葉 強(qiáng),金曉琴,劉偉娜,韓鳳琴,康 振,楊 莉
(浙江師范大學(xué) 化學(xué)與生命科學(xué)學(xué)院,浙江 金華 321004)
?
植物蛋白質(zhì)N-糖基化修飾研究進(jìn)展*
葉 強(qiáng),金曉琴,劉偉娜,韓鳳琴,康 振,楊 莉
(浙江師范大學(xué) 化學(xué)與生命科學(xué)學(xué)院,浙江 金華 321004)
N-糖基化與植物蛋白質(zhì)正確折疊、細(xì)胞凋亡、器官發(fā)育及信號轉(zhuǎn)導(dǎo)等生物學(xué)功能密切相關(guān).主要對植物蛋白N-糖基化的結(jié)構(gòu)、生物合成、加工修飾、相關(guān)酶生物學(xué)功能,以及糖蛋白的分離鑒定方法等進(jìn)行了綜述,并探討了植物糖基化蛋白功能研究的應(yīng)用前景及存在的問題.
植物蛋白質(zhì);N-糖基化修飾;糖苷合成;生物學(xué)功能
真核生物細(xì)胞內(nèi)的多肽及蛋白質(zhì)分子經(jīng)核糖體合成后大多需翻譯后修飾,如泛素化、磷?;?、糖基化等,確保蛋白質(zhì)正常行使其生物學(xué)功能[1].其中,糖基化是真核生物體內(nèi)常見的蛋白翻譯后修飾,糖蛋白占細(xì)胞蛋白質(zhì)的50%以上,參與細(xì)胞識別、分化、發(fā)育、信號轉(zhuǎn)導(dǎo)和免疫應(yīng)答等多個重要的生命過程[2-3].
蛋白質(zhì)的糖基化修飾是指糖鏈與蛋白質(zhì)上特定氨基酸殘基共價結(jié)合的過程.根據(jù)連接方式,主要分為N-糖基化、O-糖基化、C-糖基化及糖基磷脂酰肌醇錨定連接4種類型[3-5].N-糖基化是指內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)上糖基轉(zhuǎn)移酶催化轉(zhuǎn)移至新生肽Asn-X-Ser/Thr(X是除脯氨酸Pro外的任一氨基酸;Asn為天冬酰胺;Ser為絲氨酸;Thr為蘇氨酸)基序的Asn殘基,是蛋白質(zhì)糖基化修飾的重要形式,胞外分泌蛋白、膜整合蛋白及構(gòu)成內(nèi)膜系統(tǒng)的可溶性駐留蛋白大多經(jīng)N-糖基化修飾.酵母、哺乳動物和細(xì)菌中相關(guān)糖蛋白的鑒定為植物N-糖基化蛋白功能分析奠定了基礎(chǔ),但植物蛋白N-糖基化研究尚處于起步階段.蛋白質(zhì)的N-糖基化主要包括糖鏈的生物合成、糖鏈的轉(zhuǎn)移及糖鏈的進(jìn)一步加工.本文主要從植物蛋白的N-糖鏈結(jié)構(gòu)、N-糖基化過程及其生物學(xué)功能等方面進(jìn)行了綜述.
植物N-糖蛋白的糖鏈包含1個核心五糖,根據(jù)其結(jié)構(gòu)可分為4種類型(見圖1):1)寡甘露糖型:最簡單的N-糖鏈,僅含核心五糖結(jié)構(gòu);2)高甘露糖型:具有5個及以上的甘露糖(mannose,Man)殘基;3)復(fù)雜型:糖鏈除含3個Man核心及與Man連接的N-乙酰葡糖胺糖基(GlcNAc)外,還包含唾液酸及其衍生物;4)雜合型:具有復(fù)雜型和高甘露糖型2類糖鏈結(jié)構(gòu)元件[6-7].
