遷移,形成新的羰基,而后手性碳上的質(zhì)子以新的羰基氧為橋遷移,實(shí)現(xiàn)手性轉(zhuǎn)變,我們稱之為b通道.下面對(duì)2個(gè)通道分別進(jìn)行討論.
2.1 S_Ibu在a通道不同路徑上的手性轉(zhuǎn)變反應(yīng)機(jī)理
S_Ibu限域在MOR內(nèi)在a通道的手性轉(zhuǎn)變反應(yīng)可以分為兩條路徑a1和a2,見圖2(第670頁(yè),布洛芬分子的縱向與分子篩的縱向相同,并且放在分子篩中間處,以使限域影響充分).
對(duì)于a1路徑,首先是反應(yīng)物包結(jié)物S-Ibu@MOR,經(jīng)手性碳上的質(zhì)子740H直接向羰基氧739O遷移的過(guò)渡態(tài)a1TS1@MOR,異構(gòu)成為中間體包結(jié)物a1INT1@MOR.此基元反應(yīng)的反應(yīng)物S-Ibu@MOR的720C)—740H鍵長(zhǎng)是0.10914nm,a1TS1@MOR的720C與740H的距離為0.15427 nm,說(shuō)明a1TS1@MOR的720C和740H已經(jīng)斷鍵,過(guò)渡態(tài)a1TS1@MOR會(huì)產(chǎn)生比較高的能壘.對(duì)于a2路徑,首先是S-Ibu@MOR,經(jīng)過(guò)手性碳上的質(zhì)子740H向甲基碳724C與甲基上的質(zhì)子732H向羰基氧739O的雙質(zhì)子協(xié)同遷移過(guò)渡態(tài)a2TS1@MOR,異構(gòu)成為中間體包結(jié)物a2INT1@MOR.此基元反應(yīng)的S-Ibu@MOR的724C—732H鍵長(zhǎng)也是0.10914 nm,a2TS1@MOR的720C與740H的距離為0.12219 nm,724C與732H的距離為0.17140 nm,720C與740H和724C與732H均由成鍵變?yōu)閿噫I.a2TS1@MOR斷2個(gè)C-H鍵,說(shuō)明其結(jié)構(gòu)不穩(wěn)定,具有較高的能量,會(huì)產(chǎn)生較高的能壘.
計(jì)算表明a1INT1@MOR和a2INT1@MOR為同一構(gòu)型,即為同一物種,只是原子序號(hào)排列不同,他們以后的異構(gòu)過(guò)程相同,我們接著a2INT1@MOR的異構(gòu)過(guò)程(見圖2)進(jìn)行討論.
a2INT1@MOR的異構(gòu)又分為2個(gè)分路徑am和an.am分路徑是,a2INT1@MOR經(jīng)過(guò)質(zhì)子化羧基的732H在紙面里向手性碳720C遷移的過(guò)渡態(tài)amTS2@MOR,異構(gòu)為產(chǎn)物包結(jié)物am_RP_Ibu@MOR,實(shí)現(xiàn)手性轉(zhuǎn)變.an分路徑是,a2INT1@MOR經(jīng)過(guò)質(zhì)子化羧基的732H向甲基碳720C和甲基上的733H在紙面里向手性碳720C雙質(zhì)子協(xié)同遷移的過(guò)渡態(tài)anTS2@MOR,異構(gòu)為產(chǎn)物包結(jié)物an_RP_Ibu@MOR,實(shí)現(xiàn)手性轉(zhuǎn)變.這2個(gè)基元反應(yīng)與路徑a1和a2的第1個(gè)基元反應(yīng)雷同,這里不做詳細(xì)說(shuō)明.