(a)寡甘露糖型;(b)高甘露糖型;(c)復(fù)雜型;(d)雜合型.虛框內(nèi)為N-糖鏈核心結(jié)構(gòu)圖1 植物糖蛋白N-糖鏈的4種基本結(jié)構(gòu)
圖2 脂連寡糖(LLO)的生物合成
蛋白質(zhì)的N-糖基化修飾主要包括糖鏈的生物合成、糖鏈轉(zhuǎn)移至新合成蛋白,以及蛋白糖鏈的進(jìn)一步加工.
2.1N-糖鏈的生物合成
蛋白質(zhì)的N-糖基化修飾主要發(fā)生于內(nèi)質(zhì)網(wǎng)(ER)和高爾基體(Golgi)上,糖鏈與肽鏈的生物合成同步進(jìn)行,動物與植物N-糖鏈的生物合成基本一致[8].糖鏈與新生肽結(jié)合前以脂連寡糖(lipid-linked oligosaccharide,LLO)形式存在[9-10],LLO的生物合成主要包括4個步驟(見圖2):1)面向胞質(zhì)一側(cè)的ER膜上,2分子GlcNAc經(jīng)GlcNAc-1-磷酸轉(zhuǎn)移酶(GlcNAc-1-P transferase,GPT,如ALG7與ALG13/14)催化與二磷酸-多萜醇(Dol-PP)結(jié)合生成GlcNAc2-PP-Dol;2)5分子Man在糖基轉(zhuǎn)移酶(glycosyltransferase,GT,如ALG1,ALG2與ALG11)作用下依次與GlcNAc結(jié)合,生成具有2個分枝的核心五糖;3)核心五糖經(jīng)翻轉(zhuǎn)酶催化進(jìn)入ER內(nèi)腔;4)在ER內(nèi)腔,核心五糖經(jīng)特定GT(ALG3,ALG6,ALG8-ALG10及ALG12)催化添加4分子Man及3分子葡萄糖(glucose,Glc),生成包含14個糖基的LLO前體[3-4,11].在進(jìn)入ER腔前,LLO糖鏈合成時糖基供體為鳥嘌呤核苷二磷酸(UDP)-甘露糖與尿嘧啶核苷二磷酸(GDP)-N-乙酰葡糖胺;LLO翻轉(zhuǎn)進(jìn)入ER內(nèi)腔后,糖基供體則為多萜醇-葡萄糖與多萜醇-甘露糖.
2.2 蛋白質(zhì)N-糖基化修飾
糖鏈LLO生物合成的同時,新合成的蛋白質(zhì)也經(jīng)易位子進(jìn)入ER腔[3].LLO在寡聚糖轉(zhuǎn)移酶(oligosaccharyltransferase,OST)作用下轉(zhuǎn)移至新生肽Asn-X-Ser/Thr基序的Asn殘基[9-10].LLO轉(zhuǎn)移至新生肽后,新生肽上的LLO將繼續(xù)被修飾,主要包括以下2個過程:
1)鈣聯(lián)蛋白-鈣網(wǎng)蛋白(calnexin-calreticulin cycle,CNX-CRT)循環(huán)
如圖3所示:轉(zhuǎn)移至新合成蛋白的LLO分別經(jīng)α-葡糖苷酶Ⅰ(α-glucosidase Ⅰ,GCSⅠ/GI)與α-葡糖苷酶Ⅱ(GCSⅡ/GⅡ)水解末端2個Glc殘基,生成的寡糖結(jié)構(gòu)Glc1Man9GlcNAc2被CNX或(和)CRT識別并結(jié)合;糖鏈上最后一個Glc殘基經(jīng)GCSⅡ水解后(結(jié)構(gòu)為Man9GlcNAc2),糖蛋白脫離CNX-CRT循環(huán),轉(zhuǎn)運(yùn)至Golgi進(jìn)一步修飾[12-14].若蛋白質(zhì)未正確折疊,糖鏈會經(jīng)UDP-Glc:糖蛋白糖基轉(zhuǎn)移酶(UDP-glucose:glycoprotein-glucosyltransferase,UGGT)再次糖基化,重新進(jìn)入CNX-CRT循環(huán),或者直接進(jìn)入蛋白降解程序[15].
圖3 鈣聯(lián)蛋白-鈣網(wǎng)蛋白(CNX-CRT)循環(huán)
2)蛋白糖鏈在Golgi上的再加工
糖蛋白在ER完成修飾后,通過COPⅡ型膜泡運(yùn)輸至Golgi再加工[6,11].首先,Man9GlcNAc2或Man8GlcNAc2經(jīng)α-甘露糖苷酶Ⅰ(Golgi-α-ManⅠ,MNS1/2)水解糖鏈上3~4分子Man殘基;接著,N-乙酰氨基葡萄糖轉(zhuǎn)移酶Ⅰ(glucosamine-phosphateN-acetyltransferase Ⅰ,GlcNAcT或GnTI)催化向糖鏈添加1分子GlcNAc殘基,生成GlcNAcMan5GlcNAc2(見圖4);最后,在XylT,FucT和GalT等酶的作用下加工生成復(fù)雜型或雜合型糖鏈[16-17].
圖4 復(fù)雜型N-糖鏈在高爾基體上的再加工
3.1 蛋白質(zhì)N-糖基化修飾相關(guān)酶
植物中蛋白質(zhì)保守的N-糖基化修飾進(jìn)程主要是由糖基轉(zhuǎn)移酶(glycosyltransferase,GT)、α-葡糖苷酶(α-glucosidase,GCS)及甘露糖苷酶(mannosidase,MNS)完成.
1)GT:主要負(fù)責(zé)LLO的生物合成.根據(jù)糖基供體,GT可分為Leloir與non-Leloir 2種類型.Leloir型GT以糖核苷酸GDP-Man及UDP-GlcNAc為糖基供體,LLO從胞質(zhì)一側(cè)翻轉(zhuǎn)至ER內(nèi)腔前所涉及的糖基轉(zhuǎn)移酶多為該類型[18].non-Leloir型GT則以磷酸酯連接的糖Dol-Glc與Dol-Man為糖基供體[19].
2)GCS:在CNX-CRT循環(huán)中起重要作用的是GCSⅠ與GCSⅡ.GCSⅠ與OST復(fù)合物緊密相連,為Ⅱ型膜蛋白,水解LLO末端第一個Glc殘基[15].GCSⅡ由α亞基(功能域)與β亞基(定位域)構(gòu)成,在N-糖苷合成早期敲除α亞基后糖鏈末端多出1~2個Glc,N-糖鏈不能進(jìn)行后續(xù)修飾[14,20].目前尚未發(fā)現(xiàn)能夠替代GCSⅡ功能的酶.
3)MNS:由ER型(α-ManⅠ,MNS3)及Golgi型(α-ManⅠ,MNS1/2)組成,負(fù)責(zé)去除糖鏈上的Man殘基(見圖4).糖蛋白離開CNX-CRT循環(huán)后,其糖鏈可被MNS3水解生成Man8GlcNAc2,再進(jìn)入Golgi;也可不經(jīng)水解,直接進(jìn)入Golgi[21-22].MNS1-3與ER執(zhí)行錯誤折疊糖蛋白降解(endoplastic reticulum-associated degradation machinery,ERAD)途徑密切相關(guān),但具體機(jī)制尚未明確[17,23].
3.2 蛋白質(zhì)N-糖基化修飾在植物中的生物學(xué)功能
真核生物蛋白質(zhì)的N-糖苷具有幫助蛋白質(zhì)正確折疊、輔助蛋白質(zhì)功能發(fā)揮、抑制或延緩蛋白質(zhì)降解等作用[7].
1)N-糖苷幫助蛋白質(zhì)正確折疊.