在ONIOM(MP2/6-311++G(2df, pd):UFF)∥ONIOM(CAM-B3LYP/6-31G(d, p):UFF)雙理論水平,全參數(shù)優(yōu)化各個(gè)駐點(diǎn)包結(jié)物,對(duì)諸過(guò)渡態(tài)進(jìn)行IRC計(jì)算,計(jì)算高水平下的單點(diǎn)能.各駐點(diǎn)包結(jié)物的幾何構(gòu)型和過(guò)渡態(tài)包結(jié)物在虛頻下的振動(dòng)模式見圖2,對(duì)諸過(guò)渡態(tài)的頻率分析和IRC計(jì)算,確認(rèn)了過(guò)渡態(tài)的可靠性.各駐點(diǎn)包結(jié)物的熱校正吉布斯自由能和過(guò)渡態(tài)虛頻(Ima)見表1.駐點(diǎn)包結(jié)物的單點(diǎn)能,熱校正后的總自由能、選取S-Ibu@MOR的總自由能為零點(diǎn)的相對(duì)總自由能亦見表1.
結(jié)構(gòu)Gtc/(a.u)Esp/(a.u)Gtotal/(a.u)ΔGtotal/(kJ·mol-1)Ima/(cm-1)S?Ibu@MOR0.22291-640.59752-640.374610.0a1TS1@MOR0.21772-640.48664-640.26892277.52100.01a1INT1@MOR0.21924-640.55744-640.3382095.6a2TS1@MOR0.21453-640.46837-640.23384369.61757.62
(續(xù)表)
根據(jù)上面表1的數(shù)據(jù),繪制了標(biāo)題反應(yīng)在a通道上不同反應(yīng)路徑的吉布斯自由能勢(shì)能面,見圖3.
根據(jù)圖3可以看出,標(biāo)題反應(yīng)a通道的4個(gè)反應(yīng)路徑S-Ibu→a1TS1@MOR→a1INT1@MOR→amTS2@MOR→am_PR_Ibu@MOR、S_Ibu→a1TS1@MOR→a1INT1@MOR→anTS2@MOR→an_PR_Ibu@MOR,S_Ibu→a2TS1@MOR→a2INT1@MOR→amTS2@MOR→amP_R_Ibu@MOR,S_Ibu→a2TS1@MOR→a2INT1@MOR→anTS2@MOR→anP_R_Ibu@MOR.比較而言,1路徑為優(yōu)勢(shì)反應(yīng)路徑,第1步基元反應(yīng)為決速步驟,能壘為277.5kJ·mol-1,是由手性碳上的H直接向羰基氧739O遷移的過(guò)渡態(tài)產(chǎn)生的.比計(jì)算的裸反應(yīng)此路徑的能壘295.8kJ·mol-1明顯降低,說(shuō)明MOR分子篩對(duì)S_Ibu在a通道的旋光異構(gòu)具有限域催化作用.
2.2 S_Ibu在b通道不同路徑上的手性轉(zhuǎn)變反應(yīng)機(jī)理
S_Ibu限域在MOR內(nèi),在b通道的手性轉(zhuǎn)變反應(yīng)歷程見圖4.首先,反應(yīng)物包結(jié)物S-Ibu@MOR(見圖2),經(jīng)羧基內(nèi)質(zhì)子遷移的過(guò)渡態(tài)bTS1@MOR,741H從738O遷移到739O,異構(gòu)成產(chǎn)物中間體包結(jié)物bINT1@MOR,此時(shí)羥基變成了羰基725C—738O,新羰基氧738O有接受質(zhì)子的能力,便于手性碳720C上的740H向其遷移.此基元反應(yīng)中的S-Ibu@MOR的738O—741H鍵長(zhǎng)為0.09707nm,bTS1@MOR的738O—741H鍵長(zhǎng)為0.12960nm是斷鍵,bTS1@MOR會(huì)產(chǎn)生一定的能壘.由于S-Ibu@MOR的738O—741H鍵不是很牢,同時(shí)739O有孤對(duì)電子,具有一定的接受質(zhì)子的能力,因此,過(guò)渡態(tài)包結(jié)物bTS1@MOR產(chǎn)生的能壘相對(duì)來(lái)說(shuō)不會(huì)很高.然后,bINT1@MOR經(jīng)過(guò)740H從手性碳720C向新羰基氧738O遷移的過(guò)渡態(tài)bTS2@MOR,異構(gòu)成為新的產(chǎn)物中間體包結(jié)物bINT2@MOR.bTS2@MOR的720C和740H之間的距離為0.15302nm,是斷鍵,bTS2@MOR會(huì)產(chǎn)生較高的能壘.由于bTS2@MOR的720C和740H之間距0.15302nm小于a1TS1@MOR的720C與740H的距離0.15427nm,因此bTS2@MOR產(chǎn)生的能壘會(huì)略低于a1TS1@MOR產(chǎn)生的能壘,后面的計(jì)算表明,此分析是正確的.