蛋白質(zhì)的N-糖基化修飾過程中,CNX-CRT能夠?qū)R蛔R別糖蛋白上的GlcMan9GlcNAc2結(jié)構(gòu)[14],與未折疊糖蛋白結(jié)合,避免折疊中間體及錯誤折疊蛋白從ER逃逸[22,24-25].錯誤折疊且無法修復(fù)的糖蛋白進(jìn)入ERAD途徑,由ERAD復(fù)合物運(yùn)輸至胞質(zhì)溶膠,經(jīng)糖基肽酶水解去除糖鏈后,蛋白進(jìn)入26S蛋白酶體降解[15,26-27].
2)N-糖基化修飾蛋白與細(xì)胞凋亡密切相關(guān).
錯誤折疊的糖蛋白滯留于ER,激發(fā)未折疊蛋白應(yīng)答反應(yīng)(unfold protein response,UPR).Iwata等[28]發(fā)現(xiàn)衣霉素(Tunicamycin,GT抑制劑)能夠誘導(dǎo)煙草懸浮細(xì)胞產(chǎn)生UPR反應(yīng).DAD1(OST復(fù)合物亞基之一)作為抗細(xì)胞凋亡因子,缺失引起DGL1(OST復(fù)合物亞基之一)快速降解,引發(fā)細(xì)胞凋亡;超表達(dá)則保護(hù)原生質(zhì)體免受紫外線引起的DNA斷裂和細(xì)胞損傷[29-31].
3)N-糖基化修飾蛋白影響細(xì)胞壁的組成與含量.
植物細(xì)胞壁主要由纖維素、半纖維素、果膠質(zhì)等多糖組成.N-糖基化受阻時,植物細(xì)胞壁成分與含量將發(fā)生改變.例如:DGL1能夠影響細(xì)胞壁多糖的形成[32-34];突變體gcs1與rsw3的細(xì)胞壁纖維素含量顯著降低[35];Mns1-3也觀察到細(xì)胞壁不均勻等現(xiàn)象[36].
4)N-糖基化修飾蛋白對根發(fā)育的影響.
VTC1編碼GDP-Man焦磷酸化酶,合成GDP-Man,VTC1缺失會引起根生長的不可逆抑制[37].文獻(xiàn)[38]發(fā)現(xiàn)擬南芥突變體cgl1對鹽脅迫敏感,根生長受抑制,根尖形態(tài)發(fā)生異常.此外,SWP1(OST復(fù)合物亞基之一)突變體將抑制側(cè)根發(fā)生與伸長[39];Osdgl1的根細(xì)胞體積變小,部分根細(xì)胞死亡[40];AtMns1-3也觀察到根變短的現(xiàn)象[21,36].
5)N-糖苷對果實(shí)發(fā)育的影響.
在果實(shí)的成熟過程中,N-聚糖大量積累,因此,N-糖基化也能夠影響植物果實(shí)的發(fā)育.大量的實(shí)驗(yàn)證明,N-聚糖的增加能夠促進(jìn)果實(shí)轉(zhuǎn)色并引起乙烯含量的增加,而對N-糖基化修飾過程進(jìn)行抑制后果實(shí)延遲成熟.例如,對β-D-乙酰氨基己糖苷酶的酶活進(jìn)行抑制能夠延長果實(shí)的貨架期[41-43].
此外,蛋白質(zhì)的N-糖基化修飾在細(xì)胞分化、免疫、信號轉(zhuǎn)導(dǎo)及激素調(diào)控等多個重要的生命進(jìn)程都起到十分重要的作用[44-45].
目前,有關(guān)植物蛋白的N-糖基化修飾研究較少,對于植物特定發(fā)育時期哪些糖蛋白發(fā)生N-糖基化修飾及N-糖基化位點(diǎn)等仍然知之甚少.植物體內(nèi)糖蛋白上糖鏈的合成與修飾十分復(fù)雜,無固定模板與結(jié)構(gòu),且N-糖基化修飾的蛋白豐度遠(yuǎn)遠(yuǎn)低于未經(jīng)N-糖基化修飾的蛋白.因此,富集分離N-糖苷、N-糖肽與N-糖蛋白十分困難[46-47].