bINT2@MOR以后的反應(yīng)歷程又分為2個(gè)路徑b1和b2,見圖4(第672~673頁(yè)).
b1路徑是bINT2@MOR經(jīng)740H向苯環(huán)上的711C遷移的過(guò)渡態(tài)b1TS3@MOR,異構(gòu)成為中間體包結(jié)物b1INT3@MOR.此基元反應(yīng)bINT2@MOR的738O—740H鍵長(zhǎng)為0.096873nm,b1TS3@MOR中的738O—740H鍵長(zhǎng)為0.13023nm,738O—740H由成鍵變?yōu)閿噫I,b1TS3@MOR會(huì)產(chǎn)生較高的能壘.接下來(lái)從b1INT3@MOR開始又分為2個(gè)分路徑x和y,記為b1x和b1y,見圖4.b1x路徑是,b1INT3@MOR經(jīng)苯環(huán)上的716H從711C向738O遷移的過(guò)渡態(tài)b1xTS4@MOR,異構(gòu)成為中間體包結(jié)物b1xINT4@MOR.此過(guò)程是711C—716H從成鍵變?yōu)閿噫I,所以b1xTS4@MOR也會(huì)產(chǎn)生不低的能壘;b1xINT4@MOR的二面角720C—725C—738O—716H是10.458°,說(shuō)明716H在骨架720C—725C—738O平面里側(cè),具有從紙面里側(cè)向手性碳遷移從而實(shí)現(xiàn)手性轉(zhuǎn)變的優(yōu)勢(shì).最后,b1xINT4@MOR經(jīng)過(guò)716H從738O在紙面里向手性碳720C遷移的過(guò)渡態(tài)b1xTS5@MOR,異構(gòu)成為產(chǎn)物包結(jié)物b1x_P_RIbu@MOR,在b1x路徑完成手性轉(zhuǎn)變.此基元反應(yīng)的b1xINT4@MOR的738O—716H是0.09675nm,b1xTS5@MOR的738O—716H是0.12632nm,738O—716H從成鍵變?yōu)閿噫I,說(shuō)明b1xTS5@MOR會(huì)產(chǎn)生較高的能壘.b1y路徑是,b1INT3@MOR經(jīng)苯環(huán)上的716H在紙面里從711C直接向手性碳720C遷移的過(guò)渡態(tài)b1yTS4@MOR,異構(gòu)成為產(chǎn)物包結(jié)物b1x_P_RIbu@MOR,在b1y路徑完成手性轉(zhuǎn)變.b1yTS4@MOR的711C和716H距離為0.17011nm,是斷鍵,即苯環(huán)上的711C—716H從成鍵變?yōu)閿噫I,又因?yàn)槭中蕴?20C接受質(zhì)子的能力并不強(qiáng),因此,過(guò)渡態(tài)b1yTS4@MOR產(chǎn)生的能壘會(huì)很高,后面的計(jì)算說(shuō)明了這一點(diǎn).
b2路徑是,經(jīng)質(zhì)子化羧基的741H繞725C—739O軸轉(zhuǎn)動(dòng)的過(guò)渡態(tài)b2TS3@MOR,bINT2@MOR異構(gòu)成為b2INT3@MOR,741H轉(zhuǎn)到了距離手性碳和手性碳上的甲基較近的位置.結(jié)構(gòu)分析表明,741H在b2INT3@MOR構(gòu)型中的空間位置基本同于732H在a2INT1@MOR構(gòu)型中的空間位置,計(jì)算研究表明b2INT3@MOR以后的異構(gòu)過(guò)程雷同于a2INT1@MOR以后的過(guò)程,從略.
在計(jì)算a通道的理論水平,全參數(shù)優(yōu)化了b通道各個(gè)反應(yīng)路徑的駐點(diǎn)包結(jié)物,同樣對(duì)諸過(guò)渡態(tài)進(jìn)行IRC計(jì)算,計(jì)算高水平下的單點(diǎn)能.得到b通道各個(gè)路徑各駐點(diǎn)包結(jié)物的幾何構(gòu)型和過(guò)渡態(tài)包結(jié)物在虛頻下的振動(dòng)模式,見圖4.對(duì)諸過(guò)渡態(tài)的頻率分析和IRC計(jì)算,確認(rèn)了過(guò)渡態(tài)的可靠性.各駐點(diǎn)包結(jié)物的吉布斯自由能熱校正和過(guò)渡態(tài)虛頻(Ima)見表2.駐點(diǎn)包結(jié)物的高水平單點(diǎn)能,熱校正的總自由能、選取S-Ibu@MOR的總自由能為零點(diǎn)的相對(duì)總自由能亦見表2.
結(jié)構(gòu)Gtc/(a.u)Esp/(a.u)Gtotal/(a.u)ΔGtotal/(kJ·mol-1)Ima/(cm-1)S?Ibu@MOR0.22291-640.59752-640.37461 0.0bTS1@MOR0.21858-640.54985-640.33127113.81927.31bINT1@MOR0.22328-640.59618-640.372904.5bTS2@MOR0.21741-640.48998-640.27257267.92127.12bINT2@MOR0.21990-640.56400-640.3441080.1b1路徑b1TS3@MOR0.21736-640.52315-640.30579180.71771.84b1INT3@MOR0.22079-640.54208-640.32129140.0b1路徑x分路徑b1xTS4@MOR0.21653-640.51775-640.30122192.71757.41b1xINT4@MOR0.22030-640.55983-640.3395392.1b1xTS5@MOR0.21447-640.48556-640.27109271.82157.44b1x_P_RIbu@MOR0.22121-640.59750-640.37629-4.4b1路徑y(tǒng)分路徑b1yTS4@MOR0.21532-640.47353-640.25821305.62628.79b1y_P_RIbu@MOR0.22225-640.59776-640.37551-2.4b2路徑b2TS3@MOR0.21746-640.55631-640.3388593.9 376.71b2INT3@MOR0.21928-640.56144-640.3421685.2
依據(jù)上面表2的數(shù)據(jù),繪制了Ibu限域在MOR分子篩12元環(huán)孔道,在b通道不同路徑實(shí)現(xiàn)手性轉(zhuǎn)變過(guò)程的吉布斯自由能勢(shì)能面示意圖,見圖5.
從圖5可以看出,標(biāo)題反應(yīng)在b通道的3個(gè)分反應(yīng)路徑上,具有共同的決速步驟bS_INT1@MOR→bTS2@MOR→bINT2@MOR,能壘為263.4kJ·mol-1,是由手性碳上的H向新羰基氧738O遷移的過(guò)渡態(tài)產(chǎn)生的.比裸反應(yīng)情況下此路徑的決速步能壘287.1kJ·mol-1明顯降低,其他勢(shì)壘相對(duì)于裸反應(yīng)也均有所降低[7],說(shuō)明MOR分子篩對(duì)S_Ibu在b通道的旋光異構(gòu)具有限域催化作用,可以作為S_Ibu向R_Ibu 異構(gòu)反應(yīng)的納米反應(yīng)器.綜合圖3和5可知,b通道的b1路徑的b1y分路徑是標(biāo)題反應(yīng)的最優(yōu)路徑,第2個(gè)高能壘是165.6kJ·mol-1,相對(duì)于別的路徑略低些.