近年來,隨著蛋白質(zhì)組學(xué)的飛速發(fā)展,應(yīng)用蛋白質(zhì)組學(xué)全面分析植物N-糖蛋白質(zhì),大大加快了糖蛋白質(zhì)組的研究.目前最常用的N-糖蛋白組研究主要包括富集分離、酶解消化和鑒定3個步驟:首先應(yīng)用刀豆蛋白A凝集素[47]、麥胚凝集素[48]及小扁豆凝集素[49]等凝集素與N-糖鏈特有的結(jié)構(gòu)共價結(jié)合,將N-糖蛋白從眾多蛋白中分離出來;分離出的糖蛋白再經(jīng)PNGase F等糖苷酶處理,N-糖肽與N-糖鏈相連處由天冬酰胺轉(zhuǎn)化為天冬氨酸,N-糖肽分子量發(fā)生改變,再采用質(zhì)譜技術(shù)分析N-糖肽序列及N-糖蛋白的糖基化位點(diǎn).文獻(xiàn)[50]采用刀豆蛋白A凝集素層析結(jié)合二維液相色譜富集分離糖蛋白,經(jīng)胰蛋白酶消化后進(jìn)行液相色譜串聯(lián)基質(zhì)輔助激光解吸附質(zhì)譜技術(shù)(LC-MALDI-MS/MS)分析,共鑒定出133個糖蛋白,并預(yù)測了其中大部分糖蛋白的糖基化位點(diǎn).文獻(xiàn)[51]采用類似方法,從二穗短柄草中鑒定出46個N-糖蛋白,以及47個糖基化位點(diǎn).此外,Silva-Sanchez等[52]應(yīng)用糖蛋白特異熒光染料 ProQ 染色2D蛋白膠,從玉米胚乳己糖缺失突變體mn1及野生型中分離出45個差異糖蛋白.
隨著糖生物學(xué)研究的迅速發(fā)展,糖蛋白已成為生物化學(xué)研究的熱點(diǎn)和前沿,在糖蛋白的結(jié)構(gòu)、生物合成、代謝及其生理作用等方面已取得了不少的成果,但仍有很多糖蛋白的結(jié)構(gòu)和功能未知.由于糖的合成無固定模板和糖結(jié)構(gòu)與功能的不對應(yīng)性,糖蛋白的鑒定、功能與開發(fā)利用研究相對困難,尤其是植物糖蛋白的研究落后于動物、酵母等的相關(guān)研究[25,45].
隨著多種植物基因組測序的完成,以及大量新技術(shù)、新方法及新軟件的開發(fā)利用,加速了植物中糖蛋白的分離及結(jié)構(gòu)與生物學(xué)功能的鑒定.但是,一個蛋白質(zhì)可能有幾十種甚至上百種不同的多聚糖修飾基團(tuán),而且蛋白糖基化修飾在細(xì)胞中豐度也較低,如何明確這些糖蛋白的生物學(xué)功能仍面臨巨大的挑戰(zhàn).此外,糖蛋白藥物對人類健康的重要性已開始受到重視,已上市的醫(yī)藥蛋白中70%以上為糖蛋白[53-54].應(yīng)用植物作為生物反應(yīng)器大量生產(chǎn)藥用糖蛋白,將是今后的研究方向之一.為確保糖蛋白藥物的安全性、均一性和藥效,研究植物糖蛋白的糖基化結(jié)構(gòu)與生物活性,優(yōu)化蛋白糖基化修飾的方法與條件,對于開發(fā)利用植物生產(chǎn)藥用重組糖蛋白也是必不可少的.
[1]Eisenhaber B,Eisenhaber F.Prediction of posttranslational modification of proteins from their amino acid sequence[J].Method Mol Biol,2010,609:365-384.
[2]Apweiler R,Hermjakob H,Sharon N.On the frequency of protein glycosylation,as deduced from analysis of the SWISS-PROT database[J].Biochim Biophys Acta,1999,1473(1):4-8.
[3]Wiederschain G Y.Glycobiology:Progress,problems,and perspectives[J].Biochemistry (Moscow),2013,78(7):679-696.
[4]Maeda Y,Kinoshita T.Dolichol-phosphate mannose synthase:Structure,function and regulation[J].Biochim Biophys Acta,2008,1780(6):861-868.
[5]阮班軍,代鵬,王偉,等.蛋白質(zhì)翻譯后修飾研究進(jìn)展[J].中國細(xì)胞生物學(xué)報,2014,36(7):1027- 1037.
[6]Kornfeld R,Kornfeld S.Assembly of asparagine-linked oligosaccharides[J].Annu Rev Biochem,1985,54(1):631-664.
[7]Lerouge P,Cabanes-Macheteau M,Rayon C,et al.N-glycoprotein biosynthesis in plants:Recent developments and future trends[J].Plant Mol Biol,1998,38(1/2):31-48.
[8]Faye L,Boulaflous A,Benchabane M,et al.Protein modifications in the plant secretory pathway:Current status and practical implications in molecular pharming[J].Vaccine,2005,23(15):1770-1778.
[9]Aebi M,Bernasconi R,Clerc S,et al.N-glycan structures:Recognition and processing in the ER[J].Trends Biochem Sci,2010,35(2):74-82.
[10]Pattison R J,Amtmann A.N-glycan production in the endoplasmic reticulum of plants[J].Trends Plant Sci,2009,14(2):92-99.
[11]Ruiz-May E,Kim S J,Brandizzi F,et al.The secreted plantN-glycoproteome and associated secretory pathways[J].Front Plant Sci,2012,3:117.
[12]Gomord V,Fitchette A C,Menu-Bouaouiche L,et al.Plant-specific glycosylation patterns in the context of therapeutic protein production[J].Plant Biotechnol J,2010,8(5):564-587.
[13]Lederkremer G Z.Glycoprotein folding,quality control and ER-associated degradation[J].Curr Opin Struc Bio,2009,19(5):515-523.
[14]Soussillane P,D′Alessio C,Paccalet T,et al.N-glycan trimming by glucosidase Ⅱ is essential forArabidopsisdevelopment[J].Glycoconj J,2009,26(5):597-607.
[15]Liu Jianxiang,Howell S H.Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants[J].Plant Cell,2010,22(9):2930-2942.
[16]Baiet B,Burel C,Saint-Jean B,et al.N-glycans of phaeodactylum tricornutum diatom and functional characterization of itsN-acetylglucosaminyltransferase Ⅰ enzyme[J].J Biol Chem,2011,286(8):6152-6164.
[17]Kajiura H,Koiwa H,Nakazawa Y,et al.TwoArabidopsisthalianaGolgi alpha-mannosidase Ⅰ enzymes are responsible for plantN-glycan maturation[J].Glycobiology,2010,20(2):235-247.
[18]Chang A,Singh S,Phillips G N,et al.Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation[J].Curr Opin Biotechnol,2011,22(6):800-808.
[19]Lairson L L,Henrissat B,Davies G J,et al.Glycosyltransferases:structures,functions,and mechanisms[J].Annu Rev Biochem,2008,77:521-555.
[20]Lucocq J M,Brada D,Roth J.Immunolocalization of the oligosaccharide trimming enzyme glucosidase Ⅱ[J].J Cell Biol,1986,102(6):2137-2146.
[21]Liebminger E,Hüttner S,Vavra U,et al.Class Ⅰα-mannosidases are required forN-glycan processing and root development inArabidopsisthaliana[J].Plant Cell,2009,21(12):3850-3867.
[22]Banerjee S,Vishwanath P,Cui J,et al.The evolution ofN-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation[J].Proc Natl Acad Sci USA,2007,104(28):11676-11681.
[23]Liebminger E,Veit C,Mach L,et al.Mannose trimming reactions in the early stages of theN-glycan processing pathway[J].Plant Signal Behav,2010,5(4):476-478.
[24]Maattanen P,Gehring K,Bergeron J J,et al.Protein quality control in the ER:the recognition of misfolded proteins[J].Semin Cell Dev Biol,2010,21(5):500-511.