反應(yīng)通道研究發(fā)現(xiàn):標(biāo)題反應(yīng)有7條路徑,質(zhì)子從手性碳的一側(cè)向另一側(cè)遷移可分別以羰基、甲基和羰基聯(lián)合、羧基以及羧基和苯環(huán)聯(lián)合作橋?qū)崿F(xiàn).反應(yīng)勢(shì)能面計(jì)算發(fā)現(xiàn):標(biāo)題反應(yīng)在b通道的S-Ibu→bS-TS1@MOR→bS_INT1@MOR→bTS2@MOR→bINT2@MOR→b1TS3@MOR→b1INT3@MOR→b1yTS4@MOR→b1yP_R-Ibu@MOR的手性轉(zhuǎn)變過(guò)程是主反應(yīng)路徑.決速步驟bS_INT1@MOR→bTS2@MOR→bINT2@MOR的能壘為263.4kJ·mol-1,是質(zhì)子從手性碳向新羰基氧遷移的過(guò)渡態(tài)產(chǎn)生的,相對(duì)于裸反應(yīng)決速步的能壘287.1kJ·mol-1有明顯降低.研究結(jié)果表明:MOR分子篩12元環(huán)孔道對(duì)布洛芬的手性轉(zhuǎn)變反應(yīng)具有限域催化作用,可以作為Ibu實(shí)現(xiàn)手性轉(zhuǎn)變的納米反應(yīng)器.
全硅-MOR分子篩對(duì)Ibu的手性轉(zhuǎn)變雖然具有一定的限域催化作用,但催化作用并不是十分理想.改性的鈦-MOR分子篩對(duì)Ibu手性轉(zhuǎn)變的催化、MOR分子篩與其他環(huán)境對(duì)Ibu手性轉(zhuǎn)變的共催化、鋁-MOR分子篩對(duì)Ibu手性轉(zhuǎn)變的酸催化以及其他分子篩對(duì)Ibu手性轉(zhuǎn)變的催化等研究可能更具理論和實(shí)際意義;模型截?cái)嗵幍墓柙佑昧u基飽和可能更合理;外層分子篩采用半經(jīng)驗(yàn)am1或從頭算的HF方法計(jì)算更能體現(xiàn)分子篩與反應(yīng)物之間的化學(xué)作用.相關(guān)的工作正在進(jìn)行中.
[1] AMéLIE D, MICHAEL T, ROBERT L. Corresponding lipase-catalyzed enantioselective esterification of ibuprofen in organic solvents under controlled water activity [J].EnzymeandMicrobialTechnology, 1998,22(4):212-216.
[2] SUBHASH B, LONG W S. Enzymatic membrane reactor for the kinetic resolution of racemic ibuprofen ester:Modeling and experimental studies [J].ChemicalEngineeringScience, 2004,59(22/23):5061-5068.
[3] 肖方清.右旋布洛芬的制備 [J].中國(guó)醫(yī)藥工業(yè)雜志,2000,31(11):486-488.
[4] 林文輝.手性藥物布洛芬的體內(nèi)藥物動(dòng)力學(xué)研究 [D].沈陽(yáng):沈陽(yáng)藥科大學(xué),2004:8-10.
[5] CHENG H, ROGERS J D, DEMETRIADES J L,etal. Pharmacokinetics and bioinversion of ibuprofen enantiomers in humans [J].PharmaceuticalResearch, 1994,11(6):824-830.
[6] 鄒曉威,梅澤民,王佐成,等.孤立條件下布洛芬分子手性轉(zhuǎn)變過(guò)程的理論研究 [J].原子與分子物理學(xué)報(bào),2015,32(2):173-180.
[7] 梅澤民,王佐成,閆紅彥,等.水環(huán)境下布洛芬分子的手性轉(zhuǎn)變機(jī)理 [J].吉林大學(xué)學(xué)報(bào)(理學(xué)版),2015,53(2):331-339.
[8] 王佐成,梅澤民,呂洋,等.扶手椅型單壁碳納米管的尺寸對(duì)布洛芬分子手性轉(zhuǎn)變的限域影響 [J].復(fù)旦學(xué)報(bào)(自然科學(xué)版),2015,54(2):234-244.
[9] 趙亞華.分子生物學(xué)教程 [M].北京:科學(xué)出版社,2011:5-6.
[10] 馬宏源,王佐成,高峰,等.MOR分子篩12元環(huán)孔道對(duì)α-丙氨酸手性轉(zhuǎn)變反應(yīng)的限域影響 [J].復(fù)旦學(xué)報(bào)(自然科學(xué)版),2016,55(1):133-144.