[25]尹恒,王文霞,趙小明,等.植物糖生物學(xué)研究進(jìn)展[J].植物學(xué)報,2010,45(5):521-529.
[26]Ahner A,Brodsky J L.Checkpoints in ER-associated degradation:excuse me,which way to the proteasome?[J].Trends Cell Biol,2004,14(9):474-478.
[27]Masahara-Negishi Y,Hosomi A,Mea M D,et al.A plant peptide:N-glycanase orthologue facilitates glycoprotein ER-associated degradation in yeast[J].Biochimica Et Biophysica Acta,2012,1820(10):1457-1462.
[28]Iwata Y,Koizumi N.Unfolded protein response followed by induction of cell death in cultured tobacco cells treated with tunicamycin[J].Planta,2005,220(5):804-807.
[29]Sanjay A,Fu Jie,Kreibich G.DAD1 is required for the function and the structural integrity of the oligosaccharyltransferase complex[J].J Biol Chem,1998,273(40):26094-26099.
[30]Silberstein S,Collins P G,Kelleher D J,et al.The essentialOST2 gene encodes the 16-kD subunit of the yeast oligosaccharyltransferase,a highly conserved protein expressed in diverse eukaryotic organisms[J].J Cell Biol,1995,131(2):371-383.
[31]潘永娟,金曉琴,劉偉娜,等.抗細(xì)胞凋亡蛋白DAD研究進(jìn)展[J].浙江師范大學(xué)學(xué)報:自然科學(xué)報,2014,37(2):212-218.
[32]Boisson M,Gomord V,Audran C,et al.Arabidopsisglucosidase Ⅰ mutants reveal a critical role ofN-glycan trimming in seed development[J].EMBO J,2001,20(5):1010-1019.
[33]Gillmor C S,Poindexter P,Lorieau J,et al.Alpha-glucosidase Ⅰ is required for cellulose biosynthesis and morphogenesis inArabidopsis[J].J Cell Biol,2002,156(6):1003-1013.
[34]Lerouxel O,Mouille G,Andeme-Onzighi C,et al.Mutants in DEFECTIVE GLYCOSYLATION,anArabidopsishomolog of an oligosaccharyltransferase complex subunit,show protein underglycosylation and defects in cell differentiation and growth[J].Plant J,2005,42(4):455-468.
[35]Zhang Min,Henquet M,Chen Zhizhong,et al.LEW3,encoding a putative alpha-1,2-mannosyltransferase (ALG11) inN-linked glycoprotein,plays vital roles in cell-wall biosynthesis and the abiotic stress response inArabidopsisthaliana[J].Plant J,2009,60(6):983-999.
[36]Wei Song,Henquet M G L,Mentink R A,et al.N-glycoproteomics in plants:perspectives and challenges[J].J Proteomics,2011,74(8):1463-1474.
[37]Barth C,Gouzd Z A,Steele H P,et al.A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium,resulting inArabidopsisroot growth inhibition,altered ammonium metabolism,and hormone homeostasis[J].J Exp Bot,2010,61(2):379-394.
[38]Kang J S,Frank J,Kang C H,et al.Salt tolerance ofArabidopsisthalianarequires maturation ofN-glycosylated proteins in the Golgi apparatus[J].Proc Natl Acad Sci USA,2008,105(15):5933-5938.
[39]Singh S,Singh A,Roy S,et al.SWP1 negatively regulates lateral root initiation and elongation inArabidopsis[J].Plant Signal Behav,2012,7(12):1522-1525.
[40]Qin Cheng,Li Yuanya,Gan Jian,et al.OsDGL1,a homolog of an oligosaccharyltransferase complex subunit,is involved inN-glycosylation and root development in rice[J].Plant Cell Physiol,2013,54(1):129-137.
[41]Meli V S,Ghosh S,Prabha T N,et al.Enhancement of fruit shelf life by suppressingN-glycan processing enzymes[J].Proc Natl Acad Sci USA,2010,107(6):2413-2418.
[42]Priem B,Gitti R,Bush C A,et al.Structure of ten freeN-glycans in ripening tomato fruit.Arabinose is a constituent of a plantN-glycan[J].Plant Physiol,1993,102(2):445-458.
[43]Irfan M,Ghosh S,Kumar V,et al.Insights into transcriptional regulation of beta-D-N-acetylhexosaminidase,anN-glycan-processing enzyme involved in ripening-associated fruit softening[J].J Exp Bot,2014,65(20):5835-5848.
[44]Isaji T,Kariya Y,Xu Qingsong,et al.Functional roles of the bisecting GlcNAc in integrin-mediated cell adhesion[J].Methods in Enzymol,2010,480:445-459.
[45]Woodward A W,Bartel B.Auxin:regulation,action,and interaction[J].Ann Bot,2005,95(5):707-735.
[46]Ruiz-May E,Thannhauser T W,Zhang Sheng,et al.Analytical technologies for identification and characterization of the plantN-glycoproteome[J].Front Plant Sci,2012,3:1-8.
[47]周蕾,顧建新.N-糖基化位點(diǎn)鑒定方法和非經(jīng)典N-糖基化序列[J].生命科學(xué),2011,23(6):605-611.
[48]Zhang Yu,Giboulot A,Zivy M,et al.Combining various strategies to increase the coverage of the plant cell wall glycoproteome[J].Phytochemistry,2011,72(10):1109-1123.
[49]Leonard R,Strasser R,Altmann F.Plant glycosidases acting on protein-linked oligosaccharides[J].Phytochemistry,2009,70(3):318-324.
[50]Catalá C,Howe K J,Hucko S,et al.Towards characterization of the glycoproteome of tomato (Solanumlycopersicum) fruit using Concanavalin A lectin affinity chromatography and LC-MALDI-MS/MS analysis[J].Proteomics,2011,11(8):1530-1544.
[51]Zhang M,Chen G X,Lü D W,et al.N-linked glycoproteome profiling of seedling leaf inBrachypodiumdistachyonL.[J].Journal of Proteome Research,2015,14(4):1727-1738.
[52]Silva-Sanchez C,Chen Sixue,Li Jinxi,et al.A comparative glycoproteome study of developing endosperm in the hexose-deficientminiature1 (mn1) seed mutant and its wild typeMn1 in maize[J].Front Plant Sci,2014,5(1):217-226.
[53]Sethuraman N,Stadheim T A.Challenges in therapeutic glycoprotein production[J].Curr Opin Biotechnol,2006,17(4):341-346.
[54]徐沙,中西秀樹,高曉冬.糖蛋白藥物表達(dá)系統(tǒng)糖基化研究進(jìn)展[J].微生物學(xué)報,2013,53(3):221-229.
(責(zé)任編輯 薛 榮)
Research progress onN-glycosylation proteins in plants
YE Qiang,JIN Xiaoqin,LIU Weina,HAN Fengqin,KANG Zhen,YANG Li
(CollegeofChemistryandLifeSciences,ZhejiangNormalUniversity,Jinhua321004,China)
N-glycosylation was closely related to correctly folded proteins,apoptosis,organ developments and signal transductions.It was reviewed the structures,biosynthesis,modifications and functions ofN-glycosylation,methods for isolation and identification of glycoprotein in plants.The application perspectives and potential problems were also discussed.
plant proteins; glycosylation;N-glycan synthesis; biological functions
10.16218/j.issn.1001-5051.2016.01.015
??2015-04-20;
2015-05-18
浙江省自然科學(xué)基金資助項(xiàng)目(LY14C150001);浙江省大學(xué)生新苗人才計(jì)劃項(xiàng)目(2104R404024)
葉 強(qiáng)(1992-),男,浙江金華人,碩士研究生.研究方向:生物化學(xué)與分子生物學(xué).通信作者:楊 莉.E-mail:yangli@zjnu.cn
Q51
A
1001-5051(2016)01-080-07