[11] SVENSSON M, HUMBEL S, FROESE R D J,etal. ONIOM:A multilayered integrated MO+MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(t-Bu)3)2+H2oxidtivae addition [J].PhysicalChemistry, 1996,100(50):19357-19363.
[12] KOBAYASHI R, AMOS R D. Erratum to The application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin-bacteriochlorin complex [J].ChemPhysLetts, 2006,420:106-109.
[13] YIN S W, DAHLBOM M G, CANFIELD P J,etal. Assignment of the Qy absorption spectrum of photosystem-I from thermosynechococcus elongatus based on CAM-B3LYP calculations at the PW91-optimized protein structure [J].PhysChemB, 2007,111(33):9923-9930.
[14] RAPPE A K, CASEWIT C J, COLWELL K S,etal. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations [J].JournaloftheAmericanChemicalSociety, 1992,114(25):10024-10053.
[15] GARRETT B C, TRUHLAR D G. Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules [J].JournalofPhysicalChemistry, 1979,83(8):1052-1079.
[16] GARRETT B C, TRUHLAR D G. Criterion of minimum state density in the transition state theory of bimolecular reactions [J].TheJournalofChemicalPhysics, 1979,70(4):1593-1598.
[17] 徐光憲,黎樂民,王德民.量子化學(xué)(中冊(cè)) [M].北京:科學(xué)技術(shù)出版社,1985:962-986.
[18] BINKLEY J S, POPLE J A. Moeller-Plesset theory for atomic ground state energies [J].IntJQuantumChem, 1975,9(2):229-236.
[19] ISHIDA K, MOROKUMA K, KOMORNICKI A. The intrinsic reaction coordinate. An ab initio calculation for HNC→HCN and H-+ CH4→CH4+H-*[J].TheJournalofChemicalPhysics, 1977,66(5):2153-2156.
[20] FRISCH M J, TRUCKS G W, SCHLEGEL H B,etal. Gaussian 09. Revision D.01[CP]. Pittsburgh USA:Gaussian, Inc., Wallingford CT, 2013.
The Confined Effect of the MOR Zeolite on the Chiral Transition Reaction of Ibuprofen Molecules
LU Baoyan, ZHAO Xiaobo, TONG Hua, YANG Xiaocui, MEI Zemin, WANG Zuocheng
(Materials and Design Computing Center, Baicheng Normal College, Baicheng 137000, China)
The chiral transition of ibuprofen molecules confined in the MOR zeolite 12-ring channels was studied by introducing the ONIOM methods using combination of quantum mechanics and molecular mechanics. The study of reaction channel shows that there are seven paths in the title reaction where proton respectively using carbonyl and Methyl/carbonyl groups or carbonyl and carbonyl/benzene ring groups as the transfer bridge from one side to the other of chiral C. Calculations of potential energy surface show that after the implementation of a proton transfer in the carboxyl, the chiral transition,that protons in the chiral C transfer to the benzene ring using the new carbonyl O as the migration bridge, then protons in the benzene ring transfer to chiral C in paper-based using the carbonyl O as the migration bridge, is the main reaction paths. the chiral transition process of chiral carbon is the main reaction path. The protons transfer process from chiral C to the new carbonyl O is the determining step, the gibbs free energy barrier of the step-determining the gibbs free energy barrier of the step-determining step,where protons transfer from chiral C to the new carbonyl O, is 263.4kJ·mol-1, which is significantly lower than the gibbs free energy barrier 287.1kJ·mol-1of the step-determining step of bare reaction. The results show that the MOR zeolite 12-ring channels has a confined catalysis on the chiral transition of ibuprofen molecules.
MOR zeolite; Ibuprofen; chiral transition; Our own n-layered integrated molecule orbit and molecule mechanics methods; density functional theory; perturbation theory; transition state
0427-7104(2016)05-0668-09
2016-05-16
吉林省科技發(fā)展計(jì)劃項(xiàng)目(20160101308JC)
盧寶巖(1960—),男,教授;梅澤民(1963—),男,教授,通訊聯(lián)系人;E-mail:Zeminmei@163.com;王佐成(1963—),男,副教授,E-mail:wangzc188@163.com.
O 641(O 641.12;O 641.12)
A